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ABSTRACT: As it stands, density matrix purification is a powerful tool for linear scaling electronic structure calculations. The
convergence is rapid and depends only weakly on the band gap. However, as will be shown in this letter, there is room for
improvements. The key is to allow for nonmonotonicity in the recursive polynomial expansion. On the basis of this idea, new
purification schemes are proposed that require only half the number of matrix�matrix multiplications compared to previous
schemes. The speedup is essentially independent of the location of the chemical potential and increases with decreasing band gap.

During the last two decades, methods have been developed
that make it possible to apply electronic structure calcula-

tions, using Hartree�Fock, Kohn�Sham density functional
theory, or tight-binding models, to systems with many thousands
of atoms.1�5 Although the computational cost of these methods
increases only linearly with system size, such calculations are
extremely demanding. Therefore, there is a need to improve
existing linear scaling methods in order to reduce the computa-
tional cost and make best use of modern computer resources.

In linear scaling electronic structure calculations, efficient
computation of the one-particle density matrix D for a given
effective Hamiltonian F is an important ingredient. Many meth-
ods for linear scaling computation of the density matrix have
been proposed. A common approach is to employ a polynomial
expansion of the function D = θ(μI � F), where θ is the
Heaviside step function and μ is the chemical potential. The
expansion may be built up serially by a Chebyshev series6�9 or
recursively by density matrix purification10�14 or sign matrix
methods.15,16 Another approach is to minimize an energy func-
tional with respect to the density matrix.17�20

For the isolated problem of computing the density matrix for a
fixed Hamiltonian, the recursive density matrix purification
schemes are highly efficient. The convergence is rapid, and the
computational cost scales as O (ln(Δε/ξ)), where Δε is the
spectral width of the effective Hamiltonian matrix and ξ is the
band gap.11,21 This should be compared to an O ((Δε/ξ)1/2)
cost for the serial polynomial expansion9 and minimization1,21

methods. However, despite the excellent performance of pre-
viously proposed density matrix purification schemes, substantial
improvements are still possible, as will be shown in this letter.

In density matrix purification, the effective Hamiltonian matrix is
first shifted and scaled so that the eigenvalues end up in the [0, 1]
interval in reverse order. After that, low order polynomials with fixed
points at 0 and 1 are recursively applied to build up the desired step
function. The general iterative procedure can be formulated as

X0 ¼ f0ðFÞ
Xi ¼ fiðXi � 1Þ, i ¼ 1, 2, :::

ð1Þ

where f0 is the initial linear transformation and fi, i = 1, 2, ... is a

sequence of low order polynomials. The iterative procedure is
stopped as soon as all eigenvalues of Xi are sufficiently close to their
desired values of 0 and 1. The stopping criterion can for example be
set in terms of the last eigenvalues to converge,22 but other criteria
are possible as well.10,14

Purification can either be carried out with fixed or varying
chemical potential μ. In the case of fixed-μ purification, a single
polynomial with an unstable fixed point in ]0, 1[ is typically used for
all fi, i > 0. The initial transformation f0 maps the chemical potential
to the unstable fixed point. The purification process then brings
the eigenvalues to their desired values of 0 and 1. In the case of
varying-μ purification, the chemical potential is allowed to move
during the iterations. This flexibility can be used to automatically
adjust the expansion so that the correct number of electrons is
obtained, as in canonical10 and trace-correcting11 purification.

In any case, the idea has been to use polynomials that increase
monotonically in [0, 1] and have fixed points and vanishing
derivatives at 0 and 1. As discussed by Niklasson,11 it can be
understood that a recursive expansion using such polynomials will
converge toward a step function. In the following, we shall use the
notation Pi,j(x) for the polynomial of degree 1 þ i þ j with fixed
points at 0 and 1 and with i and j vanishing derivatives at 0 and 1,
respectively.Many previously proposed purification polynomials can
be written in this form.23

In this letter, we withdraw from the idea of using monotonically
increasing purification polynomials. A scale and fold technique giving
nonmonotonic purification transformations is proposed that results in
improved performance of both fixed- and varying-μ purification
schemes. The new idea is the following: Before each iteration, the
eigenspectrum is stretched out outside the [0, 1] interval. Some of the
polynomials of the form Pi,j can then be used to fold the eigenspec-
trumover itself. For example, the polynomial P1,0(x) = x

2 can be used
to fold the unoccupied part of the eigenspectrum if the eigenspectrum
is stretched out below 0 before its application. Similarly, the poly-
nomial P0,1(x) = 2x � x2 can be used to fold the occupied part. In
general, the scale and fold technique can for a polynomial Pi,j be used
for the unoccupied part if i is odd and for the occupied part if j is odd.
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Similar scaling techniques have previously been employed to
improve the convergence of Newton iterations for sign matrix
evaluations.24,25 However, in this case, the regular unscaled itera-
tion keeps the eigenvalues outside the interval, and the scaling is
used to shrink rather than stretch out the eigenspectrum.

We will first apply the scale and fold technique to fixed-μ
purification using a polynomial Pm,m with m being odd. For such
polynomials, the technique can be used to fold both the unoccu-
pied and occupied parts of the eigenspectrum in each iteration. In
this case, the nonmonotonic purification transformation

fiðXi � 1Þ ¼ Pm,mðRðXi � 1 � 0:5IÞ þ 0:5IÞ ð2Þ
where R g 1, determines the amount of scaling around the
unstable fixed point at 0.5. The complete algorithm for the special
case m = 1 is given in Algorithm 1, where λmin and λmax are the
extremal eigenvalues of F or bounds thereof. For simplicity, it is
assumed here that the band gap is located symmetrically around μ.
The expression for R can be derived by solving

Pm,mðRðβ� 0:5Þ þ 0:5Þ ¼ Pm,mð0:5ð1� RÞÞ ð3Þ
forRg 1.Here,β is a parameter depending on the eigenvalue closest
to 0.5, see Algorithm 1. The behavior of Algorithm 1 is illustrated in
Figure 1 for a case with Δε/ξ = 10 and μ = λmin þ 0.25(λmax �
λmin). The behavior of the regular grand-canonical purification
algorithm,10 corresponding to Algorithm 1 with R = 1, is shown
for reference. Note how the scaled variant is able to take advantage of
the additional flexibility given by allowing for nonmonotonicity,
resulting in much faster convergence. Fixed-μ purification schemes
with scaling can also be derived for other polynomials of the form Pi,j,
where i and j are both odd and larger than 0. Note that the scaling
should be performed around the unstable fixed point of the
polynomial, which will differ from 0.5 if i 6¼ j.

Algorithm 1. McWeeny-Based Fixed-μ Purification
Input: F, λmin, λmax, μ, ξ
1: γ = 2max(λmax � μ, μ � λmin)
2: X0 = (μI � F)/γ þ 0.5I
3: β = 0.5(1 � ξ/γ)
4: for i = 1, 2, ..., n, do
5: R = 3/(12β2 � 18β þ 9)1/2

6: Xs = R(Xi�1 � 0.5I) þ 0.5I
7: Xi = 3Xs

2 � 2Xs
3

8: βs = R(β � 0.5) þ 0.5
9: β = 3βs

2 � 2βs
3

10: end for
11: return D = Xn

The scale and fold technique can also be used together with
varying-μ purification. We shall here focus on purification based
on the polynomials P0,1 and P1,0.

26 These polynomials can be
used to adjust the occupation count:11 if the occupation is too
high, the P1,0 polynomial is applied; otherwise, P0,1 is applied.
The scaling should in this case be chosen to stretch out the
eigenspectrum below 0 before application of x2 and above 1 before
application of 2x � x2. The purification transformations are

fiðXi � 1Þ ¼ P1, 0ðRXi � 1 þ ð1� RÞIÞ ð4Þ

and

fiðXi � 1Þ ¼ P0, 1ðRXi � 1Þ ð5Þ

where R g 1 determines the amount of scaling. A complete
algorithm is given in Algorithm 2, where λlumo and λhomo are the
eigenvalues closest above and below the band gap, respectively, and
nocc is the number of occupied orbitals. Without scaling, i.e.,R = 1,
this algorithm is equivalent to the second order trace correcting
purification scheme by Niklasson.11 The choice of polynomial on
line 5 of the algorithm is based on the trace of the current density
matrix approximation, just as in the original trace correcting
scheme. However, other ways to choose the polynomial can be
used as well.22,27 The behavior of Algorithm 2 is illustrated in
Figure 2. The regular scheme with R = 1 is shown for reference.

Algorithm 2. P0,1 and P1,0-Based Varying-μ Purification
Input: F,nocc, λmin, λmax, λlumo, λhomo

1: X0 = f0(F) = (λmaxI � F)/(λmax � λmin)
2: β = f0(λlumo)
3: βh = f0(λhomo)
4: for i = 1,2, ..., n, do
5: if Tr[Xi�1] > nocc, then
6: R = 2/(2 � β)
7: Xi = (RXi�1 þ (1 � R)I)2

8: β = (Rβ þ 1 � R)2

9: βh = (Rβh þ 1 � R)2

10: else
11: R = 2/(1 þ βh)
12: Xi = 2RXi�1 � R2Xi�1

2

13: β = 2Rβ � R2β2

14: βh = 2Rβh � R2βh2

15: end if
16: end for
17: return D = Xn

Figure 1. Mapping of the eigenspectrum after 1, 3, and 5 iterations of McWeeny based fixed-μ purification with and without the use of scaling. In this
illustrative example, Δε/ξ = 10, and the chemical potential μ is located at λmin þ 0.25(λmax � λmin).
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Figures 1 and 2 show that the use of scaling results in more
rapid convergence. In order to closer study the performance
enhancement given by the scaling technique, we shall consider
diagonal test Hamiltonians with varying chemical potentials
and band gaps. As previously discussed by Mazziotti,14 the
results for a given chemical potential and a given band gap are
valid for any Hamiltonian with that band gap and chemical
potential.

Figure 3a shows that the proposed scaling techniques give
significant speedup independently of the location of the chemi-
cal potential. As can be seen in Figure 3b, the costs of the scaled
purification schemes scale as O (ln(1/ξ)) with the band gap ξ,
just as for the regular schemes. However, the convergence for
the scaled schemes is around twice as fast as for the regular
schemes.

The scaling technique requires some information about the
band gap.More precisely, a lower bound of the lower edge and an
upper bound of the upper edge of the band gap are needed.
These bounds can be used in place of λhomo and λlumo in
Algorithm 2. It should be noted that incorrect bounds can lead
to a mix-up between occupied and unoccupied states. However,
even if the bounds are not tight, the scaling technique can be
used, although the effect will not be as good as it could have been.

Tight bounds can be obtained by some technique for calculation
of interior eigenvalues.22,28,29

The performance was here measured by the number of
matrix�matrix multiplications needed to reach a certain accu-
racy. In practical linear scaling calculations, an efficient way to
bring about sparsity is critical for the performance. Since the
proposed schemes are on the standard form given by eq 1, it is
possible to combine them with previously suggested schemes to
control the forward error.22 To achieve forward error control,
information about the band gap is needed. Fortunately, this
is the same information as needed for the proposed scaling
techniques.

In this letter, nonmonotonic recursive polynomial expansions
for calculation of the density matrix were proposed. We have
withdrawn from the idea that the approximation of the step
function should be monotonically increasing and show that this
makes it possible to find new, more efficient nonmonotonic
purification transformations. The scaled purification variants of
this work represent a substantial improvement compared to
previous purification schemes. The reduction in computational
cost is essentially independent of the location of the chemical
potential, and the proposed schemes are particularly efficient in
the case of small band gaps.

Figure 2. Mapping of the eigenspectrum after 1, 5, and 9 iterations respectively of P0,1- and P1,0-based varying-μ purification with and without the use of
scaling. In this illustrative example, Δε/ξ = 10, and the chemical potential μ is located at λmin þ 0.25(λmax � λmin).

Figure 3. Number of matrix�matrix multiplications needed to reach an accuracy of ||~D�D||2e 10�9, where ~D is the computed approximation of the
exact density matrix D. The test calculations presented in panel a were performed on test Hamiltonians with band gaps ξ = 0.01 and varying chemical
potential μ. The test calculations presented in panel b were performed on test Hamiltonians with chemical potentials μ = 0.5 and varying band gap ξ. In
all cases, the spectral widths of the test Hamiltonians wereΔε = 1. The test cases in panel a are essentially equivalent to the test cases presented in Figure 2
of ref 11.
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ABSTRACT: The recently developed GROMOS 54A7 force field, a modification of the 53A6 force field, is validated by simulating
the folding equilibrium of two β-peptides which show different dominant folds, i.e., a 314-helix and a hairpin, using three different
force fields, i.e., GROMOS 45A3, 53A6, and 54A7. The 54A7 force field stabilizes both folds, and the agreement of the simulated
NOE atom�atom distances with the experimental NMR data is slightly improved when using the 54A7 force field, while the
agreement of the 3J couplings with experimental results remains essentially unchanged when varying the force field. The 54A7 force
field developed to improve the stability of R-helical structures in proteins can thus be safely used in simulations of β-peptides.

1. INTRODUCTION

Molecular dynamics simulation is an efficient method used to
understand and predict biological or chemical processes at the
atomic level. The simulation results, however, depend on the
quality of the force field used, which describes the interactions
between particles in the system. Several force fields have been
developed for biomolecular simulation, such as AMBER,1�3

CHARMM,4�6 GROMOS,7�11 and OPLS.12,13 Over the years,
successive GROMOS force-field parameter sets have been
introduced.9�11 The most widely used versions of this force
field are the 43A1 force field8,9 of 1996, the 45A3 force field10 of
2001, and the 53A6 force field11 of 2004.

The force field 43A1 contains 43 individual atom types to
describe van der Waals interactions.9 The force field 45A3
introduced two additional atom types for branched and cyclic
alkanes and reparameterized the aliphatic CHn groups based on
thermodynamic data for long alkane chains.10 The force field
53A6 reparameterized a number of polar groups also against
thermodynamic data, including several (co)solvents,14�17 re-
numbered all atom, bond, bond�angle, and torsional dihedral-
angel types, and added eight new van der Waals atom types. The
recently developed force field 54A718 is a modification of the
53A6 force field. It contains fourmodifications: (1) The torsional
angle energy term for the polypeptidej- andψ-dihedral angles is
modified. Four different torsional dihedral angle types are added,
and the repulsive van deWaals C12

1/2(I, I) parameter for the O�N
pair is changed to be smaller than that in the 53A6 parameter set.
(2) A new van der Waals nonbonded atom type for a charged
�CH3 group is introduced in order to generate a larger repulsion
between the partly charged �CH3 groups of the choline moiety
and the negatively charged OM oxygen atoms of the phosphate
moiety in DPPC type lipids.19 (3) The van derWaals nonbonded
interaction parameters for theNaþ andCl� ions are changed. (4)
Two additional improper dihedral angle types are defined in
order to facilitate free energy difference calculations involving
chirality changes. The first modification was introduced18 in
order to redress the tendency of the thermodynamically cali-
brated 53A6 force field to slightly destabilize R-helical structures
in proteins. Application to four different proteins shows that the

new 54A7 force field has the intended effect.18 However, a more
stringent test than simulating folded proteins would be the
simulation of a folding equilibrium, which is only possible for
short polypeptides.

β-Peptides are non-natural polypeptides which exhibit a
strong tendency to form stable, well-defined secondary
structures.20�22 Their resistance to degradation by proteases
makes them attractive as potential pharmaceuticals.23,24 β-Peptides
can form stable secondary structure motifs even at much shorter
sequence lengths than those needed in R-peptides.25,26 This
feature makes them ideal cases to study the folding process
and test the quality of the force field in molecular dynamics
simulations27�29 of the folding equilibrium. Since the modifica-
tion of the peptidic j- and ψ-angle torsional angle energy
terms and the change in C12

1/2(I, I) repulsive van der Waals
parameters for backbone N�O atom pairs would influence
the folding equilibrium of β-peptides, a test of the 54A7 force
field with respect to its reproduction of β-peptide folding is
necessary.

Here, we test the new GROMOS force field parameter set
54A7 with respect to β-peptide folding using two β-peptides
which in methanol fold into different secondary structures:
peptide 1,30�32 whose dominant fold is a 314-helix, and peptide
2,33 whose dominant fold is a hairpin (Figure 1). Both β-peptides
were previously used to study the effect of the use of a polarizable
methanol solvent model on their folding equilibrium.34 The
results of the simulations using the 54A7 parameter set are
compared to the results obtained with two earlier parameter sets,
53A6 and 45A3, as well as to the NMR experimental data of these
two β-peptides.

2. METHODS

2.1. 54A7 Parameter Set.The torsional angle energy term for
the polypeptide j- and ψ-dihedral angles is modified in con-
junction with a change of the combination prescription of the C12

Received: December 24, 2010
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van der Waals parameters for the atom type pair O(IAC=1)�
N(IAC=6):
(a) In the selection table (Table 8 of ref 11), for the repulsive

van der Waals C12
1/2(I, I) parameters, the type for the

O(IAC=1)�N(IAC=6) pair is changed from “2” to “1”.
This means that the smaller C12

1/2(O, O) value of 1.000�
10�3 [kJ mol�1 nm12]1/2 for the O atom (IAC=1) is
selected for the interaction with an N atom (IAC=6)
compared to the C12

1/2(O, O) value of 1.130 � 10�3 [kJ
mol�1 nm12]1/2 in 53A6.

(b) Four different torsional dihedral angle types are added to
Table 5 of ref 11, see Table 1. In the molecular topology
building blocks for R-peptides and β-peptides, the dihe-
dral angle type 39 (53A6) in the backbone C�N�CA�C
dihedral (R-residue) or the backbone C�N�CB�CA
dihedral (β-residue) is to be changed to type 44 (54A7),
and the same dihedral angle with type 43 (54A7) is added.
In addition, the dihedral angle type 40 (53A6) for the
backbone N�CA�C�N dihedral (R-residue) or the
backbone CB�CA�C�N dihedral (β-residue) is to be
changed into type 45 (54A7), and the same dihedral angle
with type 42 (54A7) is added.

These changes increase the hydrogen bonding between theN�H
and the CdO groups in the polypeptide backbone and bring the
j- and ψ-angle distributions for a number of proteins more in
line18 with the preferences observed in PDB protein structures.
2.2. Simulations. Six molecular dynamics simulations, of the

two β-peptides and based on the 45A3, 53A6, and 54A7
parameter sets, were carried out using the GROMOS05 software,35

see Table 2. The backbone termini of peptides 1 and 2 and the
Lys side chain of peptide 2 were protonated. No counterions
were used. The methanol model included in the 45A3 force field
is slightly different from the one used in the 53A6 and 54A7 force
fields.11,14 For peptide 1 and parameter set 45A3, a trajectory of a
previous simulation was used.36

The folded conformations of the two peptides were used as
initial structures. Each peptide was solvated in a periodic,
rectangular box with methanol as the solvent. The minimum
distance from any peptide atom to the box wall was set to 1.4 nm
in both cases. The resulting numbers of solvents are listed in
Table 2.
Both simulations were carried out for 200 ns at a constant

temperature of 340 K and a constant pressure of 1 atm using the
weak coupling algorithm.37 The temperature coupling time was
set to 0.1 ps and the pressure coupling time to 0.5 ps, and an
isothermal compressibility of 4.575 � 10�4 (kJ mol�1 nm�3)�1

was used.8 All bond lengths were kept rigid at ideal bond lengths
using the SHAKE algorithm,38 as was the H�CH3 distance in
methanol, allowing a time step of 2 fs in the leapfrog algorithm to
integrate the equations of motion. Nonbonded interactions were
calculated using a twin-range cutoff scheme with cutoff radii of
0.8/1.4 nm. Interactions within 0.8 nmwere evaluated every time
step. The intermediate range interactions were updated every
fifth time step, and the long-range electrostatic interactions
beyond 1.4 nm were approximated by a reaction field force39

representing a dielectric continuum with a dielectric permittivity
of either 17.7 for the methanol model of the 45A3 force field or
19.8 for that of the 53A6 and 54A7 force fields.14

2.3. Analysis. Trajectory coordinates and energies stored at
0.5 ps intervals were used for analysis. Backbone atom-positional
root-mean-square deviations (RMSD) were calculated after
translational superposition of the solute centers of mass and
least-squares rotational fitting of atomic positions, using all
backbone atoms (N, CB, CA, C) of residues 2�6 for peptide 1
and residues 2�5 for peptide 2. The backbone atom-positional
RMSD criteria required to separate the folded conformation
(CF) from the unfolded ones (CU) are 0.1 nm for peptide 1 and

Figure 1. Chemical formulas of the two β-peptides: peptide 1, H2
þ-β3-HVal-β3-HAla-β3-HLeu-(S,S)-β3-HAla(RMe)-β3-HVal-β3-HAla-β3-HLeu-

OH; Peptide 2, H2
þ-(S,R)-β3-HAla(RMe)-(S,R)-β3-HVal(RMe)-β2-HVal-β3-HLys-(S,R)-β3-HAla(RMe)-(S,R)-β3-HLeu(RMe)-OH.

Table 1. New Torsional Dihedral Angle Parametersa in the
GROMOS 54A7 Force Field

type code Kφn
kJ mol�1 cos(δn) mn example

42 3.50 �1 2 �CHn�C�
43 2.80 þ1 3 �CHn�N�
44 0.70 �1 6 �CHn�N�
45 0.40 þ1 6 �CHn�C�

aThe definition of the parameters can be found in ref 11, Table 5.

Table 2. Overview of the MD Simulations

peptide

simulation

name force field

charge

state

[e]

no. solvent

molecules

Peptide 1 145A3
a 45A3 þ1 1090

153A6 53A6 þ1 1090

154A7 54A7 þ1 1096

Peptide 2 245A3 45A3 þ2 1409

253A6 53A6 þ2 1366

254A7 54A7 þ2 1409
aThe trajectory of this simulation is described in ref 36.
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0.08 nm for peptide 2. Conformational clustering was performed
using the approach of Daura et al.40 on the set of peptide
structures taken at 10 ps intervals from the complete 200 ns
trajectories of the simulations. The RMSD values described
above were also used as the cutoffs for the conformational
clustering. Only the clusters that make up 95% of a trajectory
were selected and counted as a function of time.41 Hydrogen
bonds were defined by a maximum hydrogen�acceptor distance
of 0.25 nm and a minimum donor�hydrogen�acceptor angle of
135�. Only hydrogen bonds with a population larger than 5% are
reported. Distributions of the size of the solute dipole moment
calculated using all atoms or the backbone atoms of the peptides
are reported. Since the dipole moment of a set of atoms carrying a
nonzero total charge depends on the position of the origin, the
center of geometry of the solute was used as such.
Folding kinetics were studied by calculating the total residence

time andmean residence time in the folded conformation CF and
the number of time periods for which the solute remains folded.
The folding free enthalpy was calculated as

ΔGfolding ¼ � kBT lnðPCF=PCUÞ ð1Þ

where kB is the Boltzmann constant, T is the temperature, and
PCF

and PCU
are the relative probabilities of the system in the

folded and unfolded conformational states, respectively. PCF
and

PCU
are obtained by counting the relative number of folded and

unfolded structures respectively in a trajectory. The total resi-
dence time is the product of PCF

and the total simulation time,
and the mean residence time is the total residence time divided
by the number of folded periods. The number of folded periods
was calculated using structures taken at 10 ps intervals from the
simulations. If the peptide changed from one conformation to
the other and stayed there for at least 20 ps, it was considered a
transition between a folded period and an unfolded period.
Interproton distances extracted from the NOE intensities

measured in the NMR experiments were compared with the
average interproton distances in the simulations calculated using
Ær�6æ�1/6, where r is the instantaneous interproton distance. The
hydrogen�hydrogen distances involving aliphatic hydrogen
atoms were calculated by defining virtual (CH1), prochiral
(stereospecific CH2), and pseudo- (CH3 and nonstereospecific
CH2) atomic positions, and pseudoatom corrections were added

to the distance bounds for the latter, 0.1 nm for nonstereospecific
CH2, 0.15 nm for CH3, and 0.29 nm for nonstereospecific
rotating methyls.42 3J-coupling constants were calculated using
the Karplus relation,43

3 JðH,HÞ ¼ a cos2 θþ b cos θþ c ð2Þ
where a = 6.4 Hz, b =�1.4 Hz, and c = 1.9 Hz for the calculation
of 3JHN,HC

,44 and a = 9.5 Hz, b = �1.6 Hz, and c = 1.8 Hz for the
calculation of 3JHC,HC

.45

3. RESULTS

3.1. Peptide 1. The atom-positional RMSD of the backbone
atoms of residues 2 to 6 with respect to the 314-helical structure
are shown in Figure 2 for MD simulations of peptide 1 as a
function of the simulation time together with their distributions.
The results show that the folding equilibrium of peptide 1 varies
between the different force fields. Although the distributions of
RMSD have the same pattern and the location of the major peak

Figure 2. Time evolution (left panels) and distribution (right panels) of atom-positional RMSD from the 314-helical model structure for the backbone
atoms of residues 2�6 in simulations of peptide 1. Upper panels, 145A3; middle panels, 153A6; lower panels, 154A7.

Table 3. Folding Dynamics and Thermodynamics of Pep-
tides 1 and 2

simulation 145A3 153A6 154A7 245A3 253A6 254A7

number of folded periods 184 129 205 104 200 363

total residence time [ns] 125 157 174 10 23 37

mean residence time [ps] 680 1218 849 96 115 102

fraction folded [%] 63 79 87 5 12 19

free enthalpy of

folding [kJ mol�1]

�1.5 �3.7 �5.4 8.3 5.8 4.2

Table 4. Intramolecular Hydrogen Bond Populations of
Peptide 1 (in %)

donor 3 3 3 acceptor 145A3 153A6 154A7

NH(1) 3 3 3O(3) 20 22 16

NH(2) 3 3 3O(4) 57 77 87

NH(3) 3 3 3O(5) 60 80 90

NH(4) 3 3 3O(6) 57 73 74

NH(5) 3 3 3O(7) 15 24 27
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in the distributions is below 0.1 nm in all three simulations, the
simulation using the force field 54A7 samples less unfolded
conformations than the simulations using the force fields 53A6
and 45A3, see Table 3.
Populations of intramolecular hydrogen bonds in the simula-

tions of peptide 1 are listed in Table 4. The populations of the
314-helical hydrogen bonds, i.e., those between NH(i) and
O(iþ2), increase from 145A3 to 153A6 to 154A7, except for the
one between NH(1) and O(3), including the terminal residue.
The free enthalpy of folding also shows an increased stability of
the 314-helical fold for the successive force fields (Table 3).
Kinetic properties are listed in Table 3. The mean residence

time for 154A7 is shorter than that for 153A6 due to the higher
frequency of folding events during the former simulation.
The proton�proton NOE distance bound violations and

3J-coupling constants calculated from the simulations of pep-
tide 1with the three different force fields are shown in Figure 3.

There are four slightly positive violations for the same NOEs
in all three simulations. Three of the four positive violations of
154A7 are smaller than those of 153A6 and 145A3. The average
3J-coupling constants also agree well with the experimental data,
with average absolute deviations of 0.4, 0.4, and 0.5 Hz for 145A3,
153A6, and 154A7, respectively, well within the accuracy of the
Karplus relation.
To investigate whether the simulations using the different

force fields sample the same conformational space, we performed
a conformational clustering analysis on combined trajectories of
simulations of the same peptide using different force fields. The
results are shown in Figure 4. The populations of the clusters in
panels a�c show that the conformational spaces sampled in
simulations using the three different force fields are not very
different.
The cumulative number of conformational clusters that make

up 95% of the trajectory in the simulations as a function of time is

Figure 3. Comparison of Ær�6æ�1/6 averaged NOE distance bound violations (left panels) and average 3J-coupling constants (right panels) as obtained
from simulations and experimental data30 of peptide 1. Upper panels, 145A3; middle panels, 153A6; lower panels, 154A7. For the specification of the NOE
atom pairs and the 3J-coupling constants, we refer to Tables S1 and S2 in ref 34.

Figure 4. Conformational clustering analysis of the combined trajectories of three force fields for peptide 1 (panels a�c) and peptide 2 (panels d�f).
The population in percentage per cluster and the portion of structures per cluster that belong to the trajectories generated using each of the three force
fields is shown in decreasing order. (a) 145A3 (white)�153A6 (black); (b) 145A3 (white)�154A7 (black); (c) 153A6 (white)�154A7 (black); (d) 245A3
(white)�253A6 (black); (e) 245A3 (white)�254A7 (black); (f) 253A6 (white)�254A7 (black).
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shown in Figure 5. All of the numbers of clusters converge within
200 ns, indicating that the simulations converged to a particular

set of conformations. Only two clusters comprise 95% of the
trajectory in the simulation 154A7. A total of 93% of the trajectory
of 154A7 is concentrated in the first cluster. These data also
indicate that peptide 1 is more stable with the 54A7 force field
than with the 53A6 or 45A3 force fields.
Distributions of the solute dipole moment of peptide 1 are

shown in Figure 6. The dipole moment distributions of backbone
atoms are different between simulations 145A3 and 153A6 or 154A7,
which is due to the larger backbone atomic partial charges in the
latter two force fields.11 Interestingly, the distributions of the
dipole moment of the whole peptide, i.e., including the terminal
NH3

þ and COOH groups,46 are similar.
3.2. Peptide 2. The atom-positional RMSD of the backbone

atoms of residues 2 to 5 with respect to the model hairpin
structure (X-PLOR structure number 133) are shown in Figure 7
for the simulations of peptide 2 as a function of simulation time
together with their distributions. The location of the peak of the
distribution is around 0.08 nm in simulation 254A7, while the ones
for the other two simulations are both around 0.15 nm. This
indicates that the new force field 54A7 samples more ideal
hairpin conformations for peptide 2 than the force fields 45A3
and 53A6. Both the total residence time and the fraction of folded
conformation gradually increase from 245A3 to 253A6 to 254A7, see
Table 3. Thus, the free enthalpy of folding gradually decreases in
this order. It indicates that the new 54A7 force field stabilizes the
folded hairpin structure over the other two force fields.
Populations of intramolecular hydrogen bonds in the simula-

tions of peptide 2 are listed in Table 5. The populations of the
hairpin hydrogen bonds NH(2) 3 3 3O(5) and NH(3) 3 3 3O(4)
are larger for 254A7 than for 245A3, while being similar to those in
253A6. The sum of the two populations is 50.2% in 254A7 and is
52.8% in 253A6.

Figure 5. Cumulative number of conformational clusters that make up
95% of the trajectory in the simulations as a function of time. (a) Peptide
1. (b) Peptide 2. Triangles, force field 45A3; squares, force field 53A6;
circles, force field 54A7.

Figure 6. Distributions of solute dipole moment of peptide 1 (upper
panels) and peptide 2 (lower panels) calculated using all atoms (left
panels) or only the backbone atoms (right panels). Dotted lines, force
field 45A3; dashed lines, force field 53A6; solid lines, force field 54A7.

Figure 7. Time evolution (left panels) and distribution (right panels) of the atom-positional RMSD from the model hairpin structure for the backbone
atoms of residues 2�5 in simulations of peptide 2. Upper panels, 245A3; middle panels, 253A6; lower panels, 254A7.

Table 5. Intramolecular Hydrogen Bond Populations of
Peptide 2 (in %)

donor 3 3 3 acceptor 245A3 253A6 254A7

NH(2) 3 3 3O(5) 1.8 5.1 11.6

NH(3) 3 3 3O(4) 30.0 47.6 38.6

NH(4) 3 3 3O(1) 7.6 16.1 5.5

NH(5) 3 3 3O(3) 3.5 2.7 7.0

NH(5) 3 3 3O(6) 5.0 0.1 1.8
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Kinetic properties are listed in Table 3. The mean residence
times do not differ much between the three force fields.
The proton�proton NOE distance bound violations and

3J-coupling constants calculated from the simulations of peptide
2 are shown in Figure 8. There are two positive violations in
245A3, 0.11 and 0.05 nm. Both of these violations are reduced to
0.01 nm in 253A6 and disappear in 254A7. The average absolute
deviations of 3J-coupling constants are 1.6, 1.3, and 1.4 Hz for
245A3, 253A6, and 254A7, respectively. These deviations from the
experimental values are larger than those observed for peptide 1.
The results of the conformational clustering analyses of

combined trajectories are shown in Figure 4. It seems that the
conformational spaces sampled are most different between 245A3
and 253A6 on the one hand and 254A7 on the other. This is in line
with the deviations from the ideal hairpin structure shown in
Figure 7. The RMSDs of the central member structures of the
first two clusters from the ideal hairpin structure are 0.10 and
0.07 nm for the combined trajectories of 245A3 and 254A7 and are
0.11 and 0.05 nm for the combined trajectories of 253A6 and
254A7. The central member structures of the first clusters are
partly folded, while those of the second clusters are fully folded.
This indicates that the new 54A7 force field samples more hairpin
conformations than the other two force fields.
The cumulative number of conformational clusters that make

up 95% of the trajectory in the simulations as a function of time is
shown in Figure 5. The numbers of clusters converge in 200 ns
for all simulations. Peptide 2 samples a larger conformational
space than peptide 1.
Distributions of the solute dipole moment of peptide 2 are

shown in Figure 6. The dipole moment distributions of the whole
peptide are broader than those of peptide 1. The dipole moment
of backbone atoms of peptide 1 is larger than that of peptide 2,
because of the stronger alignment of the NH and CO dipoles in
the 314-helix compared to the hairpin.

4. CONCLUSION

To test the performance of the new GROMOS 54A7 force
field, we compared the folding behavior of two β-peptides that
show a helical and a hairpin as the dominant fold using three
different force fields, GROMOS 45A3, 53A6, and 54A7, respec-
tively. The 54A7 force field samples more 314-helical or hairpin

conformations than the 53A6 or 45A3 force fields, which is due to
the slightly enhanced capacity of the backbone NH and CO
groups to form hydrogen bonds with each other in the 54A7
parameter set. The agreement with the experimental NOE data
was slightly improved by using the 54A7 force field, while the
experimental 3J couplings were reproduced equally well in the
simulations of the three different force fields.

Overall, the new 54A7 force field reproduces the folding
equilibria equally well or slightly better than the 53A6 and
45A3 force fields. Yet, the distributions of conformations are
slightly different for the different force fields as are the folding
kinetics. The GROMOS 54A7 force field developed to enhance
the stability of R-helical structures in proteins can thus be safely
used in simulations of folding equilibria of β-peptides.
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ABSTRACT: A number of methods proposed in the past few years have been aimed at accelerating the sampling of rare events in
molecular dynamics simulations. We recently introduced a method called Boxed Molecular Dynamics (BXD) for accelerating the
calculation of thermodynamics and kinetics (J. Phys. Chem. B 2009, 113, 16603�16611). BXD relies upon confining the system in a
series of adjacent “boxes” by inverting the projection of the system velocities along the reaction coordinate. The potential of mean
force along the reaction coordinate is obtained from the mean first passage times (MFPTs) for exchange between neighboring
boxes, simultaneously providing both kinetics and thermodynamics. In this paper, we investigate BXD in the context of its natural
relation to a kinetic master equation and show that the BXD first passage times (FPTs) include different time scales—a fast short
time decay due to correlated dynamical motion and slower long time decay arising from phase space diffusion. Correcting the FPTs
to remove the fast correlated motion yields accurate thermodynamics and master equation kinetics. We also discuss interrelations
between BXD and a recently described Markovian milestoning technique and use a simple application to show that, despite each
method producing distinct nonstatistical effects on time scales on the order of dynamical decorrelation, both yield similar long-time
kinetics.

1. INTRODUCTION

Accurate sampling of rare events remains a significant
challenge to molecular dynamics (MD) simulations, and a
number of methods have been proposed to address it.1�27 In
a recent publication, we introduced a simple and exact techni-
que for accelerating molecular dynamics (MD) simulations.28

By slicing a reaction coordinate into “boxes” along some
reaction coordinate, short-time dynamics within each box
may be analyzed in order to obtain mean first passage times
(MFPTs) between neighboring boxes. This method, which we
named “boxed” molecular dynamics (BXD), is an extension of
the method of classical dynamics accelerated by phase space
constraints29,30 and has its origin in Intramolecular Dynamics
Diffusion Theory (IDDT).31�34 IDDT shows that Newtonian
classical molecular dynamics written in the form of the Liouville
equation can effectively be replaced by an equation for diffusion
along the reaction coordinate.33,34 In IDDT, the reaction
coordinate is divided into boxes, and coefficients for the
diffusion equation or the equivalent Langevin equation31 are
determined by short-time MD with initial conditions sampled
box by box. Reactions on longer time scales may then be
reconstructed from the set of short time simulations by
integration. A number of modern techniques, including BXD,
are similar in spirit.

Free energies and rate coefficients are among the most
important calculable quantities that may be obtained from
MD; however, unlike BXD, few methods simultaneously pro-
vide both kinetic and thermodynamic information. In this
paper, we consider in detail the relationship between the kinetic
master equation and the BXD technique. This connection
naturally arises because kinetics and thermodynamics are linked

in BXD—i.e., thermodynamics are obtained from BXD using
box-to-box mean first passage times (MFPTs). Through con-
sideration of the loop formation dynamics of a simple 10-ALA
peptide, we show that the distribution of FPTs obtained from
BXD includes distinct time scales: fast dynamically correlated
motion at short times, with slower diffusional decay at longer
times. This separation in FPT time scales is akin to the sorts of
dynamical recrossing corrections to transition state theory
(TST) rate coefficients which arise from the fluctua-
tion�dissipation theorem.35�38 In this paper, we show that
free energy surfaces obtained with BXD are largely independent
of fast correlated motion; however, an accurate calculation of
phenomenological kinetics using a kinetic master equation
requires that the box-to-box MFPTs are corrected for the fast
dynamical motion.

We also consider the relationships between BXD and a recent
modification of milestoning39�41 called Markovian milestoning
(MM).7,8 The distribution of FPTs used to solve the kinetic
master equation in Markovian milestoning is distinct from that
obtained using BXD, and we show that the difference primarily
arises in how each treats the fast correlated motion. Whereas the
BXD FPTs include very fast recrossing events, the Markovian
milestoning FPTs have an initial short time lag. When the BXD
FPTs are corrected for recrossing, they give kinetic master
equation solutions in close agreement with those obtained from
Markovian milestoning, in addition to providing accurate
thermodynamics.
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2. BRIEF OVERVIEW OF BOXED DYNAMICS
FORMALISM

The technique we introduced previously was composed of two
parts (AXD and BXD), which we named differently according to
the circumstances of their usage—AXD is an abbreviation of
“accelerated dynamics” and is generally intended for accelerating
the calculation of rate coefficients in MD, while BXD is intended
for accelerating potential of mean force calculations. However,
both techniques amount to the same procedure, despite their
different intents. The only significant difference is that AXD has
two boxes, while BXD has an arbitrary number of boxes. Thus, it
is appropriate to refer to both methods as “boxed molecular
dynamics”. To keep this paper reasonably self-contained, a brief
summary of AXD and BXD is included below.

Boxed molecular dynamics relies on the assumption that the
classical mechanics of anharmonic systems on time scales above
the dynamical decorrelation time, τcorr, are essentially ergodic. In
such systems, equilibrium is quickly established between neigh-
boring regions of the system phase space. So long as this is the
case, dynamics can be accurately approximated using Markov
models (obtained via Monte Carlo methods or short MD
trajectories) for describing the exchange between different
regions of the phase space.35�38 Scheme 1 illustrates the main
ideas of AXD.

According to classical TST, the phase space of the system is
separated into reactant and product regions by a dividing surface
at F0 along some reaction coordinate, and the reaction rate
coefficient is then calculated as a flux through the dividing
surface. AXD accelerates passage through F0 by splitting the
reactant phase space into two boxes: Γ1, which spans F0 to F1,
and Γ2, which is bounded by F1. By locking the dynamics within
Γ1, the trajectory crosses the transition state more often, yielding
an accelerated rate coefficient, kAXD. The actual rate coefficient,
k(T), of going from the reactant region, Γ1þ Γ2, to the product
region, Γ0, may then be recovered as

kðTÞ ¼ kAXD � PCORR ð1Þ
where the PCORR correction factor is the probability of finding
the system inΓ1. Trajectories are confinedwithinΓ1 by utilizing a
velocity inversion algorithm which conserves the total energy,

linear momentum, and angular momentum. At each integration
time step t, we calculate the trajectory’s position along the
reaction coordinate. If it moves outside F1 at time step t þ dt,
then we return to the previous step t and invert the projections of
the velocities along the reaction coordinate.

Provided the assumption of equilibrium between boxesΓ1 and
Γ2 is valid, P

CORR is calculated simply as the fraction of the phase
volume Γ1 to the total reactant phase volume.

PCORR ¼ Γ1

Γ1 þ Γ2
ð2Þ

The phase volume ratio in eq 2 may be estimated from a Monte
Carlo random walk or by running a trajectory in Γ1 þ Γ2.
Another way to calculate the correction factor is to recognize that
the ratio of the two phase volumes is simply the equilibrium
constant k21 of exchange between Γ1 and Γ2, which can be
estimated from classical molecular dynamics as a ratio of the box-
to-box rate constants k12 and k21:

PCORR ¼ 1

1þ Γ2

Γ1

¼ 1
1þ K21

¼ 1

1þ k12
k21

ð3Þ

The fundamental efficiency gain of AXD derives from the fact
that it is less expensive to converge kAXD and PCORR separately
than their small product k(T), and the bulk of this paper is
concerned with how to accurately calculate k12 and k21.

If motion along the reaction coordinate involves rare events,
then boxed dynamics (BXD), which is a simple extension of
AXD, offers a tractable means for obtaining PCORR. The BXD
approach is illustrated in Scheme 2, which shows the reaction
coordinate F split into m intervals by boundaries at F0, F1, ...,
Fm�1, Fm. Velocity inversion is carried out at each of the
boundaries. By counting the total time t the trajectory spends
in a particular box as well as the number of inversions at a
particular boundary, the kinetics for “exchange” between the
neighboring boxes may be obtained, as described further below.

If the box boundaries are positioned so that there is no
irreversible flux through border F0 or Fm (i.e., k1,0 = km,mþ1 =
0), one may obtain thermodynamic information along the entire
reaction coordinate of a system like that described in Scheme 2
using the box-to-box forward and reverse rate constants. So
long as a temperature may be defined, equilibrium constants
between the neighboring boxes n and n � 1 may be obtained as

Scheme 1. Illustration of the AXD Approach (Boxed Mo-
lecular Dynamics with Two Boxes) for Calculating Acceler-
ated Reaction Ratesa

aThe trajectory simulation locked in Γ1 provides the accelerated rate
coefficient. The correction factor is expressed through phase volumes Γ1

and Γ2 (or rate constants k12 and k21) as described in the text.

Scheme 2. Illustration of the BXD Procedure for a System
Partitioned into m “Boxes”a

a In this simple picture, the trajectory penetrates from box m into box
m � 1 after two inversions at the Fm�1 boundary.
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follows:

Kn � 1, n ¼ kn � 1, n
kn, n � 1

¼ exp
�ΔGn � 1, n

kT

� �
ð4Þ

The free energy difference between each neighboring box,
ΔGn�1,n, may then be found by rearranging eq 4. With respect
to an arbitrary zero, each box averaged free energy, ΔGn, may
then be determined together with pn, the equilibrium probability
of residing in box n:

pn ¼ 1

∑
n
expð �ΔGn=kTÞ expð �ΔGn=kTÞ ð5Þ

The time that the trajectory spends in each box is determined by
how long it takes for the rate coefficients in each box to converge.
As described in our previous article,28 the statistics obtained
within each box may be placed into smaller histogram bins
(represented by the dashed lines in Scheme 2) and then exactly
renormalized to provide the probability distribution along the
entire reaction coordinate, p(F), to a higher resolution.

3. DYNAMICAL DECORRELATION IN AXD

Accurate calculation of the rate constants of “exchange”
between the boxes is the key to the AXD and BXD techniques.
In this section, we consider in detail how dynamical decorrelation
time scales affect the two-box AXD procedure. AXD is based
upon eq 1, whose origin may be understood through considera-
tion of the classical canonical TST expression for calculating the
reactive flux from the reactant phase space, R, across a dividing
surface in phase space. Dividing surfaces in coordinate space are
more common than coordinates in phase space because of their
relative simplicity; however, we note that the TST hypersurface
may be defined by both coordinates, q, and momenta, p. For the
purposes of this article, we simply and generally write the TST
rate coefficient as

kTSTRf ðTÞ ¼ Æjυjδðq, pÞ Θðq, pÞæ
ΓR

ð6Þ

where |υ| is the magnitude of the velocity vector normal to the
transition state dividing surface in phase space, Θ(q,p) is an
indicator function which is unity when the system is in state R
and zero otherwise, and δ(q,p) is a Dirac δ function which is
unity at the dividing surface. The numerator in eq 6 uses angled
brackets Æ...æ to indicate that it is the Boltzmann weighted average
of velocities perpendicular to the TS dividing surface which are
leaving R. The integral in the denominator is the reactant phase
space volume ΓR. The logic of Scheme 1 and the corresponding
basis for eq 1 derives from the fact that the reactant phase space
ΓR = Γ1 þ Γ2, which allows eq 6 to be written as

kTSTRf ðTÞ ¼ Æjυjδðq, pÞ Θðq, pÞæ
Γ1 þ Γ2

¼ Æjυjδðq, pÞ Θðq, pÞæ
Γ1

� Γ1

Γ1 þ Γ2

¼ kAXD � PCORR ð7Þ
Neither eq 6 nor eq 7 include corrections for motion on time
scales smaller than that of τcorr,

35�38 which enters in the form of a
scaling factor, κ, reducing the magnitude of the flux through the

TST dividing surface:

kkTSTRf ðTÞ ¼ k
Æjυjδðq, pÞ Θðq, pÞæ

Γ1
� Γ1

Γ1 þ Γ2

¼ kkAXD � PCORR ð8Þ
Equation 8 shows that κ is an effective scaling factor to the
accelerated rate coefficient, kAXD, in the same way that it is for
kTST; this is because the rapid dynamical motion for which κ
accounts is localized in the phase space neighborhood of the
dividing surface. The correction factor PCORR, being an equilib-
rium property of the system, is applied in exactly the same fashion
whether or not κ is included, and this holds so long as Γ1 is larger
than the dynamical decorrelation length scale near the dividing
surface F0 (see Scheme 1).

Consideration of fast dynamical motion on passage through
the dividing surface F0 is critical to obtaining an accurate estimate
of the unbiased rate coefficient. Below, we illustrate this point for
the loop formation dynamics of a 10-alanine peptide where the
reaction coordinate, F, is the distance between the main-chain
nitrogen on the N-terminal residue and the carboxyl carbon of
the C terminal residue—i.e., the peptide extension.42,43 We ran
dynamics using a CHARMM19 force field and a simple implicit
solvation model.44 With this force field, 10-alanine turns out to
have a strong helical propensity. The MD was run for 1 μs using
Langevin dynamics with a friction coefficient of 1 ps�1 and a time
step of 1 fs. The transition state F0 between reactants (the
extended peptide) and the product (the peptide which formed a
loop) was chosen at a separation of 4.7 Å, near the free energy
barrier to contact formation, which was determined in our
previous article.28

In what follows, we consider the survival probability (or decay
trace), R(t), obtained from the lifetime distribution N(t) for
passage across a particular boundary within a particular box. In
general, R(t) =

R
0
tmax N(t0) dt0 � R

0
t N(t0) dt0 where tmax is the

maximum lifetime in the distribution. Figure 1 nicely illustrates
the principles discussed above in eqs 6�8. It showsR(t) obtained
from FPTs through F0, where F0 is the loop formation TS
dividing surface separating Γ1 from Γ0 in Scheme 1. R(t) traces
were obtained by running a single long trajectory constrained to
remain within Γ1 and Γ0 and are shown at different values of F1.
Each of the traces in Figure 1 clearly shows two different
decay time scales—typical of those often observed in studies of

Figure 1. AXD decay traces at varying values of F1 where F1 is
equivalent to Flock. Each trace shows a fast decay at short times deriving
from recrossing and a slow decay at longer times.
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nonstatistical effects in trajectory simulations of chemical
reactions.29,45 The very fast decay of R(t) at short times in
Figure 1 arises from fast recrossing through the F0 surface within
the dynamical decorrelation time scale, τcorr, and does not vary
significantly with different locations of F1 (in Figure 1, F1 is
equivalent to Flock to maintain consistency with notation used in
our previous paper).28 The slower decay at long times arises from
trajectories that have lost dynamical memory within Γ1 before
subsequent F0 crossings. The long time R(t) decay profiles in
Figure 1 are inversely proportional to Γ1. Only by removing the
very fast decay events in Figure 1 is it possible to obtain MFPTs
and rate coefficients that are statistically identical when scaled by
the appropriate values of PCORR, and this is the procedure that we
adopted for the results reported in our previous paper.46 Table 1
and Figure 2 give the corrected rate coefficients, kAXDPCORR,
where kAXD has been determined from the long time R(t) decay.

4. DYNAMICAL DECORRELATION IN BXD

Having described how to account for nonergodic dynamical
motion in two-box AXD simulations, we now turn to multiple-
box BXD simulations. At the outset, we note that the methodol-
ogy described above is similarly applicable. A convenient starting
point for the discussion in this section begins by considering
BXD’s straightforward relation to the kinetic master equation.
Assuming for the moment that BXD has provided us with a set of
average box-to-box rate coefficients, then the global time depen-
dence of any box population may be described using a set of
coupled first-order differential equations:

dn1ðtÞ
dt

¼ � ðk21 þ k10Þn1ðtÞ þ k21n2ðtÞ
dn2ðtÞ
dt

¼ k12n1ðtÞ þ k32n2ðtÞ � ðk21 þ k23Þn2ðtÞ
...

dnmðtÞ
dt

¼ ðkm � 1,mnm � 1ðtÞ � km,m � 1nmðtÞ

ð9Þ

Equation 9 is a discretized kinetic master equation (ME),47�54

where kij is an average rate coefficient for transfer from box i to its
neighboring box j. The equation for n1 is written assuming that
passage across boundary F0 is irreversible.

The whole set of coupled differential equations may be
expressed as a matrix eigenvalue problem

dnðtÞ
dt

¼ MnðtÞ ð10Þ

where n(t) is a vector containing the time dependent populations
of each box and M is the matrix of rate coefficients in eq 9.

Solution of eq 10 provides the time dependence of n(t) and has
the form

nðtÞ ¼ UeλtU�1nð0Þ ð11Þ
where n(0) contains the initial conditions for each box, U is the
eigenvector matrix obtained from diagonalization ofM, and λ is a
vector of the corresponding eigenvalues, where the total number
of eigenvalues is equal to m, the number of boxes. An important
property of the matrix M is that the lowest few eigenvalues are
often isolated from the other eigenvalues. In such cases, the
smallest eigenvalues determine the time scale of kinetic evolution
—an example of which is given below.

In boxed MD simulations, practical determination of the rate
coefficients for transfer from a particular box to neighboring
boxes utilizes the inverse of the mean first passage time (MFPT),
Æτæ. The simplest way to calculate Æτæ is by keeping track of (1)
how many times a trajectory is inverted at a particular boundary,
h, and (2) the lifetime of the trajectory in a particular box. For
example, if we run constrained dynamics in box i, which is
bounded by Fi and Fi�1, the respective rate coefficients for
transfer from box i f i � 1 and box i f i þ 1 are

ki, i � 1 ¼ Æτi, i � 1æ�1 ¼ hi, i þ 1

ti

ki, i þ 1 ¼ Æτi, i þ 1æ�1 ¼ hi, i � 1

ti

ð12Þ

where ti is the lifetime of the trajectory in box i and hi,i�1 and hi,iþ1

are the respective numbers of hits (i.e., velocity inversions) at the
walls Fi�1 and Fiþ1. When eq 12 is corrected for the effects of fast
correlated motion in the same way as AXD, eq 12 may be
rewritten as

kki, i � 1 ¼ kÆτi, i � 1æ�1

kki, i þ 1 ¼ kÆτi, i þ 1æ�1 ð13Þ

When BXD is used in order to obtain free energy surfaces by
rearranging eq 4, the box-to-box MFPTs per se are never
required—only their ratio. Thus, the effects of dynamical
decorrelation in the forward and reverse directions cancel if
they are approximately equal—i.e., κ≈ κi,j≈ κj,i, an assumption
which is discussed further below.

Table 1. AXD Results of the Loop Formation Rate Obtained
with Different Values of G1

a

F1/Å kAXD/s�1 PCORR (kAXDPCORR) ( σ/s�1

10 2.87� 1010 0.021 (1.29( 0.65)� 109

12 8.77� 109 0.045 (1.05( 0.74) � 109

16 1.50� 109 0.099 (1.05( 0.50) � 109

20 7.93� 108 0.649 (7.90( 3.60) � 108

24 1.12� 109 0.985 (1.12( 0.36) � 109

aThe corrected rate coefficients, kAXDPCORR, are given in the final
column and plotted in Figure 2.

Figure 2. Corrected rate coefficients for contact formation at different
values of Flock. Also shown are the eigenvalues of smallest magnitude
obtained from solving the kinetic master equation using the following
methods to obtain transition probabilities: from MFPTs in column 3 of
Table 2 ( 3 3 3 3 3 ), from corrected MFPTs in column 4 of Table 2 (—),
and from milestoning MFPTs in column 3 of Table 3 (----).
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The role of κ is to remove fast events on the dynamical
decorrelation time scale, τcorr, from the inverse MFPTs, Æτæ�1, in
eq 12. Another way to accomplish this is to replace Æτæ with Æτ0æ
using the following equation:

kki, i � 1 ¼ Æτ0
i, i � 1æ

�1 ¼
∑
k
τi, i � 1θðτki, i � 1 � τcorrÞ
∑
k
θðτki, i � 1 � τcorrÞ

0
B@

1
CA

�1

kki, i þ 1 ¼ Æτ
0
i, i þ 1æ

�1 ¼
∑
k
τi, i þ 1θðτki, i þ 1 � τcorrÞ
∑
k
θðτki, i þ 1 � τcorrÞ

0
B@

1
CA

�1

ð14Þ
where k is an index that runs over all of the individual first passage
times obtained in going from box i toward respective boxes i� 1
and i þ 1, and θ(t) is an indicator function which is zero when
t < 0 and unity otherwise. Equation 14 calculates Æτ0æ as a MFPT
which excludes events shorter than τcorr. In the limit that τcorr = 0,
then Æτæ in eq 12 is identical to Æτ0æ in eq 14.

Replacing the values of k in eq 4 with the values of Æτ0æ in eq 14
yields

Kn � 1, n ¼ Æτ0
n � 1, næ

�1

Æτ0
n, n � 1æ

�1 ¼ exp
�ΔGn � 1, n

kT

� �
ð15Þ

enabling one to subsequently calculate box averaged probabil-
ities, pn, with eq 5. The difference between eq 4 and eq 15 is that
the latter includes corrections to the MFPTs which account for
motion on the time scale of τcorr. Figure 3 shows the box averaged
probability distributions calculated using eq 15 and eq 5 at values
for τcorr ranging from 0 to 3125 fs with τcorr arbitrarily chosen
as 50, 51, 52, etc. In these simulations, the reaction coordinate was
split into 16 boxes, with indices 0�15, using the box boundaries
given in Table 2. The box-to-box values for Æτ0æ�1 (with τcorr = 0
and 125 fs) are given in Table 2. The probability distributions in
Figure 3 are statistically indistinguishable for values of τcorr from
0 to 125 fs. Beyond 125 fs, the results start to change significantly.
The decorrelation time scale, τcorr, will vary from system to
system; however, analysis of the sort shown in Figure 3 helps to
place a quantitative upper limit on its value for any particular
system and suggests that BXD is a robust method for obtaining
PMFs in molecular systems.

Figure 3 is consistent with the fact that local dynamical motion
on the order of the τcorr is approximately identical in both the
forward and backward directions. A simple rationalization of the
agreement between the box averaged probability distributions in
Figure 3 begins fromwriting theMFPT for transfer from box i to j
as

Ætijæ ¼ Rcorr
ij Ætcorrij æþ Rdif f

ij Ætdif fij æ ð16Þ

where Ætijcorræ is the average decorrelation time, Ætijdiffæ is the average
decay at times longer than τcorr, which corresponds to diffusive
box-to-box motion, and ÆRij

corræ and ÆRij
diffæ are the respective

fractions of these decay times. So long as the box is large enough,
then Ætijæ is dominated by the longer time motion—i.e.,

Ætijæ � Rdif f
ij Ætdif fij æ ð17Þ

In the ergodic approximation, the same incoming trajectories are
balanced by outgoing trajectories on the shared boundary
between boxes i and j. In this limit, it is reasonable to assume

Table 2. InverseMFPTsObtained Using eq 14 for the 15 Box
System Described in the Texta

box index

i j Æτ0ijæ
�1

/fs�1 Æτ0ijæ
�1

/ fs�1

1 (4.7�8 Å) 0 (0�4.7 Å) 4.33� 10�7 2.17� 10�7

1 (4.7�8 Å) 2 (8�10 Å) 9.73� 10�7 4.94� 10�7

2 (8�10 Å) 1 (4.7�8 Å) 8.36� 10�7 4.37� 10�7

2 (8�10 Å) 3 (10�12 Å) 1.86� 10�6 9.33� 10�7

3 (10�12 Å) 2 (8�10 Å) 7.53� 10�7 3.91� 10�7

3 (10�12 Å) 4 (12�14 Å) 1.88� 10�6 9.20� 10�7

4 (12�14 Å) 3 (10�12 Å) 6.59� 10�7 3.44� 10�7

4 (12�14 Å) 5 (14�16 Å) 1.77� 10�6 8.55� 10�7

5 (14�16 Å) 4 (12�14 Å) 6.14� 10�7 3.12� 10�7

5 (14�16 Å) 6 (16�18 Å) 1.63� 10�6 8.43� 10�7

6 (16�18 Å) 5 (14�16 Å) 2.38� 10�6 1.15� 10�6

6 (16�18 Å) 7 (18�20 Å) 3.87� 10�7 1.87� 10�7

7 (18�20 Å) 6 (16�18 Å) 2.76� 10�6 1.14� 10�6

7 (18�20 Å) 8 (20�22 Å) 4.39� 10�7 2.04� 10�7

8 (20�22 Å) 7 (18�20 Å) 2.13� 10�6 8.92� 10�7

8 (20�22 Å) 9 (22�24 Å) 6.27� 10�7 2.93� 10�7

9 (22�24 Å) 8 (20�22 Å) 2.00� 10�6 8.54� 10�7

9 (22�24 Å) 10 (24�26 Å) 6.91� 10�7 3.30� 10�7

10 (24�26 Å) 9 (22�24 Å) 1.46� 10�6 6.58� 10�7

10 (24�26 Å) 11 (26�28 Å) 1.05� 10�6 4.93� 10�7

11 (26�28 Å) 10 (24�26 Å) 1.34� 10�6 6.19� 10�7

11 (26�28 Å) 12 (28�30 Å) 9.92� 10�7 4.52� 10�7

12 (28�30 Å) 11 (26�28 Å) 1.54� 10�6 6.77� 10�7

12 (28�30 Å) 13 (30�32 Å) 7.40� 10�7 3.24� 10�7

13 (30�32 Å) 12 (28�30 Å) 2.72� 10�6 1.08� 10�6

13 (30�32 Å) 14 (32�35 Å) 1.87� 10�7 8.70� 10�8

14 (32�35 Å) 13 (30�32 Å) 5.94� 10�6 2.05� 10�6

smallest eigenvalue 4.50� 10�9 2.20� 10�9

aThe inverse MFPTs in column 3 were obtained with τcorr = 0 fs. Those
in the fourth column were obtained with τcorr = 125 fs. The eigenvalues
of smallest absolute magnitude, obtained from solution of the kinetic
master equationwith each set of corresponding inverseMFPTs are given
in the last row.

Figure 3. Box averaged probabilities along the reaction coordinate F
obtained using eq 15 and eq 5. The plot compares box averaged pro-
babilities obtained using values for τcorr of 0, 5, 25, 125, 625, and 3125 fs.
The latter two free energy profiles deviate significantly from the others.
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that the fraction of diffusive trajectories (those that decorrelate
following inversion at the boundary) is approximately the same
in both the forward and reverse directions across a particular
boundary—i.e., Rij

diff ≈ Rji
diff which implies that Rij

corr ≈ Rji
corr.

Hence, the ratio of the rate constants required in eq 4 depends
only on the long time decay

kij
kji

� Æτdif fij æ�1

Æτdif fji æ�1 ð18Þ

The same is not, however, true for the kinetics: solutions to the
kinetic master equation (eqs 9�11) are rather more sensitive to
dynamical corrections than the box averaged probabilities. IfM is
constructed usingMFPTs corrected for dynamical decorrelation,
then the eigenvalue of smallest absolute magnitude (i.e., the rate
coefficient for loop formation kinetics) is in significantly better
agreement with the unbiased rate coefficients shown in Table 1
and Figure 2. To demonstrate this fact, we used the data in
Table 2 to solve the kinetic master equation. Passage over F0 (the
loop formation boundary at 4.7 Å for transfer from box 0f1) was
treated as an irreversible channel. Other than the boxes at the
extrema of the extension reaction coordinate, which have only
one set of outgoing transition probabilities, each box in Table 2
has both an ingoing and an outgoing Æτ0æ�1. The final row of
Table 2 gives the eigenvalue of smallest magnitude obtained from
diagonalization ofM using MFPTs obtained with eq 14 and τcorr
equal to 0 and 125 fs.

The inverse MFPTs in Table 2 result in M having one zero
eigenvalue, with all of the others negative. Inspection of the
eigenvalue spectrum of M in Figure 4 shows a single eigenvalue
that is well separated from all the others by more than an order of
magnitude. Given the separation in eigenvalues, it is a good
approximation to represent the system loop formation kinetics
using a single exponential term containing the unique eigenvalue.
The recrossing corrected inverse MFPTs in the fourth column of
table two (τcorr = 125 fs.) are roughly half as large as those which
are uncorrected (i.e., τcorr = 0 fs), and the effect on the
corresponding eigenvalues is approximately the same, with the
corrected eigenvalues in better agreement with results obtained
from unbiased simulations (see Figure 1).

5. SHORT TIME BEHAVIOR IN BXD AND MILESTONING

Another method that shares similarities with the BXD tech-
nique is milestoning,7,8,14 which uses short time dynamics to

recover local kinetic information about the motion along the
reaction coordinate in order to solve a kinetic state-to-state
master equation. In particular, a recent variant of milestoning
called Markovian milestoning7 has been proposed wherein the
dynamics initiated between a set of milestones are locked so that
they cannot escape; however, the kinetic master equation is
different for each technique: BXD describes box-to-box transfer,
whereas milestoning describes boundary-to-boundary transfer.
BXD’s formulation arises from a sort of transition state theory
(TST) intuition typical in chemistry where we tend to think of
chemical reactions in terms of a reactant phase space bounded by
a TS dividing surface. This allows us to easily think in terms of a
“box averaged free energy”.

A milestone, on the other hand, is an infinitesimal slice of
phase space along some reaction coordinate. Markovian mile-
stoning utilizes different sets of transition probabilities, depending

Figure 4. A typical spectrum of the absolute values of the eigenvalues
obtained from diagonalization ofM for the 10-ALA example considered
in this work. Loop formation kinetics are dominated by the eigenvalue of
smallest absolute magnitude, which is well separated from the others.

Scheme 3. Illustration of the Time Propagation, t, of a
Constrained Trajectory, along with a Table That Illustrates
the Manner in Which FPTs Are Calculated for Both BXD and
Milestoning

Figure 5. Typical comparison of the decay traces, R(t), generated from
the definition of BXD FPTs and milestoning FPTs for the 10-ALA
model system. The BXD decay is for transfer from box 2 (spanning
F = 4.7 Å to F= 8.0 Å) to box 1 (spanning F= 4.7 Å to F= 0.0 Å), whereas
the milestoning decay corresponds to transit from milestone 2 (F =
8.0 Å) to milestone 1 (F = 4.7 Å). The inset shows the different short
time behavior for each decay trace.
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on what is being calculated: (1) box-to-box MFPTs of the sort
written in eq 12 are used to construct free energies, and (2)
milestone-to-milestone FPTs are used to construct the kinetic
master equation. These different approaches result in different
counting algorithms for computing FPTs in the kinetic master
equation, which are illustrated in Scheme 3. In the BXD
approach, the passage times from box to box (i.e., m f m þ 1,
and mf m � 1 in Scheme 3) are defined as the times between
subsequent hits at a particular box boundary; in Markovian
milestoning, they are defined as the time it takes to go from
milestone to milestone (i.e., Fi f Fj, and Fj f Fi in Scheme 3).

Figure 5 shows a typical comparison of the decay traces
generated from the definition of BXD FPTs and milestoning
FPTs for the 10-ALA model system. The BXD decay shown in
Figure 5 corresponds to that from box 2 (spanning F = 4.7 Å to
F = 8.0 Å) to box 1 (spanning F = 4.7 Å to F = 0.0 Å), whereas the
milestoning decay corresponds to transit from milestone 2
(F = 8.0 Å) to milestone 1 (F = 4.7 Å). The difference in the
short time decays between milestoning and BXD arises from the
fact that the BXD decays include very fast short time events on
the time scale of dynamical decorrelation, which are schemati-
cally illustrated in Scheme 3. By contrast, milestone-to-milestone
FPTs show a lag in the decay at short times as the trajectory

makes a transit from one box edge to another, effectively
eliminating the short time dynamical motion. At time scales
longer than the short-time milestoning plateau, Figure 5 clearly
illustrates that the BXD and milestoning decay traces converge.
Table 3 gives the milestone to milestone rate coefficients for the
simple 10 ALAmodel system, as well as the eigenvalue of smallest
magnitude obtained from diagonalization of the corresponding
rate coefficient matrix.

6. CHARACTERISTIC TIMES

Several characteristic times have emerged in the analysis we
have presented in this paper, and their consideration sheds
further light on the general applicability of BXD, Markovian
milestoning, and other related techniques. The shortest time
scale considered in this work is that of dynamical decorrelation,
τcorr, during which a trajectory has not lost memory of its initial
conditions. τcorr is short compared to the characteristic diffusion
time, τdiff, from the interior of a box to its boundary. In the
analysis presented in this paper, τdiff varies from box to box, and
we have related τdiff to the slower time scales for box-to-box
diffusion. So long as

τdif f . τcorr ð19Þ
then the “diffusional” picture of box-to-box dynamics is accurate.
Inequality 19may always bemet if the boxes are large enough and
is the condition of Markovian kinetics when only the transitions
between neighboring boxes need to be considered. It is reason-
able to assume that eq 19 will hold for large systems with
significant anharmonic coupling. The time τkin for phenomen-
ological kinetics is determined by the eigenvalues of smallest
absolute magnitude determined from diagonalization of the
matrix M and

τkin . τdif f ð20Þ
Along with Figure 4, the data in Tables 2 and 3 show that
inequality 20 holds. If both conditions, eqs 19 and 20, are met,
then the phenomenological kinetics obtained fromM are largely
insensitive to the number of boxes and their size.

7. DISCUSSION AND CONCLUSIONS

In this paper, we have considered in further detail the recently
developed boxed molecular dynamics method and shown that a
proper accounting for dynamical effects on time scales shorter
than that of dynamical decorrelation is important for obtaining
accurate kinetics. However, in calculating free energy surfaces,
the dynamical effects largely cancel, making BXD a robust
method for calculating free energies in the ergodic limit.

We have also discussed the interrelations between BXD and
Markovian milestoning (MMS). The manner in which the free
energy surfaces are calculated in both BXD and MMS is not
sensitive to dynamical decorrelation, which is interesting per se, and
both methods give similar long time kinetics decay traces. The
primary difference between the two methods is in their uncor-
rected short time behavior, where each is subject to different types
of nonstatistical effects: BXD overestimates the decay rate for
going from one box to another, while MMS underestimates it. For
the system considered in this work, overestimation introduces
more error than underestimation, although it is in principle
possible to imagine a situation where the MMS lag may lead to
overestimation of the box-to-box transition time.

Table 3. Rate Coefficients Used to Solve the Kinetic Master
Equation Obtained by Obtaining MFPTs from the Mileston-
ing Decay Tracesa

milestone position

i j kij/fs
�1

1 (8 Å) 0 (4.7 Å) 9.00� 10�8

0 (4.7 Å) 1 (8 Å) 1.44� 10�7

2 (10 Å) 1 (8 Å) 3.31� 10�7

1 (8 Å) 2 (10 Å) 6.07� 10�7

3 (12 Å) 2 (10 Å) 3.02� 10�7

2 (10 Å) 3 (12 Å) 6.08� 10�7

4 (14 Å) 3 (12 Å) 2.54� 10�7

3 (12 Å) 4 (14 Å) 5.96� 10�7

5 (16 Å) 4 (14 Å) 1.87� 10�7

4 (14 Å) 5 (16 Å) 4.62� 10�7

6 (18 Å) 5 (16 Å) 7.10� 10�7

5 (16 Å) 6 (18 Å) 1.42� 10�7

7 (20 Å) 6 (18 Å) 6.62� 10�7

6 (18 Å) 7 (20 Å) 1.47� 10�7

8 (22 Å) 7 (20 Å) 5.75� 10�7

7 (20 Å) 8 (22 Å) 2.17� 10�7

9 (24 Å) 8 (22 Å) 6.16� 10�7

8 (22 Å) 9 (24 Å) 2.47� 10�7

10 (26 Å) 9 (24 Å) 5.54� 10�7

9 (24 Å) 10 (26 Å) 4.23� 10�7

11 (28 Å) 10 (26 Å) 5.41� 10�7

10 (26 Å) 11 (28 Å) 3.80� 10�7

12 (30 Å) 11 (28 Å) 5.44� 10�7

11 (28 Å) 12 (30 Å) 2.74� 10�7

13 (32 Å) 12 (30 Å) 9.48� 10�7

12 (30 Å) 13 (32 Å) 8.00� 10�8

smallest eigenvalue 1.70� 10�9

a Eigenvalues were obtained by diagonalization of a 14 � 14 matrix.
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Removing the very fast short-time dynamical effects from
BXD provides a set of box-to-box MFPTs that allows an accurate
calculation of both the free energy and the kinetics along a
particular reaction coordinate. This insight should prove useful
to users of BXD following its recent implementation in
CHARMM55 and is inituitively appealing insofar as it is provides
a set of mean first passage times which are compatible with the
manner in which molecular modellers typically tend to think of a
reaction: i.e., transition from a reactant configuration space
volume to a product configuration space volume. This enables
one to avoid using separate sets of rate coefficients for the free
energies and kinetics, distinct from the current MMS protocol.
Of further interest is the fact that BXD includes a specification for
an exact renormalization procedure,28 which we have found
suffers from few of the numerical problems often associated with
the WHAM procedure used to reweight umbrella sampling
simulations. The BXD renormalization procedure should also
be applicable to MMS.

Another feature of AXD and BXD which we believe to be of
practical convenience is that the velocity inversion procedure
preserves angular momentum, linear momentum, and energy,
making it useful for accelerating both equilibrium and non-
equilibrium dynamics. This method for doing velocity inversion
has recently enabled application of AXD to nonequilibrium
molecular dynamics simulations (NEMD)56 to accelerate solu-
tion phase reaction dynamics. Along the same lines, we note that
there may be cases where the initial nonstatistical dynamical
behavior, which is preserved by AXD and BXD, is of fundamental
interest.

Figure 5 illustrates another point regarding the restricted
dynamics used by both BXD and MMS. At times longer than
the MMS lag or the BXD τcorr, the logarithmic decay plot is not a
perfectly straight line, slowing noticeably at times longer than
∼2 � 104 fs. More generally, this points to the fact that
associating the BXD andMMS decays with a single rate constant
may be an oversimplification. For this reason, we chose herein to
emphasize mean first passage times in the description of BXD. As
shown in our previous article, this procedure results in BXD
giving free energies that agree well with those obtained in
unbiased simulations.28

In further work, we plan to extend BXD to multidimensional
reaction coordinates; the recent use of Voronoi tessellations in
MMS offers a possible way forward.7,57 Additionally, we plan to
investigate an extended version of BXD, which is shown in
Scheme 4. In this extension of BXD, ΔGn�1,n (the free energy
difference between two boxes n� 1 and n)may be determined by
constrained dynamics in overlapping boxes. This will allow free

passage between consecutive boxes which is unperturbed by
inversion. Exploiting ergodicity, the free energy difference be-
tween regions in any box may then be written as a ratio of the
times spent by the trajectory in each region of the box:

exp
�ΔGn � 1, n

kT

� �
¼ Pn

Pn � 1
¼ τn

τn � 1
ð21Þ

By matching up the probabilities for each of the overlapping
boxes, it will be possible to construct a free energy profile to
higher resolution along the entire reaction coordinate.
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ABSTRACT: We present a semiclassical surface-hopping method which is able to treat arbitrary couplings in molecular systems
including all degrees of freedom. A reformulation of the standard surface-hopping scheme in terms of a unitary transformation
matrix allows for the description of interactions like spin�orbit coupling or transitions induced by laser fields. The accuracy of our
method is demonstrated in two systems. The first one, consisting of twomodel electronic states, validates the semiclassical approach
in the presence of an electric field. In the second one, the dynamics in the IBr molecule in the presence of spin�orbit coupling after
laser excitation is investigated. Due to an avoided crossing that originates from spin�orbit coupling, IBr dissociates into two
channels: Iþ Br(2P3/2) and Iþ Br*(2P1/2). In both systems, the obtained results are in very good agreement with those calculated
from exact quantum dynamical simulations.

1. INTRODUCTION

The ultimate goal of chemistry is to precisely steer chemical
reactions. However, to improve the state-of-the-art control, an
understanding of molecular and atomic processes including all
kinds of couplings and interactions is crucial. These two points,
understanding and control of chemical processes, become in-
creasingly challenging when looking at complex systems of
growing size. Experiment and theory have to work hand in hand
as, e.g., spectra become very complicated and the use of exact
equations is not feasible anymore. Focusing on the theoretical
part, an exact description of the coupled motion of nuclei and
electrons is offered by the time-dependent Schr€odinger equation,
but it can be solved only for the simplest systems.1 To study
bigger systems, different approximations have been developed
and implemented, leading to methods like, e.g., the multiconfi-
gurational time-dependent Hartree method (MCTDH),2�4

multiple spawning,5,6 or similar techniques.7�15 An alternative
is to use ab initiomolecular dynamics (MD), where the electronic
structure is treated quantum mechanically and the nuclear
motion is subject to classical mechanics.16,17 Such a classical
nuclear trajectory can only be subject to one electronic potential
at a time. However, several potentials are often necessary to
provide a correct description of the system’s dynamics. The
Tully’s fewest switches algorithm of surface hopping (SH)
method18,19 is one of the most prominent solutions to this
predicament.

SH was initially developed to account for nonadiabatic
couplings between different states. Yet, couplings like those
induced by electric fields or spin�orbit couplings (SOC) are
also relevant to the treatment of light-induced processes. Espe-
cially the description of the interaction between light and matter
is essential for simulating many spectroscopic experiments.
Moreover, the whole field of quantum control is built on these
foundations.20�29 SOC also plays a major role in modern
photochemistry. Processes like intersystem crossing or phos-
phorescence, i.e., transitions between triplet and singlet states,

determine the outcome of photochemical reactions.30,31 Major
effects are expected in molecules including heavy atoms. More
unexpectedly, they also strongly affect the photochemisty of
organic or biomolecules such as DNA, see, e.g., ref 32.

Despite the importance of these couplings, only few methods
exist which incorporate one or the other of those effects in
MD.33�37 To our knowledge, no MD method is able so far to
handle all of the couplings simultaneously in a straightforward
way. In this paper, we present a method which, derived from the
original SH scheme, allows one to treat arbitrary couplings
without introducing any further approximations. In this way, a
semiclassical description of the coupled electronic and nuclear
motion with laser interaction in complex molecular systems
including all degrees of freedom is feasible. In principle, not only
SOC or laser interactions can be included but all imaginable
couplings can be straightforwardly considered by our surface-
hopping-in-adiabatic-representation-including-arbitrary-couplings
(SHARC)method. The SH probabilities are calculated in terms of
a unitary transformation matrix which diagonalizes the matrix
containing the considered electronic potentials and all possible
couplings at once.

In order to demonstrate the effectiveness of SHARC, two
test systems are chosen in this paper: two coupled harmonic
oscillators first and then the excited-state dissociation in the IBr
molecule. IBr exhibits strong SOC, leading to an avoided
crossing between two excited states, the 13Π0þ and the
13Σ0þ

� states, see ref 38 and references therein. These two
states are responsible for the product channels resulting in I þ
Br and I þ Br*, respectively.39 The asterisk denotes the 2P1/2
excited spin-state of the dissociating Br atom, while the ground
state has the configuration 2P3/2. The outcome from SHARC
simulations is compared with results from exact quantum-
dynamical calculations.
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The methodology and the theoretical description are pre-
sented in section 2. The numerical results are contained in
section 3, and a summary is given in section 4.

2. METHODOLOGY

The time evolution of the system is followed using a mix of
quantum and classical dynamics, where the electrons are treated
quantum mechanically and the nuclei classically. The interaction
between the quantum and the classical part is described in two
ways. On the one hand, the nuclei follow the quantum potential
created by the electrons using classical trajectories. These
trajectories are defined by the position RB(t) and velocity vB(t)
of the nuclei at every time. On the other hand, the electronic
wave function depends on the electronic coordinates (rB)
and parametrically on the nuclei coordinates. The electronic
wave function is defined by |Ψ[RB(t);rB,t]æ, and the poten-
tial that governs the evolution of the classical trajectory is
given by the expectation value of an effective Hamiltonian
V(t) = ÆΨ(RB(t);rB,t)|Ĥeff[RB(t),rB]|Ψ(RB(t);rB,t)æ. Ĥeff depends
parametrically on the nuclear coordinates, and it includes the
nucleus�nucleus repulsion, the electron�nucleus attraction, the
electron�electron, and the electronic kinetic energy.

In quantum mechanics, the position and velocity of the nuclei
cannot be simultaneously known. This uncertainty is described
in our classical dynamics by considering a set of initial conditions
for the trajectories. This set mimics the initial nuclear quantum
probability creating a swarm of trajectories. Every single trajec-
tory is propagated using Newton’s equations with the Velocity
Verlet algorithm.40,41 In this algorithm, the time evolution of the
nuclear coordinates RB(t) is driven by the gradient of the
potential at time t:

RBðt þΔtÞ ¼ RBðtÞ þ vBðtÞΔt þ
1
2M

rRB VðtÞ Δt2 ð1Þ

whereM represents the mass of the nuclei. Finally, the velocity is
propagated using the gradient of the potential at times t and tþ
Δt:

vBðt þΔtÞ ¼ vBðtÞ þ
1
2M

rRB VðtÞ Δt þ 1
2M

rRBVðt þΔtÞΔt
ð2Þ

The definition of the potential is given by the time evolution of
the electronic wavepacket following the time-dependent
Schr€odinger equation:

ip
DjΨ½RBðtÞ; rB, t�æ

Dt
¼ Ĥef f ½RBðtÞ; rB�jΨ½RBðtÞ; rB, t�æ ð3Þ

In order to solve this equation, we expand the wavepacket as a
linear combination of basis functions at different RB(t):

jΨ½RBðtÞ; rB, t�æ ¼ ∑
R
cRðtÞjφR½RBðtÞ; rB�æ ð4Þ

Using this formalism, the time evolution of the coefficients is
described by

DcβðtÞ
Dt

¼ � ∑
R

i
p
HβR½RBðtÞ� þ KβR½RBðtÞ�

� �
cRðtÞ ð5Þ

where HβR[RB(t)] = Æφβ[RB(t);rB]|Ĥeff[RB(t);rB]|φR[RB(t);rB]æ
represents the diabatic Hamiltonian whose diagonal elements
are the different potentials and the off-diagonal elements are the

diabatic couplings. The second term,

KβR½RBðtÞ� ¼ Æφβ½RBðtÞ; rB�jD=DtjφR½RBðtÞ; rB�æ ð6Þ
evaluates the change of the electronic basis functions with time,
which is equivalent to the variation of the basis with the nuclear
coordinates times the velocity:

KβR½RBðtÞ� ¼ Æφβ½RBðtÞ; rB�jD=DtjφR½RBðtÞ; rB�æ
¼ Æφβ½RBðtÞ; rB�jd=dRBðtÞjφR½RBðtÞ; rB�æ vBðtÞ

ð7Þ
This equation is solved using a simple Runge�Kutta algorithm of
fourth order.

The definition of the basis functions is very important in this
methodology. The most common way to define the basis
functions of the electronic wavepacket is using the eigen-
functions of the time-independent Schr€odinger equation for
every RB(t). In this way, the effective Hamiltonian is the adiabatic
energy of the different electronic states HβR[RB(t)] =
VR[RB(t)]δβR, while KβR[RB(t)] is related to the nonadiabatic
coupling elements that break the Born�Oppenheimer approx-
imation. However, the trajectories cannot be spread over several
electronic states, and hence, it is necessary to assign the electronic
state that governs the trajectory dynamics at each time. In this
work, we employ the SHmethod proposed by Tully,18 where the
classical trajectory is propagated in a single potential β. In order
to take into account nonadiabatic effects, the trajectory can jump
from one to another state. The probability for such a hop is
calculated using the time-dependent coefficients of the electronic
wave function:

PβR ¼
2R c

�
βðtÞ cRðtÞ

i
p
HβR½RBðtÞ� þ KβR½RBðtÞ�

� �� �

c�βðtÞ cβðtÞ
Δt

ð8Þ
This methodology is widely used to simulate relaxation dynamics
via conical intersections where large kinetic couplings are loca-
lized around the degeneration points.42,43 In this work, we extend
SH to the situation where SOCs and/or the interaction with an
electric fieldmust be included in the dynamical simulation. These
two terms are typically evaluated in the diabatic representation,
and thus they are included in the potential part of the Hamiltonian,
introducing a new Hd[RB(t)] matrix with elements (where the
index d indicates that additional nondiagonal terms are in-
cluded):

Hd
βR½RBðtÞ, t� ¼ HβR½RBðtÞ� � μ!βR½RBðtÞ� EBðtÞ þ ĤSO

βR ½RBðtÞ�
ð9Þ

In this equation, μBβR[RB(t)] and ĤβR
SO[RB(t)] are the dipole

moment and the relativistic spin�orbit coupling between the
states β and R, respectively.

In contrast to the relaxation dynamics via conical intersections
(nonadiabatic couplings), this new Hamiltonian contains off-
diagonal elements which may be extremely extended in space,
making the solution of the corresponding equations not an easy
task. As such off-diagonal elements are responsible for the jumps,
spatially delocalized couplings might induce jumps at all geome-
tries contradicting the idea of the fewest switches criterion.
Especially SOCs are usually very much extended in space, see,
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e.g., ref 38. In SHARC, this problem is solved by translating the
coupling elements to theK[RB(t)] matrix. In this adiabatic (index
a) approach, the Hd[RB(t),t] matrix is diagonalized, and after-
wards, the K[RB(t)] matrix is recalculated, leading to localized
couplings in geometries where the electronic states are (nearly)
degenerated.

The idea exploited here is the substitution of the basis set of
electronic wave functions |φd[RB(t);r]æ for a linear combination:

jφa
β½RBðtÞ; rB, t�æ ¼ ∑

R
UβR½RBðtÞ, t�jφd

R½RBðtÞ; rB�æ ð10Þ

where U[RB(t),t] is the unitary matrix that diagonalizes the
Hamiltonian Hd[RB(t),t] matrix at every time t. In this new basis,
the elements of the Ha[RB(t),t] matrix are defined as

Ha
βR½RBðtÞ, t� ¼ Va

R½RBðtÞ, t�δβR ð11Þ

where VR
a [RB(t),t] are the diagonal elements of Ha[RB(t),t].

The nonadiabatic coupling comes from the derivative of the
|φa[RB(t);rB,t]æ:

Ka
βR½RBðtÞ, t� ¼ φa�

β ½RBðtÞ; rB, t�
�����

*
D
Dt

�����φa
R½RBðtÞ; rB, t�

+

¼ Kφ

βR½RBðtÞ, t� þ KU
βR½RBðtÞ, t� ð12Þ

where KβR
φ [RB(t),t] and KβR

U [RB(t),t] are the nonadiabatic terms

in the original basis |φd[RB(t);rB]æ and those induced via the
rotation matrix U[RB(t),t].

The first term Kφ[RB(t),t] is just the rotation of the original
nonadiabatic term to the new basis:

Kφ

βR½RBðtÞ, t�
¼ ∑

λγ

U
�
λβ½RBðtÞ, t�Kλγ½RBðtÞ�UγR½RBðtÞ, t�

¼ ν!ðtÞ∑
λγ

U
�
λβ½RBðtÞ, t�Æφd

γ½RBðtÞ; rB�jrRBjφd
γ½RBðtÞ; rB�æUγR½RBðtÞ, t�

ð13Þ
and the other component comes from the variation of the
rotation matrix:

KU
βR½RBðtÞ, t� ¼ ∑

λ

U
�
λβ½RBðtÞ, t�

D
Dt
UλR½RBðtÞ, t�

¼ ν!ðtÞ∑
λ

U
�
λβ½RBðtÞ, t�rRBUλR½RBðtÞ, t�

ð14Þ

To obtain the new potentials Va[RB(t),t] and the nonadiabatic
coupling elements Ka[RB(t),t], the matrix Hd[RB(t),t] is diagona-
lized at distances RB(t),RB(t)þΔRB, and RB(t)�ΔRB. In this
fashion, the gradient of the potential and the gradient of the
U[RB(t),t] matrix are evaluated. These new matrices are used in
eqs 5 and 8 to calculate the nonadiabatic dynamics.

In the original SH method, the velocity of a trajectory is
adjusted after a jump in order to conserve energy. This, however,
is not reasonable for laser transitions. Therefore, we do not adjust
the kinetic energy as long as the resonance condition is fulfilled,
i.e., as long as the potential energy difference of the involved
states lies within the laser bandwidth.

3. NUMERICAL RESULTS

In what follows, two model systems are investigated. First, we
consider the modeling of Rabi oscillations between two harmo-
nic oscillators using SHARC. Second, the branching ratio of
excited-state dissociation products of IBr is examined. The
motivation behind these rather simple models is to be able to
compare the results of SHARC with those from exact quantum
dynamics (QD). For the quantum part, the time-dependent
Schr€odinger equation is solved employing the split-operator
method.44 Solutions of the stationary Schr€odinger equation are
obtained by imaginary time propagation.45 From these solutions,
Wigner distributions are obtained and used to establish the initial
conditions in the MD simulations.

As a first model system, we consider two vertically displaced
one-dimensional harmonic oscillators defined by

V1ðRÞ ¼ 1
2
kR2 ð15Þ

V2ðRÞ ¼ 1
2
kR2 þD12 ð16Þ

where k andD12 are 1 and 40 in dimensionless units. The reduced
mass is taken to be 1, and the transition dipole moment between
the states is μ12 = 1. The two potentials are coupled by a cw field:

EðtÞ ¼ A sinðωtÞ ð17Þ
where A = 4 and ω = D12 to induce a resonant transition.

For both MD and QD calculations, a time step of 0.002 was
employed. A set of 500 trajectories was used in the MD
simulations, although the results are converged already after
100 trajectories.

The time-dependent populations calculated from SHARC and
QD are shown in Figure 1. Rabi oscillations are clearly visible in
both cases. More precisely, the curves from SHARC and QD
show exactly the same behavior. Therefore, the SHARC approach is
capable of describing laser-induced processes. However, this
approach is not limited to dipole-type couplings but can treat
simultaneously any other kind of coupling, as will be shown in the
next example.

As a second model system, we look at the IBr molecule and its
excited-state dissociation. In order to compare our MD results
directly with those of QD simulations, we restrict ourselves to the

Figure 1. Comparison of the population dynamics calculated via
SHARC (upper panel) or QD (lower panel) in a system consisting of
two harmonic oscillators. Rabi oscillations of the populations in the
ground state (i = 1; black) and the excited state (i = 2; turquoise) are
clearly visible in both cases.
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model potentials from ref 46. Note that even if here we limit
ourselves to analytical potentials in order to benchmark SHARC
in the presence of SOC and laser interactions, more complex
systems can be tackled easily using “on the fly” electronic
structure calculations.

IBr is a good candidate since it is a diatomic, which can be treated
conveniently with QD, and it exhibits large SOC. Due to the latter
coupling, the 13Π0þ and the 13Σ0þ

� state potentials show an avoided
crossing at around R = 6.1 au = 3.2 Å, see Figure 2, which otherwise
would not exist since the two states are of different symmetry.
Moreover, it is only because of SOC that the excited-state dissocia-
tion channels differ in energy, see ref 38. In the present model, the
dissociation products are I þ Br or I þ Br*, respectively.

To test whether the SOC is treated correctly within SHARC,
we excite the ground state population first with a δ pulse to the
13Π0þ state and look at the population dynamics. In both the
MD and QD simulations, the propagation time step is 0.02 fs.
Again, 500 trajectories are considered in the MD case. It is
gratifying to see (Figure 3) that the results of both calculations
are in perfect agreement. The branching ratio of the dissociation
products, defined as Q = ([I þ Br*])/([I þ Br] þ [Iþ Br*]), is
equal to 72% in both cases.

As a second scenario, we treat the spin�orbit and strong laser-
field induced couplings at the same time in the MD simulation.
The laser pulse has a finite duration, and it is of Gaussian shape
with the electric field’s fwhm (full width at half-maximum) of
50 fs centered at t = 100 fs and a field strength of 0.00534 au
(corresponding to an intensity of 1 TW/cm2). The wavelength
for the laser excitation from the electronic ground state is set to
493 nm to satisfy the resonance condition with the 13Π0þ
electronic state. As in the previous simulation, we use a time
step of 0.02 fs and 500 trajectories in SHARC.

Figure 4 shows the time-dependent populations calculated via
SHARC (upper panel) and via QD (lower panel). Very good
agreement is also found between the two simulations. First, we
look at the excitation yield Y. After the laser pulse is over, Y = 80%
of the population has been excited according to SHARC and Y =
73% according to QD. Second, we compare the resulting
branching ratios; this is calculated as Q = 70% from SHARC
and Q = 73% from QD. Although we used 500 trajectories to get
this number in the MD case, a branching ratio of Q = 69% is
already obtained after only 100 trajectories. It is very encouraging
that the deviations are very small, especially taking into account
that there is no coherent interaction possible between the
individual trajectories. Even the momentum distributions in
the respective states are almost identical for the different algo-
rithms, see Figure 5. This latter property is of great importance in
numerous applications, e.g., the simulation of velocity map
imaging.47 In Figure 5, themomentum distribution of the ground
state is the fraction centered around p = 0 au. After the laser
excitation, when the 13Π0þ state is populated, there is a quick
gain of momentum in this state. The passing through the avoided
crossing is visible in the form of a splitting of the momentum
distribution at later times (ca. 160 fs). The momentum distribu-
tion clearly indicates that the largest amount of trajectories
(SHARC) or the wavepacket (QD) changes the adiabatic state
to yield I þ Br*; see that due to the climbing of the potential
slope, the momentum diminishes. The rest of the excited state
momentum distribution stems from the state resulting in Iþ Br,
where additional momentum is collected during the dissociation.

Albeit rather simple at first sight, IBr turns out to be quite an
extreme test case. It possesses an intermediate SOC strength

Figure 2. Potential energy curves of the IBr molecule and excitation
scheme. IBr molecules initially in the electronic ground state (black) are
excited to the 13Π0þ excited electronic state (red) and can undergo
dissociation into two different channels due to an avoided crossing
introduced by SOC with the 13Σ0þ

� excited state (turquoise).

Figure 3. Population dynamics in the excited states of IBr after
excitation with a δ pulse computed with the SHARC algorithm
(upper panel) and QD (lower panel). After around 65 fs, an avoided
crossing is passed, which gives rise to a branching ratio Q = 72% of the
products in the different dissociation channels (Iþ Br in state i = 2 and
IþBr* in state i = 3) with both simulation types. The ground state (i = 1;
black) is not populated.

Figure 4. Population dynamics in IBr after excitation with a 50 fs fwhm
pulse computed with the SHARC algorithm (upper panel) and QD
(lower panel). The population in the ground state (i = 1) is depicted in
black, the first excited state (i = 2) in red, and the second excited state
(i = 3) in turquoise. The excitation yield from the SHARC simulation
(Y = 80%) is in good agreement with the one from the QD calculation
(Y = 73%). Also, the branching ratio of excited state products is in very
good agreement (Q = 70% from SHARC vs Q = 73% from QD).
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such that neither the pure adiabatic nor the pure diabatic picture
completely describe its dynamics.48 In a two-level system, this is
indeed the worst-case scenario. Moreover, the excited state
potentials are extremely steep in the Franck�Condon region.
As a consequence, even a narrow distribution of initial conditions
in the ground state will result in the most different momenta in
the excited state at the time the avoided crossing is reached.
Finally, the ground state potential is very anharmonic due to the
SOC. Despite these hurdles, SHARC is able to correctly describe
the complete dynamics influenced by laser interactions and SOC.

4. CONCLUSION

To summarize, here, we present a new surface-hopping-in-
adiabatic-representation-including-arbitrary-couplings (SHARC)
algorithm, where the surface hopping probabilities are calculated
in terms of a unitary transformation matrix. Within this semi-
classical scheme, a matrix containing the considered electronic
potentials and all possible couplings is diagonalized at once. In
this way, we are able to treat all kinds of couplings in molecular
systems including all degrees of freedom on the same footing.
While the motion of the nuclei is treated classically, the potentials
entering into the propagation can stem from simple analytical
functions (as it was exemplarily done here to compare explicitly
with exact quantum dynamics), complex parametrized force
fields, or semiempirical or state-of-the-art ab initio methods.

We have therefore shown that, besides nonadiabatic cou-
plings, field-induced transitions to triplet states can henceforth
be treated within molecular dynamics. In this way, the often
neglected influence of triplet states in the dynamics of most
different molecules can be investigated using semiclassical simu-
lations. The treatment of large systems, which may even include
molecules in solution, is straightforward by computing the
potential energies “on the fly”.
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ABSTRACT:The influenza virus evolves to escape from immune system antibodies that bind to it. We used free energy calculations
with Einstein crystals as reference states to calculate the difference of antibody binding free energy (ΔΔG) induced by amino acid
substitution at each position in epitope B of the H3N2 influenza hemagglutinin, the key target for antibodies. A substitution with a
positiveΔΔG value decreases the antibody binding constant and increases viral fitness. On average, an uncharged to charged amino
acid substitution generates the highestΔΔG values. Also, on average, substitutions between small amino acids generateΔΔG values
near zero. The 21 sites in epitope B have varying expected free energy differences for a random substitution. Historical amino acid
substitutions in epitope B for the A/Aichi/2/1968 strain of influenza A show that most fixed and temporarily circulating
substitutions generate positive ΔΔG values. We propose that the observed pattern of H3N2 virus evolution is affected by the free
energy landscape, the mapping from the free energy landscape to the virus fitness landscape, and random genetic drift of the virus.
Monte Carlo simulations of virus evolution are presented to support this view.

1. INTRODUCTION

The influenza A virus causes annual global epidemics resulting
in 5�15% of the population being infected, 3�5 million severe
cases, and 250 000�500 000 fatalities.1 The subtype of influenza
A is determined by two surface glycoproteins—hemagglutinin
(H) and neuraminidase (N). The H3N2 virus has been one of
the dominant circulating subtypes since its emergence in 1968.
The antibodies IgG and IgA are the major components of the
immune system that control influenza infection, binding to the
influenza hemagglutinin.2 There are five epitopes at the antibody
binding sites on the top of H3 hemagglutinin, namely, epitopes
A�E. The epitope bound most prolifically by antibodies is
defined as the dominant epitope, and it is central to the process
of virus neutralization by antibody and virus escape substitution.3

The cellular immune system, on the other hand, plays a relatively
less recognized role in handling the invasive influenza virus.2 The
cellular system along with the innate immune system exerts a
somewhat more homogeneous immune reaction against geneti-
cally distinct influenza strains.2,4

Vaccination is currently the primary method to prevent and
control an influenza epidemic in the human population.1 Influ-
enza vaccination raises the level of antibodies specific for
hemagglutinin and significantly enhances the binding affinity
between antibodies and hemagglutinin. Vaccine effectiveness
depends on the antigenic distance between the hemagglutinin
of the administered vaccine strain and that of the dominant
circulating strain in the same season.3,5 Memory immune re-
sponse from the virus in previous seasons as well as vaccination in
the current and previous seasons impose selective pressure on
the current circulating virus to force it to evolve away from the
virus strains recognized by memory antibodies that selectively
bind to hemagglutinin.

As a result of the immune pressure and the escape evolution
of the influenza virus, which is largely substitution in the domi-
nant epitope of hemagglutinin, the influenza vaccine must be

redesigned and administered each year, and vaccine effectiveness
has been suboptimal in some flu seasons.3,6 The escape evolution
in the dominant epitope is at a higher rate than that in the amino
acid sites outside the dominant epitope.7 Sites in the dominant
epitope also show higher Shannon entropy of the 20 amino acids
than do those outside the dominant epitope.8 A high substitution
rate and Shannon entropy in the dominant epitope of hemag-
glutinin suggest that the dominant epitope is under the strongest
positive selection by human antibodies. The immune pressure
against each genotype of the dominant epitope can be at least
partially quantified by the binding constant between the antibody
and hemagglutinin.

The H3N2 virus and human immune system in this work are
simplified to be a system consisting of the H3 hemagglutinin and
the corresponding human antibody. Exposure by infection or
vaccination produces an affinity-matured antibody with the
binding constant to the corresponding hemagglutinin equal to
106�107 M�1, while the binding constant of an antibody
uncorrelated to the hemagglutinin is below 102 M�1.2 Escape
substitutions may decrease the binding constant by changing
the antibody binding free energy ΔG. Some substitutions
decrease the antibody binding constant more than others and
have higher probabilities to be fixed, because a decrease in the
antibody binding constant is favorable to the virus. Here,
we define the difference of antibody binding free energy as
ΔΔG = ΔG42 � ΔG31 in which ΔG31 and ΔG42 are antibody-
wildtype hemagglutinin binding free energy and antibody-
evolved hemagglutinin binding free energy, respectively, as
shown in Figure 1. The fixation tendency of each substitution
is a function of the difference of the antibody binding free energy9

of the escape substitution.
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Epitope A or B of the H3N2 virus was dominant in most
influenza seasons.3 Epitope B of the H3N2 virus was the
dominant epitope presenting more substitutions than any other
epitope in the recent years. Epitope B was also dominant in 1968
when the H3N2 virus emerged. Thus, during these periods of
time, the substitutions in epitope B directly affect the antibody
binding constant and reflect the direction of the virus escape
substitution. To attain a global view of the effects of substitutions
in epitope B, it is necessary to compute a matrix containing the
differences of antibody binding free energy caused by each
possible single substitution in epitope B. There are 21 amino
acid sites in epitope B, and each residue in the wild type strain
may substitute to any of the 19 different types to amino acid
residues. Hence, we need to calculate a 19� 21 matrix with 399
elements. Such a matrix is a free energy landscape quantifying the
immune selection over each evolved influenza strain. In this free
energy landscape, the virus tends to evolve to a position with a
low binding affinity of the antibody to evade antibodies and
reduce the immune pressure. Calculation of this landscape will
enable us to study the mechanism of immune escape from a
quantitative viewpoint, providing a criterion to describe and
foresee the evolution of influenza virus.

This paper is organized as follows: In the Materials and
Methods section, we describe the protocol for the free energy
calculation and the system of hemagglutinin and antibodies. In
the Results section, we present and analyze the calculated free
energy landscape. The substitutions observed in history are also
compared with the results of the calculation. In the Discussion
section, a general picture of H3N2 virus evolution under the
selection pressure of the immune system is discussed, and
simulation results are discussed. Finally, our work is summarized
in the Conclusion section.

2. MATERIALS AND METHODS

2.1. Scheme of the Free Energy Calculation. The expres-
sion of the binding constant K depends on the antibody
binding free energy ΔG, K = exp(�ΔG/RT). The Boltzmann
constant R = 1.987 � 10�3 kcal/mol/K. The temperature is

fixed to the normal human body temperature T = 310 K.
Shown in Figure 1, one substitution in hemagglutinin changes
the antibody binding free energy fromΔG31 toΔG42. The first
and second subscripts define the end state and the starting
state of the binding process, respectively. The ratio of the
antibody binding constant after and before substitution is
written as

K1

K0
¼ expð�ΔΔG=RTÞ ð1Þ

where K1 and K0 are the antibody binding constant to
substituted and wildtype hemagglutinin, respectively.
The difference in antibody binding free energyΔΔG =ΔG42�

ΔG31 = ΔG43�ΔG21 is calculated by applying Hess’ Law to the
thermodynamic cycle defined by states 1�4 in Figure 1. The
processes corresponding to ΔG43 and ΔG21 are unphysical but
more convenient to simulate. We calculated ΔG21 and ΔG43 for
each amino acid substitution in the unbound hemagglutinin and
hemagglutinin bound by antibodies, respectively. On the surface
of the virus particle, hemagglutinin exists in the form of a trimer
in which three monomers are encoded by the same virus gene.
Thus, we simultaneously substituted the amino acids in three
hemagglutinin monomers in the trimer. The antibody has a
Y-shaped structure with two heavy chains and two light chains. In
the resolved structure (PDB code: 1KEN), the hemagglutinin
trimer is bound by two Fab fragments. Thus, we incorporated the
Fab dimer into the system for MD simulation.
Using the software CHARMM,10 we calculated ΔG21 and

ΔG43 using thermodynamic integration.11 We used molecular
dynamics (MD) simulation to obtain the ensemble averages of
the integrand from which ΔG21 and ΔG43 are calculated. The
potential energy for the MD algorithm to sample the conforma-
tion space of the system is

Uðr, λÞ ¼ ð1� λÞ UreacðrÞ þ λUprodðrÞ ð2Þ
in which r represents the coordinates of all of the atoms, λ is the
variable of integration, Ureac is the potential energy of the system
corresponding to wildtype hemagglutinin, and Uprod is the
potential energy of the system corresponding to substituted

Figure 1. The scheme of the free energy calculation. The free energy difference of one substitution is calculated by ΔΔG = ΔG43 � ΔG21. State
n, n = 1�4, is the real system. State na has the same configuration of atoms as state n except that all the hydrogen atoms have a mass of 16.000 amu.
Compared to state na, state nb contains one additional Einstein crystal of product atoms (n = 1, 3) or reactant atoms (n = 2, 4). The mass of hydrogen
atoms in state nb is also 16.000 amu. Free energy ΔG21b and ΔG43b are obtained by thermodynamic integration.
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hemagglutinin. The value of ΔG21 or ΔG43 is

ΔG ¼
Z 1

0

DUðr, λÞ
Dλ

� �
λ

dλ

¼
Z 1

0
ÆUprodðrÞ �UreacðrÞæλ dλ ð3Þ

The integrand ÆUprod(r) � Ureac(r)æλ is the ensemble average
with fixed λ of potential energy difference between the system
after and before substitution. The interval of integration λ∈ (0,1)
was equally divided into four subintervals in each of which a 16-
point Gauss-Legendre quadrature was applied to numerically
integrate the ensemble averages. The ensemble averages with 64
distinct λ ∈ (0,1) were calculated by MD simulation with the
potential energy defined in eq 2.
2.2. Einstein Crystal. We introduce the Einstein crystals to

calculate the free energy of the reference state in the dual
topology at both end points of the thermodynamic integration.
To illustrate the function of the Einstein crystals, we analyze the
free energy of the dual topology without Einstein crystals when λ
= 0 as an example. We denote with n1, n2, and n0 the numbers of
the reactant atoms, product atoms, and all of the remaining atoms
in the system, respectively. We denote with r, rproduct, and x the
coordinates of the reactant atoms, product atoms, and all of the
remaining atoms in the system. The momenta of reactant atoms,
product atoms, and the remaining atoms are denoted by pr,i, pp,i,
and px,i. The masses are similarly denoted by mr,i, mp,i, and mx,i.
The Hamiltonian of the system with λ = 0 is

H ¼ ∑
n0

i¼ 1

p2x, i
2mx, i

þ ∑
n1

i¼ 1

p2r, i
2mr, i

þ ∑
n2

i¼ 1

p2p, i
2mp, i

þUn0ðxÞ

þ ð1� λÞUn0 þ n1ðx, rÞ þ λUn0 þ n2ðx, rproductÞ ð4Þ
The partition function is

Q ¼
Yn0
i¼ 1

2πmx, i
h2β

� �3=2Yn1
i¼ 1

2πmr, i
h2β

� �3=2Yn2
i¼ 1

2πmp, i
h2β

� �3=2

Z
dx dr exp½�βUn0ðxÞ � βUn0 þ n1ðx, rÞ� �

Z
drproduct 1

¼ Qreal �
Yn2
i¼ 1

2πmp, i
h2β

� �3=2

V

" #
¼ Qreal � Qproduct ð5Þ

When λ = 0, this partition function is the product of Qreal, the
partition function of the real system without product atoms, and
Qproduct, the partition function of the product atoms when λ = 0.
The free energy is given by �1/β times the logarithm of the

above partition function. The free energy is

G ¼ Greal � 1
β ∑

n2

i¼ 1

3
2
log

2πmp, i
h2β

� �
� 1
β
n2log V ð6Þ

As shown in the above equation, the effect on the translational
entropy from the product atoms is proportional to the logarithm
of system size V. It diverges in the thermodynamic limit.
This divergence exists, no matter what λ scaling is performed.
Note that we do not use the Einstein crystals to handle the
translational entropy a ligand loses or gains when binding a
flexible biomolecular receptor, which is taken into account by
the thermodynamic cycle in Figure 1. The translational entropy,
proportional to log V in eq 6, is that of the dummy product
atoms, not that of the bound or unbound complex.

The value of G depends on the identity of the product atoms.
Thus, the contribution to the thermodynamic integration is
different at the two end points, i.e., �kT log Qreactant 6¼ �kT
log Qproduct, in which Qreactant is the partition function of the
reactant atoms when λ = 1. Note also that the expression of the
partition function contains the factor Qproduct for the product
atoms. Relating the conventional expression for thermodynamic
integration, eq 3, toΔΔG of eq 1 requires one to account for this
term. This term arises from the use of a dual topology in
CHARMM, and this term is typically ignored. While the
contribution from the decoupled atoms is not constant, it can
be exactly calculated if the restricted partition function over the
decoupled atoms can be calculated. This calculation is what the
Einstein crystal performs, using an Einstein crystal for the
reference state rather the ideal gas in eq 4.
In four 16-window thermodynamic integrations, the smallest

variable of integration is λ = 1.32� 10�3. Since λ is close to zero,
product atoms in the system have potential energy near zero and
behave as ideal gas atoms, with translational entropy propor-
tional to the logarithm of system size, see eq 6. Exact calculation
of the translational entropy terms of product atoms at λ = 0 by
explicit dynamics seems difficult, because the translational en-
tropy of the product atoms grows as the logarithm of the system
size. These relatively free product atoms destabilize the system.
This entropy divergence is a fundamental feature of the statistical
mechanics, not a numerical artifact. Unrestrained product atoms
induce large fluctuation of the Hamiltonian in theMD algorithm.
These fluctuations increase the standard error of the quantity
Uprod(r) � Ureac(r), which is defined in eq 3 and is computed
from the trajectory of the MD simulation. These fluctuations
often cause the numerical integration algorithm in the MD
simulation to be unstable.12 In this case, the energy of the
simulated system increases rapidly. This phenomenon causes
CHARMM to terminate abnormally. The translational entropy
introduced by the free atoms at λ = 0 and 1 affects the result.
Reactant atoms cause the same problem near λ = 1.
We noticed that the nonlinear scaling, i.e., using a high power

of λ such as the fourth power of λ, in eq 213,14 did not work. The
high power of the smallest λ is extremely close to zero, and the
product atoms are almost free, which cause theMD simulation to
terminate abnormally at several windows with small λ. Addition-
ally, the issue of translational entropy of reactant and product
atoms needs to be addressed. Even when the MD algorithm with
the nonlinear scaling of λ13,14 terminates and appears to have
generated a converged simulation trajectory, this does not
necessarily imply that the translational entropy of reactant or
product atoms has been properly controlled. In fact, the λ scaling
approach may hide the entropy divergence at λ = 0 or λ = 1 by
letting the algorithm terminate due to numerical roundoff error,
rather than building statistical mechanical reference states for
each of λ = 0 and λ = 1 to account for or control the effect of
translational entropy.
An alternative to λ scaling introduces the soft-core potential as

a way to turn off the potential.15,16 The soft-core approach, like
the λ-scaling approach, does not address the translation entropy
of the atoms at λ = 0 or λ = 1. Previous studies with non-
constrained atoms at both end points have been performed.17�23

Besides the classical molecular dynamics with a nonideal-gas
reference state introduced into the dual topology, quantum
molecular dynamics via metadynamics has been used to analyze
a deamidation process.24 Other applications of quantum-molec-
ular-dynamics-based free energy calculation include chorismate
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conversion to prephenate,25 isomerization of glycine,26 and
histone lysine methylation.27 As illustrated in eq 6, the transla-
tional entropy of the uncoupled atoms causes error in the final
free energy results if it is not accounted for.
One way to calculate the free energy change exactly is to use a

nonideal-gas reference state. This is quite natural, since the
protein is not composed of ideal gas atoms. Deng and Roux
introduced restraint potentials to confine the translational and
rotational motion of a bound ligand to accelerate convergence of
the simulation.28 We use this idea to exactly include the
contribution from the restrained states and built two Einstein
crystals as the reference states for reactant and product atoms,
respectively. Our calculation allows a theoretically exact deter-
mination of the free energy due to amino acid substitution.
To handle these two difficulties at both end points of the

integration in a theoretically exact way, we use two Einstein
crystals as the reference states for reactant and product atoms,
respectively. The Einstein crystal has been used as a reference
state for free energy calculations. Frenkel and Ladd computed
free energy of solids by building a path connecting the real solid
and the reference Einstein crystal.29 Noya et al. showed that a
restrained Einstein crystal is a suitable reference in the free
energy calculation of biomolecules.30 The Einstein crystal, a
solid state model, is consistent with the nature of antibody
binding processes in the liquid phase. First, although the
importance of biomolecular flexibility in protein�protein bind-
ing processes is well-accepted, and is fully and exactly included in
our calculation, we simply need to localize the product atoms
when λ = 0 and the reactant atoms when λ = 1. Moreover, we
need to calculate the contribution to the free energy of these
localized atoms.
The choice of Einstein crystals as the reference states removes

the singularity in thermodynamic integration in eq 3. As an
example, an Einstein crystal was used as the reference state for the
free energy calculation of hard-sphere fluid in order to remove
the singularity in eq 3 at the end point λ= 0.31 In this example, the
reference Einstein crystal was achieved by harmonically coupling
the particles to their equilibrium positions and removing all
interactions between particles.32

We here use Einstein crystals as the reference states to
calculate the binding free energy change due to amino acid
substitution. The Einstein crystal is a model for localized atoms.
The free energy of the Einstein crystal can be exactly calculated.
One Einstein crystal contains distinguishable and noninteracting
atoms under harmonic constraints around reference positions
fixed in space. In the Einstein crystal, the atom i with coordinates
ri has potential energy

UiðriÞ ¼ Ki

2
jj ri � ri0 jj2 ð7Þ

in which ri and ri0 are the actual and reference positions of the
atom, respectively, and Ki is the force constant of the harmonic
constraint. We denote by mi the mass of atom i. The canonical
partition function of an Einstein crystal is

QEðN,V ,TÞ ¼ 1
h3N

Z
exp ∑

N

i¼ 1

�βp2i
2mi

 !
exp ∑

N

i¼ 1

�βKi jj ri � ri0 jj 2
2

 !
dp dr

¼ 2π
hβ

� �3NYN
i¼ 1

mi

Ki

� �3=2

ð8Þ

The spatial fluctuation of atom i in the Einstein crystal is

ÆðδriÞ2æ ¼ 3
βKi

ð9Þ

In our system, we let the potential energy for MD simulation
defined by eq 2 become

Uðr, λÞ ¼ ð1� λÞUreacðrÞ þ λUprodðrÞ þ λUein, reacðrÞ þ ð1� λÞUein, prodðrÞ
ð10Þ

Therefore, reactant and product atoms are localized at both λ = 0
and λ = 1. The reference positions of atoms in Einstein crystals are
the equilibrium positions of corresponding reactant and product
atoms. Tominimize the numerical error during the thermodynamic
integration calculation, we minimized the fluctuation of the inte-
grand of thermodynamic integration Æ∂U(r,λ)/∂λæλ= ÆUein,reac(r)�
Ureac(r)æλ þ ÆUprod(r) � Uein,prod(r)æλ. Minimization of the
terms on the right-hand side is approximately achieved by letting
the average spatial fluctuation of each atom in Einstein crystals
equal that of the corresponding reactant or product atom, i.e.

ÆðδriÞ2æreac ¼ ÆðδriÞ2æein, reac ¼
3

βKreac
i

ð11Þ

ÆðδriÞ2æprod ¼ ÆðδriÞ2æein, prod ¼ 3

βKprod
i

ð12Þ

For each atom in the Einstein crystal, the force constant of
harmonic constraint, Ki

reac or Ki
prod, was calculated from the

monitored fluctuations of the corresponding reactant or product
atom with eq 11 or 12. In the scheme in Figure 1, the states with
Einstein crystals are states 1b, 2b, 3b, and 4b.
2.3. Modified Hydrogen Atoms. The frequency of atom

vibration depends on its mass. Hydrogen atoms generally have
the highest vibration frequencies in the system. Such high
frequencies require a short time step in MD simulation and
increase the computational load. To limit vibration frequencies
and allow a longer time step, one can apply the SHAKE algorithm
to fix the length of any bond involving hydrogen atoms.33 The
SHAKE algorithm decreases the degrees of freedom in the
system by introducing additional constraints between atoms.
Instead, we artificially changed the mass of hydrogen atoms from
1.008 to 16.000 amu in order to preserve the degree of freedom
in the system following the suggestion by Bennett.34 A larger
mass of hydrogen atoms allows a longer time step in the MD
algorithm. Pomes and McCammon showed that changing the
hydrogen mass to 10 amu allows the use of a 0.01 ps time step to
simulate a system which consists of 215 TIP3P water molecules,
smaller than our system.35 Feenstra et al. change the mass of
hydrogen atoms to 4 amu to increase the simulation stability of a
system which contains protein and water molecules and resem-
bles our system.36We set the time step as 0.001 ps, a value widely
used in simulations with physical masses for all atoms, to gain
higher stability in the simulation of our large system with a
hemagglutinin trimer, a Fab dimer, and water molecules. As with
the Einstein crystals, we exactly calculated and subtracted off the
contribution of the change to the hydrogen mass to ΔΔG. Note
that the modification of hydrogen mass is independent of the
reference states in the simulation, which is selected to be Einstein
crystals in this project. In fact, most of the hydrogen atoms in the
system are neither reactant nor product atoms. In Figure 1, the
states with Einstein crystals and modified hydrogen atoms are
states 1a, 2a, 3a, 4a, 1b, 2b, 3b, and 4b.
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2.4. Expressions of Free Energies. Introducing two Einstein
crystals and heavier hydrogen atoms changes the potential
energy in the system, as well as the canonical partition functions.
After the modification of hydrogen atoms, the mass of atoms
changed from mr,i to m0

r,i, from mp,i to m0
p,i, or from mx,i to m0

x,i.
Canonical partition functions of the states in Figure 1 are

Q3ðn0 þ n1,V ,TÞ ¼ 1
h3ðn0 þ n1Þ

Yn0
i¼ 1

2πmx, i
β

� �3=2Yn1
i¼ 1

2πmr, i
β

� �3=2

�Z3ðn0 þ n1,V ,TÞ ð13Þ

Q3aðn0 þ n1,V ,TÞ ¼ 1

h3ðn0 þ n1Þ
Yn0
i¼ 1

2πm0
x, i

β

 !3=2Yn1
i¼ 1

2πm0
r, i

β

 !3=2

�Z3ðn0 þ n1,V ,TÞ ð14Þ

Q3bðn0 þ n1 þ n2,V ,TÞ ¼ 1
h3ðn0 þ n1Þ

Yn0
i¼ 1

2πm0
x, i

β

 !3=2Yn1
i¼ 1

2πm0
r, i

β

 !3=2

�Z3ðn0 þ n1,V ,TÞ 2π
hβ

� �3n2 Yn2
i¼ 1

m0
p, i

Kprod
i

 !3=2

ð15Þ

Q4ðn0 þ n2,V ,TÞ ¼ 1
h3ðn0 þ n2Þ

Yn0
i¼ 1

2πmx, i
β

� �3=2Yn2
i¼ 1

2πmp, i
β

� �3=2

�Z4ðn0 þ n2,V ,TÞ ð16Þ

Q4aðn0 þ n2,V ,TÞ ¼ 1

h3ðn0 þ n2Þ
Yn0
i¼ 1

2πm0
x, i

β

 !3=2Yn2
i¼ 1

2πm0
p, i

β

 !3=2

�Z4ðn0 þ n2,V ,TÞ ð17Þ

Q4bðn0 þ n1 þ n2,V ,TÞ ¼ 1
h3ðn0 þ n2Þ

Yn0
i¼ 1

2πm0
x, i

β

 !3=2Yn2
i¼ 1

2πm0
p, i

β

 !3=2

�Z4ðn0 þ n2,V ,TÞ 2π
hβ

� �3n1 Yn1
i¼ 1

m0
r, i

Kreac
i

 !3=2

ð18Þ
in which the states are denoted by the subscripts. Contribution of
the potential energy part of the Hamiltonian to the partition
function is

Z3ðn0 þ n1,V ,TÞ ¼
Z

expð�βUn0 þ n1ðrÞÞ dr ð19Þ

Z4ðn0 þ n2,V ,TÞ ¼
Z

expð�βUn0 þ n2ðrÞÞ dr ð20Þ

From the partition functions, free energies defined in Figure 1 are
calculated:

ΔG3a ¼ � 3
2β ∑

n0

i¼ 1
ln

m0
x, i

mx, i

 !
� 3
2β ∑

n1

i¼ 1
ln

m0
r, i

mr, i

 !
ð21Þ

ΔG4a ¼ 3
2β ∑

n0

i¼ 1
ln

m0
x, i

mx, i

 !
þ 3
2β ∑

n2

i¼ 1
ln

m0
p, i

mp, i

 !
ð22Þ

ΔG3b ¼ � 3n2
β
ln

2π
hβ

� �
� 3
2β ∑

n2

i¼ 1
ln

m0
p, i

Kprod
i

 !
ð23Þ

ΔG4b ¼ 3n1
β
ln

2π
hβ

� �
þ 3
2β ∑

n1

i¼ 1
ln

m0
r, i

Kreac
i

 !
ð24Þ

ΔG43b ¼ � 1
β
ln

Qn1
i¼ 1

ðm0
r, i=Kreac

i Þ3=2Z4ðn0 þ n2,V ,TÞ
Qn2
i¼ 1

ðm0
p, i=K

prod
i Þ3=2Z3ðn0 þ n1,V ,TÞ

2
6664

3
7775
ð25Þ

The free energy between states 3 and 4 is

ΔG43 ¼ ΔG43b � 1
β
ln

ð2π=hβÞ3n2 ∑
n2

i¼ 1
ðmp, i=K

prod
i Þ3=2

ð2π=hβÞ3n1 ∑
n1

i¼ 1
ðmr, i=Kreac

i Þ3=2

¼ ΔG43b � 1
β
ln
QE2ðn2,V ,TÞ
QE1ðn1,V ,TÞ ð26Þ

in which QE1 and QE2 are the partition functions of the Einstein
crystals for product atoms and reactant atoms, respectively. The
free energyΔG43b was calculated by thermodynamic integration,
while ΔG43 was used to calculate the free energy difference of
one substitution. Note that the correction term between ΔG43b

and ΔG43 is independent of the masses of atoms. Canonical
partition functions as well as free energies of states 1, 1a, 1b, 2, 2a,
and 2b are calculated in a similar way.
2.5. Implementation of Free Energy Calculation Algo-

rithm. The above discussion is the theoretical basis for the
implementation of our free energy calculation algorithm. The
free energy calculation protocol consists of four steps. First, we
built the dual topology with reactant and product atoms in the
amino acid substitution site in separated antibodies and hemag-
glutinin or an antibody�hemagglutinin complex. We then
solvated the protein system and modified the mass of hydrogen
atoms. Second, two Einstein crystals were introduced as the
reference states for the reactant and product atoms, respectively.
Third, the MD simulation was run at 64 windows. The thermo-
dynamic integration algorithm obtained the free energy values
ΔG21 for separated antibodies and hemagglutinin or ΔG43 for
the antibody�hemagglutinin complex, as in Figure 1. This step
gave the ΔΔG value. Fourth, we calculated the error bar of the
ΔΔG value obtained in the last step. The technical details of
these four steps are illustrated in the text below. Also described
are the verification of the free energy calculation protocol, the
software and hardware information, and the CPU hours con-
sumed by the protocol.
The hemagglutinin trimer of H3N2 virus strain A/Aichi/2/1968

with bound dimer antibody HC63 (PDB code: 1KEN) was used in
our calculation. For each amino acid substitution, we built the dual
topology with side chains of both amino acids prior to the
simulation. Reactant and product atoms were defined as the side
chains in the original and substituting amino acid, respectively. All of
the covalent and nonbonded interactions between reactant and
product atoms were removed. The protein was in an explicit water
box with periodic boundary conditions. The mass of hydrogen
atoms was changed from 1.008 to 16.000 amu.
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All of the simulations were performed by CHARMM c33b2
with aCHARMM22 force field.10Wefirst fixed the positions of the
hemagglutinin trimer, except for reactant atoms, and minimized
the systemwith a 200 steps of steepest descent (SD) algorithm and
a 5000 steps of adopted basis Newton�Raphson (ABNR) algo-
rithm.We ran a 5 psMD simulation of the system, the trajectory of
which gave the spatial fluctuation Æ(δri)2æ of each reactant atom.
Then, we fixed reactant atoms, released product atoms, and ran a 5
ps MD simulation to obtain the spatial fluctuation of each product
atom. Final positions of both reactant and product were adopted as
the reference positions of the corresponding Einstein crystal. The
force constant Ki of each atom in Einstein crystals was obtained
from Æ(δri)2æ using eqs 11 and 12. With modified hydrogen atoms
and two Einstein crystals as the reference states of reactant and
product atoms, states 1b, 2b, 3b, and 4b in Figure 1 were generated
for thermodynamic integration.
In thermodynamic integration, MD simulations were run at 64

windows with distinct λ’s. In each window, the pressure of the
system was first calibrated with a 10 ps MD simulation in an
isothermal�isobaric (NPT) ensemble. The duration of 10 ps is
appropriate because it is long enough to equilibrate the pressure and
short enough to prevent the protein from drifting away from the
original location. We fixed coordinates of the residues and water
molecules except for those within 15 Å from the three R carbons.
Then, we removed amino acid residues and water molecules other
than those within 27.5 Å from the three R carbons of substituted
residues in the hemagglutinin trimer to reduce the system size,
because the fixed atoms are not included in the topology ofmovable
atoms and the cutoff of the nonbonded forces is 12 Å. The Ewald
sum was used to calculate charge interactions. Note that this
substantial reduction of the system relies on the assumption that
the free energy change due to the amino acid substitution is mostly
affected by atoms near the binding site after the system reaches
equilibrium. This assumption is based on two facts: the conforma-
tions of hemagglutinin and antibodies are stable once the system
reaches equilibrium, and all of the removed or fixed atoms have
invariant interactions with the substituting amino acid residues. The
stable protein conformation means amino acid residues far away
from the substituting residue do not move during the amino acid
substitution process. In the CHARMM22 force field used in this
project, the cutoff of nonbonded force is 12 Å and less than the 15 Å
threshold for system reduction. The system reduction does not
directly affect the force on the substituted residue because of an
absence of the long-range nonbonded force between the substituted
residue and atoms removed from the system. This system reduction
method was also applied to compute the binding free energies of
subtilisin,37 tripsin,21 and the Src SH2domain.22 Robust results were
obtained in all of these applications. Generally, this system reduction
strategy can produce reliable result if the reduced system contains
the residues andmolecules critical to the binding process.21We note
that the system reduction method could be a limitation of the free
energy calculation model. The fixing of amino acid residues and
water molecules described in section 2.5 substantially reduced the
CPU time needed but is an approximation to the real system
containing the whole proteins. This limitation reflects the trade-off
between model accuracy and required computational resource. In
the canonical ensemble, the new system was equilibrated for 200 ps
and simulated for another 900 ps as the data production phase. The
integrand of thermodynamic integration is the ensemble average of
the sampled trajectory Æ∂U(r,λ)/∂λæλ = ÆUein,reac(r) � Ureac(r) �
Uein,prod(r) þ Uprod(r)æλ. The free energies ΔG21 and ΔG43

between the real states were calculated by adding a correction term

of the Einstein crystals in eq 26. Finally, the difference of antibody
binding free energy is ΔΔG = ΔG43 � ΔG21.
Error bars ofΔΔG are also given. The convergence behavior of

the simulation was analyzed using the block average method
developed by Flyvbjerg and Petersen.38 As mentioned above, the
MD simulation for either the unbound hemagglutinin or the
hemagglutinin�antibody complex contains 64 windows with
distinct λ. The 900 ps data production phase contains 9 � 105

simulation steps. The values A = Uprod(r) � Ureac(r), as in
equation eq 3, computed in consecutive simulation steps were
grouped into bins, and consecutive bins were merged progres-
sively. The quantityσ2(A)/(n� 1), in whichσ2(A) is the variance
of the average of each binA1, A2, ...,An and n is the number of bins,
increases with the bin size and reaches a plateau when the bin size
is 1� 104 steps.We fixed the bin size to 1� 104 steps and estimate
the variance of ensemble average ÆAæ as σ2(A)/(n� 1), following
Flyvbjerg and Petersen’s method.38

This protocol, without the Einstein crystal contribution, was
verified by recalculating published free energy differences of
amino acid substitution T131I.9 Without the Einstein crystal
contribution, our protocol gave ΔΔG = 5.69 ( 0.07 kcal/mol,
compared to the ΔΔG = 5.20 ( 0.94 kcal/mol in the published
work.9 Theoretically exact results presented here include the
Einstein crystal contribution.We note that the theoretically exact
ΔΔG for T131I, including the Einstein crystal contribution, is
3.71 ( 0.07 kcal/mol.
The simulation was performed using a CHARMM22 force

field at three clusters: tg-steele.purdue.teragrid.org (Intel Xeon
E5410, 2.33 GHz), sugar.rice.edu (Intel Xeon E5440, 2.83 GHz),
and biou.rice.edu (IBM POWER7, 3.55 GHz), as well as at the
condor pool tg-condor.rcac.purdue.edu at Purdue University.
Simulation of each substitution took approximately 7.5 thousand
CPU hours on average, and so this work consumed about 3
million CPU hours.

3. RESULTS

3.1. Free Energy Landscape. For each of the 21 amino acid
sites in epitope B, we substituted from alanine to each one of the
19 other amino acids, in which we used the neutral histidine
(CHARMM code: Hse) as the model of histidine. The free
energy difference and standard error of each substitution were
calculated using the MD simulation (see Materials and Meth-
ods). The wildtype amino acid in each site of epitope B was
extracted from the hemagglutinin sequence of the H3N2 strain
A/Aichi/2/1968. The free energy difference and standard error
of the substitution from the wildtype amino acid in each site were
then calculated from the values for the change from the wildtype
amino acid to alanine and from alanine to the new amino acid.
The values are listed in Table 1.
As described in eq 26, each ΔΔG value listed in Table 1

contains the contribution of two Einstein crystals. The contribu-
tion of Einstein crystals to the final ΔΔG values was calculated
for each of the 399 amino acid substitutions in epitope B. The
average fraction of the contribution of Einstein crystals in the
calculated ΔΔG values is 44%. The contribution of Einstein
crystals is far greater than that of the statistical error of our free
energy calculation in Table 1, which is 4.5% on average. Thus, the
Einstein crystal contribution is both theoretically exact and
practically important. In 371 of the 399 substitutions, the
absolute values of the contribution of Einstein crystals is greater
than 1.96 standard errors of the final ΔΔG values. That is, the
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Table 1. Summary of the Calculated Free Energy Differences ΔΔG in Each Amino Acid Site in Epitope B from the Wildtype
Amino Acid to All 20 Amino Acidsa

positions 128 129 155 156 157 158 159

Ala �13.12( 0.27 3.33( 0.29 2.78( 0.20 1.19( 0.33 2.48( 0.21 4.27( 0.31 5.18( 0.21

Arg 22.57 ( 0.46 2.31( 0.45 16.98( 0.37 0.08( 0.50 �4.19( 0.44 �1.61( 0.48 7.07( 0.42

Asn �4.80( 0.36 5.83( 0.42 �7.83( 0.30 10.72( 0.40 5.64( 0.34 3.41( 0.42 10.97( 0.35

Asp 4.52( 0.38 19.12 ( 0.42 16.28( 0.32 11.06( 0.42 9.95( 0.37 18.37( 0.40 15.34( 0.36

Cys �11.83( 0.34 12.64( 0.37 �2.37( 0.30 5.32( 0.38 �2.72( 0.29 �7.88( 0.40 7.92( 0.32

Gln �12.37( 0.40 7.34( 0.42 �4.29( 0.36 13.14( 0.41 �0.45( 0.36 11.47( 0.43 6.54( 0.40

Glu 11.15( 0.38 10.50( 0.42 17.77 ( 0.34 26.54( 0.43 4.68( 0.36 8.58( 0.48 5.19( 0.39

Gly �9.93( 0.39 0.00( 0.00 17.00( 0.34 0.11( 0.44 0.21( 0.36 0.00 ( 0.00 �4.19( 0.41

His 4.43( 0.42 0.15( 0.43 2.47( 0.36 �6.89( 0.43 12.18( 0.38 5.54( 0.46 1.06( 0.39

Ile �16.03( 0.41 0.54( 0.40 1.55( 0.33 8.33( 0.42 11.22 ( 0.37 8.09( 0.43 18.96( 0.39

Leu �23.58( 0.41 �4.27( 0.43 �8.92 ( 0.33 2.64( 0.45 �6.26 ( 0.39 1.61( 0.45 4.08( 0.38

Lys 3.57( 0.45 11.18( 0.46 14.58( 0.37 0.00( 0.00 6.24( 0.40 �1.60 ( 0.48 5.39( 0.46

Met �13.38( 0.39 �2.59 ( 0.39 1.23( 0.35 10.11( 0.43 16.15( 0.36 14.49( 0.44 �6.38( 0.37

Phe �10.21( 0.45 6.12( 0.43 9.39( 0.35 0.30( 0.45 10.28( 0.40 5.17( 0.48 12.33 ( 0.42

Pro �9.36 ( 0.36 �2.43( 0.42 �1.86 ( 0.31 2.32( 0.43 5.69( 0.30 17.09( 0.40 6.08( 0.36

Ser �14.55( 0.34 3.36( 0.37 �1.09( 0.29 �1.45( 0.38 0.00( 0.00 2.76( 0.39 0.00( 0.00

Thr 0.00( 0.00 7.35 ( 0.36 0.00( 0.00 �1.08 ( 0.41 6.34( 0.32 8.36( 0.41 15.32( 0.32

Trp 9.82( 0.47 4.81( 0.47 19.84( 0.43 23.26( 0.48 16.14 ( 0.45 3.52( 0.62 �1.35 ( 0.45

Tyr �14.83 ( 0.43 2.72( 0.42 7.25( 0.36 �2.18( 0.46 �8.37 ( 0.44 18.42( 0.51 5.95( 0.43

Val �19.13( 0.37 3.56( 0.38 8.57( 0.31 �3.01( 0.39 7.63( 0.32 3.77( 0.42 6.45( 0.32

positions 160 163 165 186 187 188 189

Ala 4.16( 0.22 �0.24 ( 0.22 4.15( 0.24 �3.19 ( 0.19 �4.03( 0.23 3.45 ( 0.25 �9.01( 0.28

Arg 9.70( 0.44 5.97( 0.39 14.58( 0.41 21.01( 0.38 8.12( 0.42 �0.06( 0.45 �0.39( 0.48

Asn 2.07( 0.34 �2.32( 0.32 0.00( 0.00 4.67( 0.30 �10.07( 0.34 0.00( 0.00 �3.18( 0.37

Asp 13.50( 0.32 12.64( 0.32 25.01 ( 0.31 24.54( 0.28 7.78( 0.35 19.77( 0.37 6.77( 0.35

Cys 15.82( 0.31 1.84( 0.30 1.93( 0.29 �2.30 ( 0.25 �11.09( 0.32 4.07( 0.34 6.23( 0.33

Gln 3.04( 0.39 �8.29 ( 0.35 4.27( 0.36 5.16( 0.33 �2.87( 0.37 12.36( 0.39 0.00( 0.00

Glu 15.48( 0.36 2.17( 0.35 15.74( 0.34 33.29( 0.31 14.41 ( 0.35 10.10( 0.37 12.16( 0.39

Gly 1.22( 0.39 �5.83( 0.38 9.11( 0.37 0.13( 0.27 �0.60( 0.30 �5.06( 0.32 �5.69( 0.32

His 0.52( 0.38 6.31( 0.33 7.44( 0.33 18.15( 0.30 3.69( 0.39 �1.95 ( 0.40 �8.53( 0.40

Ile 1.51( 0.34 10.62( 0.36 3.85( 0.33 �1.85( 0.30 �2.51( 0.33 �4.77 ( 0.37 3.65( 0.37

Leu �1.39( 0.40 3.85( 0.35 �9.20( 0.37 1.07( 0.30 �0.40( 0.38 �1.30 ( 0.37 �6.91( 0.39

Lys 5.91( 0.44 10.37( 0.38 1.93( 0.41 �1.15( 0.39 24.91( 0.41 8.42( 0.44 9.48( 0.64

Met 10.78( 0.38 7.22( 0.35 1.63 ( 0.36 13.06( 0.33 �5.11 ( 0.36 6.97( 0.38 6.86( 0.40

Phe 7.90( 0.41 �0.86( 0.36 13.87( 0.38 6.94( 0.33 �7.23( 0.39 2.05( 0.39 4.37( 0.43

Pro 4.51( 0.32 12.50 ( 0.34 18.96( 0.33 11.82( 0.29 10.69( 0.32 �10.24( 0.35 �8.98( 0.36

Ser 7.13( 0.29 9.07( 0.30 �0.92( 0.28 0.00( 0.00 �4.88( 0.31 8.09( 0.33 �5.09( 0.34

Thr 0.00( 0.00 9.18( 0.30 10.35( 0.31 �14.79( 0.27 0.00( 0.00 3.53( 0.38 9.30( 0.35

Trp 0.86 ( 0.44 12.34( 0.35 19.02( 0.43 �7.69( 0.38 �11.04 ( 0.48 7.20( 0.40 �9.19 ( 0.45

Tyr �5.43 ( 0.39 1.06( 0.34 14.76( 0.37 11.90( 0.33 5.29( 0.42 1.57( 0.40 4.81( 0.41

Val 7.99( 0.34 0.00 ( 0.00 9.79( 0.32 2.97( 0.29 3.08( 0.33 3.73( 0.34 �7.89( 0.36

positions 190 192 193 194 196 197 198

Ala �18.12( 0.24 �0.86 ( 0.23 �5.20( 0.20 2.37 ( 0.23 5.95( 0.23 �2.40 ( 0.29 0.00( 0.00

Arg 4.97( 0.41 23.07( 0.44 32.33( 0.41 �13.66( 0.37 �25.38( 0.44 �17.94( 0.47 3.99( 0.37

Asn �16.44( 0.30 �2.56( 0.32 8.24( 0.30 �3.81( 0.31 13.27( 0.36 �6.58( 0.38 0.05( 0.28

Asp 18.75( 0.32 2.92( 0.32 15.29( 0.29 26.72( 0.35 9.25 ( 0.34 5.58( 0.39 5.17( 0.24

Cys �20.36( 0.32 �1.45( 0.32 �9.79 ( 0.26 1.91( 0.30 1.30( 0.31 6.70( 0.36 5.91( 0.22

Gln �17.37( 0.37 �6.00( 0.37 4.87( 0.34 �0.83( 0.32 7.68( 0.36 0.00( 0.00 1.41( 0.31

Glu 0.00( 0.00 1.18 ( 0.35 45.40( 0.34 38.35( 0.33 3.60( 0.36 11.34( 0.41 2.37( 0.30

Gly �17.09( 0.29 �13.46( 0.30 �13.89( 0.27 �18.59( 0.30 8.08( 0.31 4.11( 0.36 3.65( 0.28

His �26.26( 0.35 �0.96( 0.38 �0.96( 0.35 9.95( 0.34 18.42( 0.37 �2.62( 0.40 �3.27( 0.35
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contribution of Einstein crystals is significant with p < 0.05 in
93.0% of all of the amino acid substitutions. Consequently, it is
essential to incorporate Einstein crystals in the free energy
calculation to eliminate the error caused by the methods that
neglect the unknown effect of the translational entropy of the free
atoms in thermodynamic integration. The contribution of the
translational entropy of ideal gas-like atoms (λ = 0 or λ = 1)
needs to be either calculated or removed by a theoretically exact
method to perform an exact free energy calculation.
The obtainedΔΔG values allow us to analyze the character of

each of the 20 amino acids. We first averaged over all of the 21
amino acid sites in epitope B theΔΔG value caused by the single
substitutions from alanine to the other amino acids. The
averaged ΔΔG values are listed in Table 2. The largest ΔΔG’s

are caused by the negatively charged amino acids (Glu, Asp) and
the positively charged amino acids (Arg, Lys), indicating that
introduction of charged amino acids in the dominant epitope
decreases the binding affinity between antibody and hemagglu-
tinin. Note that amino acid substitutions that change the charge
of hemagglutinin significantly affect the calculated free energy
values.39�41 The issue of how to best calculate free energy
differences when charge changes has been debated over the
years. In the present paper, we are using the standard Ewald
approach with explicit solvent. We note that the evolutionary
history of H3 hemagglutinin since 1968 shows an increasing
trend of the number of charged amino acids in epitope B,42 which
agrees with the results that the introduction of charged amino
facilitates virus evasion from antibodies, as illustrated in Table 2.

Table 1. Continued
positions 190 192 193 194 196 197 198

Ile �16.45( 0.37 �5.57( 0.37 �3.80( 0.31 �6.91 ( 0.32 0.77( 0.34 1.23( 0.41 0.01( 0.32

Leu �17.27( 0.36 �7.97( 0.37 10.76( 0.34 0.00( 0.00 10.07( 0.39 �0.03( 0.40 �11.18( 0.29

Lys �9.33( 0.38 5.67( 0.42 39.36( 0.39 �16.67( 0.38 0.49( 0.40 �16.50( 0.47 1.98( 0.37

Met �26.63( 0.34 6.82( 0.36 �2.91( 0.32 7.75( 0.35 4.08( 0.37 �7.79( 0.40 15.57( 0.32

Phe �31.89 ( 0.39 1.56( 0.40 16.46( 0.59 2.78( 0.34 �1.99( 0.37 1.05( 0.44 8.73( 0.34

Pro �17.85( 0.33 �2.28( 0.33 9.84( 0.31 8.01( 0.31 15.42( 0.35 �5.34( 0.40 0.70( 0.29

Ser �14.75( 0.31 �7.79( 0.30 0.00( 0.00 6.62( 0.29 6.91( 0.29 1.97 ( 0.36 �2.40( 0.22

Thr �4.17( 0.32 0.00 ( 0.00 �2.04( 0.27 12.40 ( 0.31 7.81( 0.33 �7.91 ( 0.36 6.79( 0.24

Trp �22.93( 0.39 2.31( 0.44 17.92( 0.42 �1.30( 0.40 8.17( 0.43 �7.73( 0.44 �7.23( 0.38

Tyr �13.82( 0.38 7.63( 0.42 16.16( 0.38 9.73( 0.36 2.92( 0.40 6.10( 0.44 �4.82( 0.32

Val �9.12( 0.31 �6.80( 0.32 �6.92( 0.30 2.59( 0.29 0.00( 0.00 4.16( 0.39 �4.22( 0.24
aThe standard errors are also listed. The free energy difference and its standard error of the substitution from the wildtype amino acid to itself are both
zero. The units of free energy differences and their standard errors are in kcal/mol.

Table 2. Rank of the Average Binding Free Energy Difference of the Single Substitution fromAlanine to Another Amino Acid over
All 21 Amino Acid Sites in Epitope B of Hemagglutinin Trimera

rank amino acid ΔΔG(kcal/mol) charged hydrophobic large medium small relative frequency

1 Glu 14.612( 0.061 � � 0.029

2 Asp 14.533( 0.055 � � 0.051

3 Arg 6.018( 0.078 � � 0.052

4 Lys 5.766( 0.078 � � 0.057

5 Trp 4.458( 0.081 � � 0.016

6 Tyr 3.984( 0.071 � � 0.035

7 Thr 3.981( 0.050 � 0.078

8 Pro 3.912( 0.054 � � 0.060

9 Met 3.562( 0.062 � � 0.009

10 Phe 3.522( 0.073 � � 0.030

11 His 2.654( 0.064 � 0.020

12 Gln 1.985( 0.063 � 0.042

13 Ile 1.396( 0.060 � � 0.070

14 Asn 1.150( 0.054 � 0.085

15 Val 1.147( 0.051 � � 0.055

16 Cys 0.888( 0.046 � 0.028

17 Ser 0.469( 0.044 � 0.096

(18) (Ala) (0.000( 0.000) � � 0.046

19 Gly �1.612 ( 0.055 � � 0.070

20 Leu �2.273( 0.064 � � 0.071
aThe rank correlates with the charge and the size of the amino acid, and it is relatively uncorrelated to the hydrophobicity. Here, we applied classifications
of RasMol for the biochemical properties of the 20 amino acids.43 The relative frequencies of 20 amino acids were counted from the H3 sequences in the
NCBI database from 1968 to 2009.
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The result that the introduction of charged amino acids on
average increases ΔΔG is not an artifact, is supported by data
from the influenza evolution, and is expected on the basis that
charge is hydrophilic. In addition to the charge, the rank of free
energy differences also largely correlated to the size of amino
acid. By the definition used by RasMol,43 the 16 uncharged
amino acids are tagged as hydrophobic (Ala, Gly, Ile, Leu, Met,
Phe, Pro, Trp, Tyr, Val), large (Gln, His, Ile, Leu, Met, Phe, Trp,
Tyr), medium (Asn, Cys, Pro, Thr, Val), and small (Ala, Gly,
Ser), as shown in Table 2. The ranks of small amino acids are
lower than those of medium amino acids (p = 0.036, Wilcoxon
rank-sum test) and those of large amino acids (p = 0.085,
Wilcoxon rank-sum test). In contrast, the hydrophobicity of
the uncharged amino acids is largely uncorrelated with their
ranks by ΔΔG. As a result, charged amino acids in the dominant
epitope are essential to the immune evasion, while the virus
escape substitution among small amino acids has minimal effect.
Epitope B comprises 21 amino acid sites in the top of the

hemagglutinin trimer. Taking the probability for one substituting
amino acid to exist at each site to be proportional to the relative
frequency of this amino acid in H3 hemagglutinin, the weighted
average free energy difference in each of the 21 sites was calculated.
The relative frequencies of 20 amino acids were obtained from
6896 H3 hemagglutinin sequences deposited between 1968 and
2009 in the NCBI database44 and are listed in Table 2. Also using
theΔΔG values in Table 1, we calculated and tabulated in Table 3
for each site i the value of ÆΔΔGæi, which is the average ΔΔG
weighted by the probability for each different amino acid to be
introduced, where the probability is proportional to the relative
frequencies of 20 amino acids counted from the H3 sequences in
the NCBI database from 1968 to 2009.
As shown in Table 3, there is obvious variation among the

expected free energy differences ÆΔΔGæi caused by single

substitutions at amino acid site i of epitope B. This variation is
partly due to the wildtype amino acids in the sites. For instance,
the wildtype amino acid in site 190 is Glu, which has the highest
rank in Table 2. As shown in Table 3, any amino acid substitution
in site 190 tends to have a negative ΔΔG. Another cause of
variation in ÆΔΔGæi is that distinct sites affect differently the
antibody binding process. Epitope B of the wildtype A/Aichi/2/
1968 hemagglutinin sequence contains five sites with threonine:
128, 155, 160, 187, and 192. The mathematical expectancies
ÆΔΔGæi in these five sites are �7.746, 4.471, 4.956, 1.182, and
�1.737 kcal/mol, respectively. Therefore, each site in epitope B
has a specific effect on the virus escape substitution. A random
substitution in epitope B affects the antibody binding free energy
differently depending on the site and the substituting
amino acids.
The variation of ÆΔΔGæi is also reflected by the tertiary structure

of epitope B bound by the antibody. By looking into the structure
of epitope B, shown in Figure 2, it is seen that epitope B resides in
two protruding loops from amino acid site 128 to 129 and from
site 155 to 165 and in anR-helix from site 186 to 198. Site 128 has a
negative average free energy difference, ÆΔΔGæ128 = �7.746 (
0.098 kcal/mol. All of the other sites in these two loops show a
positive ÆΔΔGæi value of a random substitution, with theminimum
ÆΔΔGæ157 = 3.944 ( 0.090 kcal/mol in site 157. The R-helix is
located between the hemagglutinin and antibody. In the R-helix,

Table 3. Rank of the Average Free Energy Difference ÆΔΔGæi
Generated by a Substitution in Each Amino Acid Site i of
Epitope B

rank site ÆΔΔGæi (kcal/mol)

1 193 8.074( 0.081

2 159 7.792( 0.094

3 165 7.741( 0.086

4 158 6.128( 0.108

5 196 5.444( 0.088

6 160 4.956( 0.090

7 186 4.754( 0.076

8 163 4.722( 0.085

9 129 4.690( 0.103

10 155 4.471( 0.081

11 156 4.029( 0.106

12 157 3.944( 0.090

13 188 2.945( 0.092

14 194 1.886( 0.080

15 187 1.182( 0.087

16 198 0.531( 0.072

17 189 �0.631 ( 0.098

18 192 �1.737( 0.087

19 197 �1.967( 0.099

20 128 �7.746( 0.098

21 190 �12.666 ( 0.084

Figure 2. The tertiary structure of the interface between the HA1
domain of H3 hemagglutinin monomer A/Aichi/2/1968 (bottom) and
the antibody HC63 (top) (PDB code: 1KEN). Water molecules are not
shown. Epitope B of the HA1 domain is located in two loops and one R-
helix, with the color scale modulated according to the expected free
energy difference ÆΔΔGæi of each site i in epitope B. The color scale
ranges from red for themost negative ÆΔΔGæi values to blue for the most
positive ÆΔΔGæi values. The sites i in epitope B with ÆΔΔGæi near zero
are colored white. The region outside epitope B is colored gray. The red
site 128 is far from the antibody binding region, and the red site 190
possessed the original amino acid Glu, which is a charged amino acid. It
may explain why these two sites show negative ÆΔΔGæi with large
absolute values.
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the sites facing toward the antibody usually present large positive
ÆΔΔGæi values such as sites 193 and 196, while the sites facing
toward the hemagglutinin show lower ÆΔΔGæi values such as sites
189, 192, and 197. Thus, in the one-dimensional sequence from
site 186 to 198, the ÆΔΔGæi values oscillate with peaks and valleys
corresponding to the sites in the R-helix alternatingly facing the
antibody and hemagglutinin. Consequently, the variation of the
expected free energy changes in distinct sites depends on the
structure of the hemagglutinin�antibody complex.
3.2. Historical Substitutions in Epitope B. The simulation

results are supported in two ways by amino acid sequence data of
H3 hemagglutinin collected since 1968. These historical se-
quences are downloaded from the NCBI Influenza Virus
Resource45 and aligned. First, Pan et al. analyzed the number of
charged amino acids in epitope B ofH3 hemagglutinin in each year
since 1968 and found an increasing trend of charged amino acids.42

This finding supports the results that amino acid substitution
introducing charged residues on average facilitates virus escape
from antibodies, as illustrated in Table 2. Second, amino acid
substitutions in epitope B between 1968 and 1975 also verified the
free energy calculation, as shown below.
With the knowledge of the free energy landscape of the single

substitutions, we are able to recognize favorable single substitu-
tions in epitope B. Substitutions with large positive ΔΔG values
enable the virus to evade the immune pressure and increase the
virus fitness. Favorable substitutions grow in the virus population.
Selection for substitutions with large ΔΔG is part of the evolu-
tionary strategy of the virus. The results of free energy calculation
can also explain the substituted virus strains collected in history.
We analyzed the hemagglutinin sequence information of

H3N2 strains evolving from the A/Aichi/2/1968 strains.
H3 hemagglutinin circulating from 1968 to 1971 was mainly in
the HK68 antigenic cluster, while those circulating from 1972 to
1975 were mainly in the EN72 antigenic cluster.46 Table 4 shows
that in the dominant epitope B, 17 substitutions occurred in 12
sites collected between 1968 to 1975,47 which contributed to

immune evasion and corresponding virus evolution from the
HK68 cluster to the EN72 cluster. Also listed in Table 4 are the
free energy differences of these historical substitutions. The 17
substituting amino acids have significantly higher ranks com-
pared to the corresponding wildtype amino acids (p = 0.0044,
Wilcoxon signed-rank test). This significant difference is ex-
pected because 15 of 17 substituting amino acids have ranks
between 1 and 10, while 10 of 12 wildtype amino acids in the
substituted site have ranks between 11 and 20. In all of the 21
sites in epitope B, 15 of 21 wildtype amino acids have ranks
between 11 and 20. Additionally, the ΔΔG values of these 17
substitutions listed in Table 4 are greater than the expected free
energy differences ÆΔΔGæi in Table 3 of random substitutions in
the 12 substituted sites (p = 0.013, Wilcoxon signed-rank test).
We also looked into the historical escape substitutions in

epitope B evading the immune pressure of the vaccine strains.
For each influenza season, the amino acids in the administered
vaccine strain were defined as the wildtype ones and those in the
dominant circulating strain as the substituting amino acids. In
each of the 19 seasons from 1971 to 2004 in which the H3N2
virus was the dominant subtype, the substitutions in epitope B
were located,3 and theirΔΔG values were obtained fromTable 1.
As shown in Table 5, escape substitutions in epitope B as of 1973
mostly had positive ΔΔG values and generated substituting
amino acids with increased rank (p = 0.047, Wilcoxon signed-
rank test). Such a tendency to introduce amino acids with higher
ranks was not observed after 1973: the ranks of wildtype and
substituting amino acids after 1973 present little significant
difference (p = 0.28, Wilcoxon signed-rank test). The hemagglu-
tinin of A/Aichi/2/1968 used in the free energy calculating is in
the HK68 antigenic cluster. Perhaps after the virus evolved into
the next EN72 cluster, a change in the virus antigenic character
stimulated the immune system to produce new types of anti-
bodies other than the HC63 antibody used in the calculation.
A different binding antibody changes the free energy landscape of
the substitutions in epitope B. Thus, the application of the

Table 4. Substitutions Occurred in Epitope B of the Hemagglutinin A/Aichi/2/1968 (H3N2) as of 1975a

substitution year ΔΔG (kcal/mol) rank (substituting) rank (WT)

T128N 1971 �4.796( 0.361 8 7

T128I 1975 �16.026( 0.412 18 7

G129E 1970, 1972 10.500( 0.415 4 17

T155Y 1972�1973, fixed in 1973 7.254( 0.358 9 14

G158E 1971�1972 8.584( 0.479 6 17

S159N 1971, 1974�1975 10.969( 0.352 5 17

S159C 1972 7.923( 0.324 6 17

S159R 1972 7.065( 0.424 7 17

T160A 1973 4.160( 0.217 11 18

S186N 1975 4.673( 0.298 10 14

N188D 1971�1973, fixed in 1973 19.767( 0.367 1 14

Q189K 1975 9.484( 0.640 2 10

E190V 1972 �9.115( 0.310 5 3

E190D 1975 18.752( 0.324 1 3

S193N 1972�1975 8.239( 0.301 10 12

S193D 1975 15.285( 0.294 7 12

A198T 1972 6.793( 0.236 3 14
aAlso listed are the years when the substitutions were observed, and the free energy differences with standard errors. In each site of epitope B, all 20 amino
acids were sorted in descending order by the free energy differences introduced by a substitution from the wildtype amino acid to 20 amino acids. The ranks
of the substituting amino acid and the wildtype amino acid in each substituted site are listed in the columns rank (substituting) and rank (WT), respectively.
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present free energy landscape should be limited within the HK68
and EN72 clusters. Free energy differences of substitutions in the
EN72 cluster would need to be calculated using the updated
antibody crystal structure.

4. DISCUSSION

4.1. Fitness of the Virus Strains. The free energy landscape
shown in Table 1 gives the change of the antibody binding affinity,
K1/K0 = exp(�ΔΔG/RT), induced by each possible substitution
in epitope B of the wildtype hemagglutinin. The majority of the
substitutions lead to positive ΔΔG and yield a reduced binding
affinity K1 that is smaller than the binding affinity of the original
mature antibodyK0. A decreased antibody binding constant grants
the virus a higher chance of evading immunepressure and infecting
host cells. We propose that virus fitness is positively correlated
with the free energy difference ΔΔG. The other factor affecting
virus fitness is the capability of the hemagglutinin to maintain the
normal biochemical functions, such as virus entry. Most sites in

epitope B changed amino acid identities during 1968 to 2005 as
the H3N2 virus kept circulating.47 We therefore postulate that the
substitutions in epitope B do not greatly interfere with the
biochemical function of hemagglutinin, and virus fitness is dom-
inantly determined by the free energy difference resulted from
substitutions in epitope B.
The binding constant between the hemagglutinin and anti-

body after the first round of maturation is about 106M�1, and the
binding constant of an uncorrelated antibody is below 102 M�1.2

On average, four substitutions in epitope B change the substi-
tuted hemagglutinin sufficiently so that the immune response of
the original antibody binding to epitope B is abrogated.3 Since
this is a reduction of the binding constant from roughly 106 M�1

to 102 M�1, one amino acid substitution that contributes to
immune escape causes on average a 10-fold decrease in antibody
binding constant, or equivalently ΔΔGcrit = 1.42 kcal/mol at
310 K. Assuming the effect of immune evasion can be broken into
the sum of individual amino acid substitutions in the dominant
epitope,3 we define the virus fitness w as the sum of the
contribution in each site of epitope B:

w ¼ A0 þ ∑
epitope B

δwi ð27Þ

We denote byΔΔGi
Rγ the free energy difference when substitut-

ing amino acid R for amino acid γ at site i. We investigated two
versions of the virus fitness landscape. The first defines δwi as a
linear function of the free energy difference of the substitution

δwi ¼ A1
ΔΔGRγ

i

ΔΔGcrit
ð28Þ

The second defines δwi as a step function

δwi ¼ A2HðΔΔGRγ
i �ΔΔGcritÞ ð29Þ

in which H is the Heaviside step function. As illustrated in the
simulation below, either definition of fitness is sufficient to
explain the observed immune evasion of the H3N2 virus.
4.2. Selection in the Epitope. Evolution of the H3N2 virus is

driven jointly by neutral evolution and selection.48 Neutral evolu-
tion may be ongoing in sites outside the epitopes. The high
substitution rate in epitope B suggests that selection is the major
factor shaping the pattern of evolution in that epitope.47 Shown in
Tables 4 and 5 are the historical substitutions. The significantly
increased ranks of free energy differences suggests the existence of
selection by the immune pressure for substitutions that have
increased the free energy difference ΔΔG and decreased the
antibody binding constant. The immune selection is directional:
certain types of amino acids such as charged ones were initially
more likely to be added into epitope B42 because they maximally
decreased the antibody binding constant, as indicated in Table 2.
The heterogeneity of the expected free energy difference of a
random substitution in Table 3 shows that each site in epitope B
has a specific weight with regard to immune escape.
Table 4 also illustrates that the immune selection did not

necessarily pick the amino acid with the highest rank of ΔΔG as
the substituting amino acid. Amino acids with moderate rank
were introduced into epitope B even for the fixed substitution
T155Y. Therefore, the historical evolution did not simply sub-
stitute amino acids by maximizing the free energy differences in
Table 1. This phenomenon is possibly due to two causes. First,
the virus fitness may be insensitive to the ΔΔG values; e.g., A1
in eq 28 may be small, or amino acid substitutions with large

Table 5. Substitutions Occurring in Epitope B of H3 He-
magglutinin between the Vaccine Strain and the Dominant
Circulating Strain in Each Season inWhich theH3N2 Subtype
Was Dominanta

year substitution ΔΔG (kcal/mol)

rank

(vaccine)

rank

(circulating)

1972 T155Y 7.254( 0.358 14 9

1972 G158E 8.584( 0.479 17 6

1972 S159C 7.923( 0.324 17 6

1972 E190V �9.115( 0.310 3 5

1973 T160A 4.160( 0.217 18 11

1973 N188D 19.767( 0.367 14 1

1973 S193N 8.239( 0.301 12 10

1975 S157L �6.256( 0.394 15 19

1975 A160T �4.160 ( 0.217 11 18

1975 Q189K 9.484( 0.640 10 2

1975 N193D 7.046( 0.317 10 7

1984 E156K �26.536( 0.429 1 15

1984 V163A �0.243 ( 0.217 15 16

1984 D190E �18.752( 0.324 1 3

1984 I196V �0.768( 0.343 16 18

1987 Y155H �4.782( 0.414 9 11

1987 E188D 9.669( 0.382 3 1

1987 K189R �9.872( 0.697 2 11

1996 V190D 27.867( 0.299 5 1

1996 L194I �6.914( 0.324 13 17

1997 K156Q 13.140( 0.413 15 3

1997 E158K �10.187( 0.515 6 18

1997 V190D 27.867( 0.299 5 1

1997 L194I �6.914( 0.324 13 17

1997 V196A 5.947( 0.229 18 11

2003 H155T �2.472 ( 0.355 11 14

2003 Q156H �20.028( 0.365 3 20

2003 S186G 0.132( 0.275 14 13
aThe free energy difference with standard error of each substitution is
obtained using the free energy landscape in Table 1. The ranks of free
energy differences sorted in descending order are listed in column rank
(vaccine) and in column rank (circulating) for the amino acids in the
vaccine strain and the dominant circulating strain, respectively.
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ΔΔG values may contribute equivalently to the fitness, as in
eq 29. Second, only a small fraction of virus in one host is shed by
the host and infects the next host, so the population size of the
propagated virus from one host is smaller by several orders of
magnitude than the total virus population size in the same host.
Additionally, a seasonal bottleneck exists in the influenza virus
circulation.49 Both random mutation and small population sizes
lead to dramatic randomness in the evolution. Consequently, the
evolution of H3 hemagglutinin is not solely determined by
maximizing the free energy differences in Table 1 andminimizing
the antibody binding constant, even if the virus is under immune
selection. Instead, randomness plays a key role in the H3N2 virus
evolution.
4.3. A Picture of the H3N2 Virus Evolution. Selection depends

on the fitness of each virus genotype that is quantified as a
nondecreasing function of the free energy difference ΔΔG. Mod-
erate selection in epitope B requires that fitness improvement is
limitedwhenΔΔG is large.One possibility is that the ratioA1/A0 in
eq 28 is small. Another is that the fitness takes the form of eq 29 in
which all substitutions with ΔΔG > ΔΔGcrit have equal fitness.
The virus evolution is also affected by the genetic drift. Genetic

drift is a term which captures the random component of evolution
due to the large size of the phase space of possible substitutions
relative to the single set of substitutions that lead to the highest
viral fitness. The effect of genetic drift is quantitatively reflected in
the fixation process of a new strain, as shown in the simulation
below. A narrow bottleneck of virus propagation allows only a
small fraction of the progeny to survive, imposing a notable
probability that a favorable substitution is lost in the next genera-
tion. The effect of genetic drift is to increase the randomness in the

virus evolution so that observed substitutions are based on chance
in addition to the fitness of these substitutions.
To model the H3N2 evolution discussed above, we ran two

Monte Carlo simulations of the influenza evolution model. A
population ofN sequences of epitope B with 21 sites was created
and initialized as the wildtype A/Aichi/2/1968 sequence. Here,
N = 103 to account for a narrow genetic bottleneck of hemag-
glutinin and for tractability of the simulation. We iterated the
simulation program for 5000 generations or about five years to
recreate a pattern of evolution similar to that in history and
shown in Table 4. The random substitution rate of H3 hemag-
glutinin is roughly 4.5 � 10�6 amino acid substitution/site/
generation.50We let the number of substitutions follow a Poisson
distribution withmean λ= 21� 4.5� 10�6N= 9.5� 10�5N and
randomly assigned the substitution sites. The substituting amino
acid at each substitution site was randomly picked from the
remaining 19 amino acids proportional to the historical frequen-
cies observed in hemagglutinin. The fitness w in the first simula-
tion was calculated for each sequence using eq 28 with A0 = 100
and A1 = 3, and that in the second simulation was calculated for
each sequence using eq 29 with A0 = 100, A2 = 9, and ΔΔGcrit =
1.42 kcal/mol. Note that by choosing A1 = 3 for the first
simulation, a random substitution causes the expected fitness to
change from 100 to 104.9, and by choosing A2 = 9 for the second
simulation, a random substitution changes the expected fitness
from 100 to 105.0. The size of the progeny of each sequence
equals the fitness w of the sequence if w > 0 and equals 0 if we 0.
The next generation of sequences was initialized by randomly
sampling N sequences from the progeny sequences.
The results of both simulations showed remarkable similarity

to the observed substitutions in Table 4 with the bottleneck N
equal to 103, see Figures 3 and 4. Amino acid substitutions

Figure 3. Two fixed substitutions G129A and E190D generated by
Monte Carlo simulation of epitope B using eq 28. Also plotted are two
historical fixed substitutions in epitope B: T155Y fixed between 1971
and 1973 and N188D fixed between 1970 and 1973. The frequency data
of historical substitutions are from Shih et al.47 The origin of time axis is
1968. 1000 generations of the H3N2 virus is approximately 1 year. (a)
Substitution G129A causing the free energy difference ΔΔG = 3.33 (
0.29 kcal/mol is fixed by the simulation. The rank of the free energy
difference of G129A is 12 in 19 possible substitutions in site 129. (b)
Substitution E190DwithΔΔG= 18.75( 0.32 kcal/mol. The rank is 1 in
19 possible substitutions in site 190.

Figure 4. Two fixed substitutions N188D and V196D generated by
Monte Carlo simulation of epitope B using eq 29. Two historical fixed
substitutions T155Y andN188D are also plotted, and data are from Shih
et al.47 (a) Substitution N188D causing the free energy differenceΔΔG
= 19.77( 0.37 kcal/mol is fixed by the simulation. The rank of the free
energy difference of N188D is 1 in 19 possible substitutions in site 188.
(b) Substitution V196D withΔΔG = 9.25( 0.34 kcal/mol. The rank is
5 in 19 possible substitutions in site 196. The proportions of substituting
amino acids are represented by different line types.
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generated in the simulation are usually distinct from those in
Table 4, observed in history. The ΔΔG values of each substitu-
tion emerging in the simulation are nevertheless similar to those
of the historical substitutions listed in Table 4. As was observed in
history, in Table 4, most of the substituted strains in the
simulations with a relative frequency greater than 1% have
positive ΔΔG values with the ranks of the substituting amino
acids ranging from 1 to 10. The fixation of a newly emerged
substitution takes about 1000 generations or one year on average.
Fixed substitutions mostly introduce amino acids with positive
ΔΔG values in Table 1 and higher ranks in Table 2, and several of
these fixed substitutions in simulation, such as E190D and
N188D, have the highest ΔΔG values in the current site.
However, fixed substitutions in the simulation are not always
the substitutions with the highest ΔΔG values in Table 1. These
observations suggest that the Monte Carlo simulation consider-
ing the effect of substitution, selection, and genetic drift is able to
reproduce the pattern of evolution observed in history. This
simulation also shows that besides the free energy difference of
each substitution, the mapping from the free energy landscape to
the fitness landscape as well as the random genetic drift are
dominant factors of the evolution in virus epitopes.
Shown in Figures 3 and 4 for both simulations are the

trajectories of relative frequencies of substituting amino acids.
The trajectories are similar to historical observations of the
human H3N2 virus data.47 For influenza, 1000 generations
roughly equal 1 year. The two substitutions T155Y and
N188D were fixed in epitope B in 1968�1973. As indicated by
Figures 3 and 4, substitution T155Y emerged between genera-
tions 3000 and 4000 or, equivalently, between 1971 and 1972
from the emergence of the H3N2 virus in 1968.47 Substitution
T155Y was fixed between generations 4000 and 5000. Similarly,
substitution N188D emerged between generations 2000 and
3000 and was fixed between generations 4000 and 5000. The first
simulation in which virus fitness is calculated using eq 28
generated two fixed substitutions, G129A, which emerged at
generation 4000 and was fixed by generation 5000, and E190D,
which emerged at generation 3600 and was fixed by generation
3900. The second simulation using eq 29 generated one fixed
substitution, V196D emerging at generation 2900 and fixed by
generation 5000, and one substitution that was nearly fixed,
N188D, emerging at generation 4100 and acquiring the relative
frequency 0.84 at generation 5000. The trajectories in both
simulations resemble those of substitutions T155Y and N188D
observed in history. From these results, the two Monte Carlo
simulations appear to capture the main factors of immune
selection and genetic drift in evolution of the H3N2 virus.
4.4. Multiple Substitutions. In this work, we calculated the

free energy difference for each possible substitution in epitope B.
The free energy calculation for multiple substitutions is intract-
able using the current technology due to the combinatorial
increase in calculation load for multiple substitutions. The issue
of multiple substitutions is here addressed by assuming that the
effect of immune evasion is well represented by the sum of the
contribution in each substituted site in epitope B. The data
indicate the independence of the immune evasion effect of the
sites in epitope B.3 We may, thus, assume that the free energy
difference of the multiple substitution is the sum of the individual
ΔΔG values available in Table 1 plus a minor correction term.
4.5. Prediction of Future Virus Evolution. The result of this

work quantifies the reduction of the binding constant of an
antibody to a virus for substitutions in epitope B with larger

ΔΔG values and higher ranks of substituting amino acids. A newly
emerging virus strain with a larger antibody binding free energy
difference has a greater probability to become the dominant strain
in the next flu season. Note that due to random fluctuations in the
large phase space of possible substitutions, actual trajectories
deviate from the trajectory determined by choosing sites and
substituting amino acids with the greatest free energy differences.
With a three-dimensional structure of hemagglutinin of the current
circulating virus and binding antibody, one is able to calculate the
free energy landscape for all of the possible single substitutions in
the dominant epitope and estimate the a priori escape probabilities
in the next season. The dominant circulating influenza strain
usually possesses amino acid substitutions from the vaccine strain
against which memory antibodies are generated. Usually these
substitutions disrupt the antibody binding process by decreasing
the binding constant, as shown in Table 5. Thus, one can predict
vaccine effectiveness by evaluating the antibody binding constant
against the dominant circulating strain, which is acquired by
calculating the free energy difference of the amino acid substitu-
tions between the vaccine strain and the dominant circulating
strain.3 More accurate predictions of the evolutionary pattern of a
virus as well as epidemiological data such as vaccine effectiveness
may be obtained by optimally mapping the free energy landscape
to the fitness landscape and taking into account random factors
such as genetic drift in the evolution process.

5. CONCLUSION

We introduced the Einstein crystal as a technology to improve
the results of free energy calculation. By calculating the free
energy difference of each amino acid substitution, we obtained
the free energy landscape for substitutions in epitope B of
hemagglutinin. There is notable variation between the values
of free energy differences of different substitutions at different
sites, because the identities of original and substituting amino
acids, as well as the locations of amino acid substitutions, affect to
differing degrees the antibody binding process. In this free energy
landscape, we suggest that a virus tends to evolve to higherΔΔG
values to escape binding of an antibody. Counterbalancing this
selection is random drift. Historical amino acid substitutions in
epitope B and Monte Carlo simulations of the virus evolution
using the free energy based virus fitness, in which random genetic
drift of the virus adds statistical noise into the virus evolution
process, showed that selected substitutions are biased to those
with positive ΔΔG values.
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ABSTRACT: A practical approach to treat nuclear quantum mechanical (QM) effects in simulations of condensed phases, such as
enzymes, is via Feynman path integral (PI) formulations. Typically, the standard primitive approximation (PA) is employed in
enzymatic PI simulations. Nonetheless, these PI simulations are computationally demanding due to the large number of
discretizations, or beads, required to obtain converged results. The efficiency of PI simulations may be greatly improved if higher
order factorizations of the density matrix operator are employed. Herein, we compare the results of model calculations obtained
employing the standard PA, the improved operator of Takahashi and Imada (TI), and several gradient-based forward corrector
algorithms due to Chin (CH). The quantum partition function is computed for the harmonic oscillator, Morse, symmetric, and
asymmetric double well potentials. These potentials are simple models for nuclear quantum effects, such as zero-point energy and
tunneling. It is shown that a unique set of CH parameters may be employed for a variety of systems. Additionally, the nuclear QM
effects of a water molecule, treated with density functional theory, are computed. Finally, we derive a practical perturbation
expression for efficient computation of isotope effects in chemical systems using the staging algorithm. This new isotope effect
approach is tested in conjunction with the PA, TI, and CH methods to compute the equilibrium isotope effect in the Schiff base-
oxyanion keto�enol tautomerism in the cofactor pyridoxal-50-phosphate in the enzyme alanine racemase. The study of the different
factorization methods reveals that the higher-order actions converge substantially faster than the PA approach, at a moderate
computational cost.

1. INTRODUCTION

Enzymes are remarkably efficient catalysts evolved to perform
well-defined and highly specific chemical transformations.1

Studying the nature of enzymatic rate enhancements is highly
important from several aspects, including the rational design of
synthetic catalysts and transition-state (TS) inhibitors. Isotope
effects (IE) and particular equilibrium isotope effect (EIE) and
kinetic isotope effect (KIE) are important tools in elucidating
reaction mechanisms in enzymes.2 The KIE is a fundamental
phenomenonmeasuring the sensitivity of chemical reaction rates
on isotopic substitutions and provides the most direct probe to
the structure of the TS of the reaction. Moreover, KIE might
provide insights into tunneling in enzymes.2 EIE is an invaluable
tool for insight into chemical reaction equilibrium, enzymatic
binding, and hydrogen bonding.3,4 The EIE is defined as

EIE ¼ KL

KH
¼ Q PS

L =QRS
L

Q PS
H =QRS

H
¼ e�βðΔGr

L � ΔGr
HÞ ð1Þ

where Q is the partition function for the reactant state (RS) and
product state (PS) for the light (L) and heavy (H) isotopes, andΔGr

is the reaction free energy. β = 1/kBT with kB being Boltzmann’s
constant and T the temperature. Similarly, the KIE is defined as

KIE ¼ kL

kH
� e�βðΔG 6¼

L � ΔG 6¼
HÞ ð2Þ

where k is the rate constant, and ΔG6¼ is the free energy barrier. In
quantum transition-state theory (QTST),5 the exact rate constant is
expressed by the QTST rate constant, kQTST, multiplied by a
transmission coefficient γq:

k ¼ γq 3 kQTST ð3Þ
where the QTST rate constant is given by

kQTST ¼ 1
hβQR

e�βGðz6¼Þ ð4Þ

where h is Planck’s constant. In the following, we assume that γq = 1.
In eq 4,G(z) is the free energy as a function of the centroid reaction
coordinate z[x], z6¼ is the value of z[x] at the free energy maximum.
Specifically,

Gðz 6¼Þ ¼ � 1
β
ln

Q6¼

ðm=2πp2βÞ1=2
" #

ð5Þ

whereQ6¼ is the reduced quantum phase space density at the dividing
hyper-surface at z6¼, p = h/2π, and m is the mass.

The computational prediction of IE in enzymatic reactions
presents a considerable challenge. First, classical statistic me-
chanics simulations cannot reproduce the observed KIE since

Received: December 13, 2010
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they ignore nuclear quantum mechanical (QM) effects (NQE),
such as zero-point energy and tunneling. Thus, computationally
expensive quantum dynamics simulations are required. Second,
condensed phase simulations require extensive sampling of both
solute and solvent degrees of freedom to obtain converged
results, and simulations are prone to statistical noise. Finally,
IE depends exponentially on the free energy differences between
the light and heavy isotopes, making it a very difficult observable
to predict. In particular, secondary and heavy atom KIE and EIE
are small in magnitude and are extremely challenging to compute
from condensed phase simulations.

Several simulation methods have been used to determine
NQE in solution phase and enzymatic reactions. A practical
approach to including these effects is via path-integral (PI)
formulations which may be employed to calculate various
properties of quantum or mixed quantum�classical systems.6,7

Numerous examples of PI simulations of condensed phase
reactions exist.8�24 Additional approaches have been developed
for condensed phase reactions, including the ensemble-averaged
variational TS theory with multidimensional tunneling (EA-
VTST/MT),25,26 a wave function-based method,27,28 and model
reactions.29 These methods have been applied to several enzy-
matic reactions with high-quality accord between the calculated
and experimental KIEs. Recently, we developed a novel free
energy mass-perturbation PI (PIFEP) method,13,14 which has
been successfully applied to numerous model and enzymatic
reactions.30�34 In particular, a combined PIFEP and EA-VTST/
MT study has recently identified enhanced tunneling in the
enzyme nitroalkane oxidase compared to the analogues uncata-
lyzed reaction.34 Recently, additional approaches for computa-
tion of IE have been developed and applied to various chemical
systems.35,36 The modeling of IE, however, is computationally
extremely demanding, and it is important to develop enhanced
methods.

In PI simulations of enzymes the standard primitive approx-
imation (PA) is typically employed. The PA is based on a
primitive factorization of the canonical density operator and
when combined with efficient sampling schemes, such as
staging,37 bisection,38 or normal mode transformation,39 yields
satisfactory results. However, the application of these PA PI
simulations to condensed phase reactions, employing fully QM
or hybrid QM/molecular mechanical (MM) potential energy
functions, is computationally demanding. The efficiency of PI
simulations may be greatly improved if more accurate factoriza-
tion schemes are employed. A higher-order PI approach was
devised by Takahashi and Imada (TI) whichmay greatly enhance
the efficiency of PI simulations.40,41 Suzuki has formulated a
higher-order composite factorization scheme which features an
additional squared force term.42,43 This strategy has been em-
ployed in studies targeting time-dependent classical dynamics,44

real-time propagator,45,46 solution of the Fokker�Planck
equation,47 and in PI simulations.48�56

Herein, we compare the results of model calculations obtained
employing the standard PA, the TI,40 and a novel higher-order
factorization based on the symplectic algorithms developed by
Chin.46,57 These Chin-based factorizations have recently been
employed in the study of quantum liquids.58 In the current study,
the quantum partition function is computed for several model
one-dimensional systems, including the harmonic oscillator,
Morse potential, and symmetric and asymmetric double wells.
The computations employ two complementary methods free of
sampling noise: the numerical matrix multiplication59�61 and the

direct matrix diagonalizationmethods.62 Results emerging from
this study on the different higher-order factorization methods
reveal that the higher-order actions converge substantially
faster than the PA approach, at a moderate computational cost.
Moreover, we obtain a unique parametrization for the Chin
factorization (CH) which is equally applicable to all the
potentials employed herein. As a test case, we employ these
higher-order Feynman PI formulations of the density matrix in
conjunction with density functional theory (DFT) calculations
to estimate the QM correction to vibrational free energy in a
water molecule. Finally, we derive a perturbation expression for
efficient computation of IEs in chemical systems using the
staging algorithm. This new IE approach is tested in conjunc-
tion with the PA, TI, and CH methods to compute the EIE in
the cofactor pyridoxal-50-phosphate (PLP) Schiff base ke-
to�enol tautomerism (Schemes 1 and 2) in the enzyme alanine
racemase (AlaR).

2. THEORY

2.1. Basic Formal Expressions.The PI strategy is particularly
suited for computing the quantum partition function Q in
condensed phase systems since it may be obtained by applying
classical simulation techniques.63 The partition function is
defined as the trace of the canonical density matrix:

Q ¼ TrðFÞ ¼
Z

dxFðx, x; βÞ ¼
Z

dxÆxje�βHjxæ ð6Þ

where x denotes the position of a particle in one dimension and
extension to N dimensions is straightforward.
To express the partition function as a Feynmann PI, we write

the density matrix operator as a product of P exponents, each
representing a time slice of length τ = β/P:

Q ¼
Z

dxÆxje�τHe�τH
3 3 3 e

�τHjxæ ð7Þ

Scheme 1. Ketoamine�Enolimine Tautomerism in a Model
PLP System

Scheme 2. D-Ala PLP Employed in AlaR
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and insert a complete set of P � 1 eigenstates,
R
dxi|xiæÆxi| = 1:

Q ¼
Z

dx1Æx1je�τH
Z

dx2jx2æÆx2je�τH
Z

dx3jx3æÆx3j 3 3 3
Z

dxPjxPæÆxPje�τHjxP þ 1æ

¼
Z

dx1dx2 3 3 3 dxPÆx1je�τHjx2æÆx2je�τHjx3æ 3 3 3 ÆxPje�τHjxP þ 1æ

¼
Z

dx1dx2 3 3 3 dxPFðx1, x2; τÞFðx2, x3; τÞ 3 3 3 FðxP , xP þ 1; τÞ

¼
Z

dx1 3 3 3 dxP
YP
i¼1

Fðxi, xi þ 1; τÞ ð8Þ

where x1 = xPþ1. In the limit Pf¥ and τf0, one can use the
semiclassical PA:

Fðxi, xi þ 1; τÞ = FPAðxi, xi þ 1; τÞ
¼ FTðxi, xi þ 1; τÞFV ðxi; τÞ ð9Þ

where FT is the kinetic energy (T), i.e., free particle term:

FTðxi, xi þ 1; τÞ ¼ Ω 3 exp �τ
m

2τ2p2
ðxi � xi þ 1Þ2

� �
ð10Þ

where Ω = (m/2πτp2)1/2 and m is the mass, while FV is the
potential energy (V) term:

FV ðxi; τÞ ¼ exp½�τVðxiÞ� ð11Þ

where V (xi) is the potential at time slice i. The above expression
(eq 9) is correct in the Pf¥ limit due to the Trotter formula
e�β(TþV) = limPf¥(e

�τTe�τV)P.64 The above quantum system is
isomorphic to a classical system of ring polymers where each
bead, i, in the polymer interacts with its neighbor, i ( 1, via a
harmonic potential (eq 10) and experiences only a fraction, 1/P,
of the full potential V (eq 11).
In order to obtain improved PI methods, various operator

decomposition approaches may be employed. First, we note that
the PA algorithm may be derived from the general operator
splitting:

e�τ T þ Vð Þ ¼ e�τV=2 e�τT e�τV=2 þOðτ3Þ ð12Þ

where O(τ3) is the big O notation describing the convergence as
a function of τ. Summation of the exponential in computing a
property (e.g., partition function) P times, yields an error order of
O(τ2) (i.e., the error in the partition function computed using PA
decreases quadratically as P increases or β decreases). In the
higher-order action due to Takahashi and Imada (TI),40 the
following operator decomposition is employed:

expf�τðT þ VÞg = expf�τTg expf�τðV þ τ2½V , ½T,V ��=24Þg
ð13Þ

This expression converges as O(τ5) with respect to the diagonal
terms (e.g., the partition function may be computed with fourth-
order accuracy). This yields the density matrix elements:

FTIðxi, xi þ 1; τÞ ¼ Ω 3 exp �τ
m

2τ2p2
ðxi � xi þ 1Þ2 � τWTIðxiÞ

� �

ð14Þ

where WTI(xi) is the effective one-dimensional TI potential:

WTIðxiÞ ¼ VðxiÞ þ p2τ2

24m
jFðxiÞj2 where

FðxiÞ ¼ DVðxiÞ
Dxi

ð15Þ

The need for a correction term arises due to the fact that the
kinetic and potential energy operators do not commute. Thus, in
order to add the TI correction, all that is required is to compute
the gradient of the potential.
Here we suggest employing a family of higher-order factoriza-

tion methods based on the symplectic algorithms developed by
Chin.46,57 We start with the expression suggested by Chin (eq 29
in ref 46):

e�τðT þ VÞ = e�t3τTe�v3τVða3τÞe�t2τTe�v2τWða2τÞ

e�t1τTe�v1τVða1τÞe�t0τT ð16Þ
where W is an effective potential given by W = V þ (u0/
v2)(τ

2[V,[T,V]]) and al, tl, and vl are positive coefficients which
will be defined explicitly below. Setting t3 = t0 in eq 16 and
redistributing the kinetic energy term at t0:

e�τðT þ VÞ = e�v3τVða3τÞe�t2τTe�v2τWða2τÞe�t1τTe�v1τVða1τÞe�2t0τT

ð17Þ
Substituting for W yields:

expf�τðT þ VÞg = expf�v3τVða3τÞg expf�t2τTg
exp �v2τðVða2τÞ þ ðu0=v2Þτ2½Vða2τÞ, ½T,Vða2τÞ��Þ

� �
expf�t1τTg expf�v1τVða1τÞg expf�2t0τTg ð18Þ

If the computation of the commuter in eq 18 is not the bottleneck
of the calculation (e.g., QM/MM simulations), it is advantageous
to distribute the commuter more evenly over the three V. Thus,
we multiply the central commuter term by a factor of 1 � λ and
add λ/2 times the commuter term to each potential operator on
each side, as suggested by Chin,44,46,65 obtaining:

expf�τðT þ VÞg =

exp �v3τ Vða3τÞ þ ðλu0=2v3Þτ2½Vða3τÞ, ½T,Vða3τÞ��
� 	� �

expf�t2τTg exp �v2τ Vða2τÞ þ ðð1� λÞu0=v2Þτ2½Vða2τÞ,
��

½T,Vða2τÞ��Þg expf�t1τTg
exp �v1τ Vða1τÞ þ ðλu0=2v1Þτ2½Vða1τÞ, ½T,Vða1τÞ��

� 	� �
expf�2t0τTg ð19Þ

Setting a1 = t0, a2 = 1/2, a3 = 1 � t0, and v3 = v1 we get

expf�τðT þ VÞg =

exp �τ v1Vðð1� t0ÞτÞ þ ðλu0=2Þτ2½Vðð1� t0ÞτÞ,
��

½T,Vðð1� t0ÞτÞ��Þg expf�t2τTg
exp �τ v2Vðτ=2Þ þ ð1� λÞu0τ2½Vðτ=2Þ, ½T,Vðτ=2Þ��

� 	� �
expf�t1τTg

exp �τ v1Vðt0τÞ þ ðλu0=2Þτ2½Vðt0τÞ, ½T,Vðt0τÞ��
� 	� �

expf�2t0τTg ð20Þ
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Substituting for the commuter [V,[T,V]] = (p2/m)|F|2, where F
is the gradient as defined above in eq 15, yields

e�τðT þ VÞ ¼ e�v1τWie�t2τTe�v2τWje�t1τTe�v1τWke�2t0τT ð21Þ
This expression represents a family of algorithmswith fourth-order
convergence, which may be modified by changing the parameters
u0, v1, v2, t0, t1, and t2.

46 Interestingly, O(τ6) convergence may be
achieved by an optimal choice of factorization parameters, due to
cancellation of higher-order error terms. Based on this CH, the
corresponding density matrix then becomes

FCHðxi, xi þ 1; τÞ ¼ Ω3
3

1
2t21 t0


 �1=2

3

Z
dxjdxk

exp
�τ

m

2τ2p2
1
t1
ðxi � xjÞ2 þ 1

t1
ðxj � xkÞ2 þ 1

2t0
ðxk � xi þ 1Þ2


 �

�τðWðxiÞ þWðxjÞ þWðxkÞÞ

8><
>:

9>=
>;

ð22Þ
where i, j, and k correspond to time slices (1 � t0)τ, τ/2, and t0τ,
respectively, and W(xi/j/k) are generalized effective one-dimen-
sional TI-like potentials at time slices i, j, and k:

WðxiÞ ¼ v1VðxiÞ þ τ2
p2u0λ
2m

jFðxiÞj2

WðxjÞ ¼ v2VðxjÞ þ τ2
p2u0ð1� λÞ

m
jFðxjÞj2

WðxkÞ ¼ v1VðxkÞ þ τ2
p2u0λ
2m

jFðxkÞj2
ð23Þ

Here u0, v1, v2, t1, and t2 are parameters to be optimized via t0:

0 e t0 e
1
2

1� 1ffiffiffi
3

p

 �

; t1 ¼ t2 ¼ 1
2
� t0

v1 ¼ 1

6ð1� 2t0Þ2
; v2 ¼ 1� 2v1;

u0 ¼ 1
12

1� 1
1� 2t0

þ 1

6ð1� 2t0Þ3
" #

ð24Þ

and λ is a function of t0 yielding an algorithm correctable to sixth
order for the harmonic oscillator:65

λ ¼ 1þ 6t0f�3þ 4t0½6þ t0ð�23þ 24t0Þ�g
5½1� 12t0ð1� 2t0Þ2�½1� 6t0ð1þ 2t0 � 4t20Þ�

ð25Þ

This latter expression may be a useful starting point for
reducing the fourth-order error. Herein λ will be limited to
values between 0 and 1 to yield a forward algorithm (i.e., a
negative exponent in eq 22 yields an expression with a bounded

integral which may be evaluated directly or simulated using
Monte Carlo, MC, methods). This may be seen by inspecting
eq 23. This CH PI approach with a gradient-based forward
correction converges as τ6 in favorable cases, such as a harmonic
potential, compared with the τ4 convergence of TI and τ2 for PA.
2.2. Condensed Phase Expressions. In condensed phase

simulations it is useful to compute the QM effects as a correction
to the classical mechanics (CM) results. Thus, we write the ratio
between the classical and quantum partition functions:9,10

QQM

QCM
¼

Z
dxFQMðx, x; βÞZ
dxFCMðx, x; βÞ

ð26Þ

Here the QMdensity matrix may be described by PA, TI, or CH,
as described above, while the CM density matrix may be written as
an analogue of the PA, TI, and CH approaches, respectively. In
general, we may write the high-temperature density matrices:

FQMðxi, xi þ 1; τÞ ¼ FTðxi, xi þ 1; τÞFΜV ðxi; τÞ ð27Þ

FCMðxi, xi þ 1; τÞ ¼ FTðxi, xi þ 1; τÞFPAV ðxc; τÞ ð28Þ
whereΜ represents the PA, TI, or CHmethods and xc is the classical
coordinate which coincides with the centroid, x, which in discrete
representation is defined as x ¼ 1

P∑
P
i¼ 1xi. Further we may write

QQM

QCM
¼

Z
dxFQMðx, x; βÞZ
dxFCMðx, x; βÞ

¼

Z
dxc

Z
dx1 3 3 3 dxPδðxc � xÞ

YP
i¼ 1

FQMðxi, xi þ 1; τÞ
Z

dxc

Z
dx1 3 3 3 dxPδðxc � xÞ

YP
i¼ 1

FCMðxi, xi þ 1; τÞ

¼

Z
dxc

Z
dx1 3 3 3 dxPδðxc � xÞ

YP
i¼ 1

FTðxi, xi þ 1; τÞFΜV ðxi; τÞ
Z

dxc

Z
dx1 3 3 3 dxPδðxc � xÞ

YP
i¼ 1

FTðxi, xi þ 1; τÞFPAV ðxc; τÞ

ð29Þ
where FT(xi,xiþ1;τ) and FV

Μ(xi;τ) have been defined above. The
delta function, δ(xc � x), imposes the centroid constraint on the
beads, assuring that the centroid coincideswith the classical position.
The classical analogue of the quantum potential energy density
matrix is obtained in the limit P = 1 and is defined as FVPA(xc;τ) =
exp[�τV(xc)].
Employing either the PA, TI, or CH potentials, the following

useful expression may be derived

QQM

QCM
¼

Z
dxcFPAV ðxc; τÞ

Z
dx1 3 3 3 dxPδðxc � xÞ

YP
i¼ 1

FTðxi, xi þ 1; τÞðexpð�τð∑
P

i¼ 1
ðWΜðxiÞ � VðxcÞÞÞÞÞ

Z
dxcFPAV ðxc; τÞ

Z
dx1 3 3 3 dxPδðxc � xÞ

YP
i¼ 1

FTðxi, xi þ 1; τÞ

¼ Æexpð�τð∑
P

i¼ 1
ðWΜðxiÞ � VðxcÞÞÞÞæT, xc

 �
VðxcÞ

ð30Þ

whereWM is the effective potential according to PA, TI, or CH. In eq 30 the internal bracket, Æ 3 3 3 æT,xc, is an average over the
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free-particle distribution which is constrained to the centroid
(classical) position, while the external average, Æ 3 3 3 æV(xc), is over
the classical (centroid) potential. In this formulation, which is an
extension of the original quantized classical path methods,9,10 the
sampling of the classical centroid coordinate and the quantum PI
coordinate may be performed separately. Enhanced sampling
may be obtained by using the MC staging algorithm37 in
conjunction with the expression in eq 30. In the case of M =
CH, a symmetrized version of the potential must be employed in
conjunction with the standard staging algorithm.
2.3. Perturbation Expression for Accurate Isotope Effects.

In principle, one can carry out separate centroid path integral
(PI) simulations to make QM corrections to the classical
potential of mean force for different isotopes. Then, one can
use the free energies for different isotopic reactions to compute
the corresponding IEs. However, the statistical errors associated
with these separate calculations are at least one order of
magnitude greater than the free-energy difference for different
isotopic reactions—an error too large to be useful for computing
IEs. Thus, a sampling scheme which avoids separate sampling for
different isotopes is of great importance. Here we present such a
scheme for the staging algorithm.
Assuming we want to sample P � 1 beads using the staging

algorithm, {x2, ..., xP}, between end-points x1 and xPþ1. We
define x1 = xPþ1 = 0 and Λm=(2πΩ

2)�1/2.
Stage 1:

x2 ¼ xP þ 1 þ x1ðP� 1Þ
P

þΛmη1

ffiffiffiffiffiffiffiffiffiffiffi
P� 1
P

r

¼ xP þ 1 þ x1ðP� 1Þ
P

þΛmθ1 ¼ Λmθ1 ð31Þ

where θ1 ¼ η1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P� 1ð Þ=Pp

and η1 is a random number with
normal distribution, zero mean, and unit variance.
Stage 2:

x3 ¼ xP þ 1 þ x2ðP� 2Þ
P� 1

þΛmη2

ffiffiffiffiffiffiffiffiffiffiffi
P� 2
P� 1

r

¼ Λmθ1
P� 2
P� 1

þΛmθ2 ð32Þ

where θ2 ¼ η2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P� 2ð Þ= P� 1ð Þp

Stage 3:

x4 ¼ xP þ 1 þ x3ðP� 3Þ
P� 2

þΛmη3

ffiffiffiffiffiffiffiffiffiffiffi
P� 3
P� 2

r

¼ Λmθ1
P� 3
P� 1

þΛmθ2
P� 3
P� 2

þΛmθ3 ð33Þ

where θ3 ¼ η3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P� 3ð Þ= P� 2ð Þp

In general, we may write for stage k � 1:

xk ¼ xP þ 1 þ xk � 1ðP� kþ 1Þ
P� kþ 2

þΛmηk � 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P� kþ 1
P� kþ 2

r

¼ xk � 1ðP� kþ 1Þ
P� kþ 2

þΛmθk � 1

ð34Þ
where θk � 1 ¼ ηk � 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P� kþ 1ð Þ= P� kþ 2ð Þp

and
xk � 1 ¼ Λm∑

k � 1
i¼ 2 θi P� kþ 1ð Þ= P� iþ 1ð Þ and

θi ¼ ηi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P� ið Þ= P� iþ 1ð Þp

.

We may write xk in a more compact form:

xk ¼ Λm ∑
k

i¼ 2
θi
P� kþ 1
P� iþ 1

ð35Þ

Thus, we see that the final bead distribution is independent of the
initial position and may be written exclusively as a function of
mass and random distribution numbers. In practice, we imple-
mented the staging algorithm employing eqs 31�34.
Considering a reaction where the light atom of mass mL is

replaced by a heavier isotope of massmH, we use exactly the same
sequence of random numbers, that is, displacement numbers
{θi}, to generate the staging PI distribution for both isotopes.
Thus, the resulting coordinates of these two bead distributions
differ only by the ratio of the corresponding masses, assuming we
use an identical random number series for the two isotopes:

xmL
k

xmH
k

¼
ffiffiffiffiffiffiffi
mH

mL

r
¼ R ð36Þ

We thus obtain the following identity for the free particle
density matrices of the two isotopes:

ΩL 3 exp �τ
mL

2τ2p2
ðxi, L � xi þ 1, LÞ2

� �

¼ ΩH 3 exp �τ
mH

2τ2p2
ðxi, H � xi þ 1, HÞ2

� �
ð37Þ

This is in accordwith our previous work employing the bisection
sampling algorithm.13 We may then write the ratio between the
QM partition functions for different isotopes (i.e., IE) as

IE ¼ QQM
L

QQM
H

¼

Z
dxc

Z
dx1, L:::dxP, Lδðxc � xÞ

YP
i¼ 1

FLTðxi, L, xi þ 1, L; τÞFΜV ðxi, L; τÞ
Z

dxc

Z
dx1,H:::dxP, Hδðxc � xÞ

YP
i¼ 1

FHT ðxi, H, xi þ 1,H; τÞFΜV ðxi, H; τÞ

¼

Z
dxc

Z
dx1, L:::dxP, Lδðxc � xÞ

YP
i¼ 1

FLTðxi, L, xi þ 1, L; τÞFΜV ðxi, L; τÞ

RP

Z
dxc

Z
dx1, L:::dxP, Lδðxc � xÞ

YP
i¼ 1

FHT ðRxi, L,Rxi þ 1, L; τÞFΜV ðRxi, L; τÞ

¼

Z
dxc

Z
dx1, L:::dxP, Lδðxc � xÞ

YP
i¼ 1

FLTðxi, L, xi þ 1, L; τÞFΜV ðxi, L; τÞ
Z

dxc

Z
dx1, L:::dxP, Lδðxc � xÞ

YP
i¼ 1

FLTðxi, L, xi þ 1, L; τÞFΜV ðRxi, L; τÞ

ð38Þ
where we have used the substitution dxi,H = Rdxi,L. This
expression may then be employed to compute IEs (e.g., EIE =
IEPS/IERS).

3. COMPUTATIONAL DETAILS

For the model one-dimensional systems, the numerical inte-
gration is performed with the iterative scheme for numerical
matrix multiplication (NMM) as it avoids the numerical noise
inherent to sampling methods, such as MC integration.60,61

Additionally, the NMM method allows rapid analysis of the
convergence as a function of number of beads. The partition
function is obtained by computing the trace of the density matrix
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(eq 6). The high-temperature density matrix is computed with
the PA, TI, and CH approaches. To obtain further insight into
the properties of the solutions, we employ density matrix
diagonalization (DMD) which gives the eigenvalues and eigen-
vectors of the density matrix as well as the trace.62

The partition function is computed for various well-studied
potentials relevant for modeling chemical reactions: harmonic
oscillator (HO), Morse oscillator (MO), symmetric double well
(SDW), and asymmetric double well (ADW) which possess
quantum behavior such as zero point energy and tunneling in the
temperature range of 100�500 K.

The HO is given by

VHOðxÞ ¼ ax2 ð39Þ
where we have employed the mass of a hydrogen atom and a =
309 kcal/mol 3Å

2.
The MO is given by

VMOðxÞ ¼ De½1� e�Rðx � x0Þ�2 ð40Þ
where De = 136.3 kcal/mol, R = 2.2112 Å�1, and x0 = 0.9166 Å.
The values were chosen to resemble those of the HF molecule,
and the reduced mass of HF was employed.66

The SDW is given by

VSDWðxÞ ¼ ax4 þ bx2 þ c ð41Þ
where we have employed a mass of 1224.259me (whereme is the
mass of an electron), a = 0.01, b = �0.01, and c = 0.0025 au.

The ADW is given by

VADWðxÞ ¼ ax4 þ bx2 þ cxþ d ð42Þ
where we have employed amass of 1224.259me, a = 0.01, and b =
�0.02, c = 0.005, and d = 0.015 au.

For all of the above potentials, the optimal CH value of λ
(eq 25) was obtained by varying the parameter t0 in the range 0 to
(1 � 1/

√
3)/2. Specifically, 10 values at equal intervals were

chosen: 0.0211, 0.0422, 0.0633, 0.0844, 0.1055, 0.1266, 0.1477,
0.1688, 0.1899, and 0.2110. Of these values, t0 = 0.1899 does not
fall in the forward range, as it yields a positive exponent in eq 22.
We also attempted to optimize λ and t0 separately.

58 This was
done by initially setting λ = 0 and finding the optimal t0 value.
Subsequently an optimal λ value for this t0 was sought after. We
found that for the potentials examined here we obtain very
similar results with both approaches, and we prefer the simplicity
of using eq 25.

For simulations employing eq 30, we employed the
CHARMM program.67 Previously, we have implemented the
PA method within CHARMM.11�14 In this work we also
implement the TI and CH approaches together with the staging
algorithm. Calculations for the water molecule employed the
B3LYP functional68,69 with the 6-31þG(d,p) basis set.70 In this
case, CHARMM was combined with the Gamess-UK electronic
structure program.71 Simulations on the enzyme AlaR employed
a hybrid QM/MM potential, where the QM part was described
by a specific reaction parameter version of the semiempirical
AM1 Hamiltonian.31,32 Details of the system setup and the
classical molecular dynamics simulations have been published
previously.31,32 In the current study we employed eqs 1 and 38 to
compute IEs at a temperature of 298 K, as implemented in a
development version of CHARMM. In all simulations the bead
sampling was performed by simultaneously moving all beads at
each PI step using the staging or mass perturbation staging

algorithms. The number of classical configurations employed was
5200, while 10 MC PI steps were performed at each classical
configuration.

The programs employed for all calculations on model systems
are written using the Fortran programming language on a Linux
platform with Intel compilers. All mathematical derivations are
verified using theMaple 12 software suite (WaterlooMaple Inc.).

4. RESULTS

To demonstrate the performance of the higher-order method,
we apply the CH algorithm to compute the partition function
(eq 6) for a number of well-studied potentials which model key
features of chemical reactions. In particular, we compute the
partition function for the HO,MO, SDW, and ADW. The results
of CH are compared with those obtained with the PA and TI
approaches. All potentials were studied at temperatures of 100,
200, 300, 400, and 500 K. A series of 10 t0 parameters were tested
for the CH algorithm with all the potentials at all the tempera-
tures studied. For the sake of brevity, only the results at 100, 300,
and 500 K are presented here. The results are compared with the
exact results for the HO andMO as well as for SDW and ADW.72

In order to assess the performance of the CH methods in
simulations, we tested the PA, TI, and CH methods on a water
molecule as well as in the enzyme AlaR. The PA, TI, and CH
methods are employed for a water molecule treated with DFT
and a hybrid QM/MM potential for the enzyme AlaR. Below
the following notation will be employed: P refers to the number
of discrete points in the PI, while k-level is defined by the integer
k as P = 2k.
4.1. Harmonic Oscillator (HO). The HO serves as a simple

model for a chemical bond. Key results are shown in Figure 1 and
Table 1. In Figure 1 the convergence of the CH algorithm with
different t0 values is presented at temperatures 100, 300, and 500
K. The optimal t0 values are 0.1055 and 0.1266 for all three
temperatures, with errors increasingly greater when deviating
from these optimal numbers. Indeed, these values are near the
midpoint of the range given in eq 24. At 100 K the parameter t0 =
0.1899 is clearly an outlier, which is symptomatic of a positive
sign in the exponent in eq 21. In Table 1 the partition function is
displayed at temperatures 100, 300, and 500 K for the PA, TI, and
CH. Inspection of the results at T = 100 K shows that using PA
the partition function does not converge to within 1% of the exact
partition function value of 3.97 � 10�9 with a k-level of up to 6.
Indeed, PA converges only at a k-level of 9, corresponding to 29 =
512 integrals (results not shown in table). Using TI reduces this
to k = 6, corresponding to 26 = 64 integrals, whereas with CH the
desired accuracy is reached with k = 4 with the optimal t0,
requiring 3 3 2

4 = 48 integrals. At T = 300 K the exact partition
function value is 1.58 � 10�3. PA converges with k = 7, TI
requires k = 4, and CH converges with k = 2. At T = 500 K the
exact value of the partition function is 2.09 � 10�2. To reach
convergence PA requires k = 5, TI requires k = 3, whereas CH
needs k = 1. Thus, at all temperatures, the CH method yields a
25% enhancement in performance compared to TI. Moreover,
CH reaches the performance of PA at less than 10% of the cost at
T = 100 and 300 K, and at 500 K, it reaches the performance of
PA at 20% of the cost, where we assume for simplicity that the
computation of gradients does not significantly increase the
computational cost.
In Table 2 we present the computed IE on the partition

functions of hydrogen and deuterium (QH/QD). The exact value
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is 3.485 � 10�3 at a temperature of 100 K. It is clear from
inspection of these results that PA has not yet converged (to
within 1% of the exact value) at a k-level of 6, whereas TI
converges with a k-level of 6. On the other hand CH reaches
convergence with a k-level of 4 and 5 with use of the optimal t0
value of 0.1266 or the symmetric t0 value of 1/6, respectively. As
expected, the IE converges slightly faster than the absolute
partition functions.
4.2. Morse Oscillator (MO).TheMorse potential is employed

as a simple model for the chemical bond including
anharmonicity.73 Main results are shown in Figure 2 and Table 3.
In Figure 2 the convergence of the CH algorithm with different t0
values is presented at temperatures 100, 300, and 500 K. The
optimal t0 values are 0.1055 and 0.1266 for all three tempera-

tures. Again, the value t0 = 0.1899 yields slightly greater errors
than the other parameter values. In Table 3 the partition function
is displayed at temperatures 100, 300, and 500 K for the PA, TI,
and CH. Inspection of the results at T = 100 K shows that using
PA the partition function does not converge to within 1% of the
exact partition function value of 2.98 � 10�13 at a k-level of 6.
Rather a k-level of 10 is required using PA, corresponding to 1024
integrals (results not shown in table). Using TI reduces this to k =
7, corresponding to 128 integrals (results not shown in table),
whereas with CH the desired accuracy is reached with k = 5 with
the optimal t0, requiring 96 integrals. At T = 300 K the exact
partition function value is 6.68� 10�5. PA converges with k = 8,
TI requires k = 5, and CH converges with k = 3. At T = 500 K the
exact value of the partition function is 3.12 � 10�3. To reach
convergence PA requires k = 6, TI requires k = 4, whereas CH
needs k = 2. Thus, at all temperatures, the CH method yields a
25% enhancement in performance compared to TI. Moreover,
CH reaches the performance of PA at less than 10% of the cost at
T = 100 and 300 K, and at T = 500 K, it reaches the performance
of PA at 20% of the cost.
4.3. Symmetric Double Well (SDW). The double well poten-

tial is a simple model for chemical reactions and hydrogen
bonding, such as proton transfer or hydrogen networking in
ice.74 Key results for this potential are shown in Figure 3 and
Table 4. In Figure 3 the convergence of the CH algorithm with
different t0 values is presented at temperatures 100, 300, and 500
K. The optimal t0 values are 0.1055 and 0.1266 for all three
temperatures. At a k-level of 1, t0 = 0.1899 failed to converge,
something we ascribe to the aforementioned sign problem. In
Table 4 the partition function is displayed at temperatures 100,
300, and 500 K for the PA, TI, and CH. Inspection of the results

Table 1. Partition Functions for theHOCalculated by the PA, TI, andCHAlgorithms at Various k-levels at TemperaturesT = 100,
300, and 500 K

Q (T = 100 K) Q (T = 300 K) Q (T = 500 K)

log2 P PA TI CHa PA TI CHa PA TI CHa

1 2.658 � 10�3 8.303 � 10�5 1.317 � 10�7 2.297 � 10�2 5.330 � 10�3 1.701 � 10�3 5.935 � 10�2 2.811 � 10�2 2.099 � 10�2

2 1.096 � 10�4 1.470 � 10�6 8.955 � 10�9 6.597 � 10�3 2.194 � 10�3 1.589 � 10�3 3.236 � 10�2 2.189 � 10�2 2.090 � 10�2

3 2.423 � 10�6 3.947 � 10�8 4.244 � 10�9 2.743 � 10�3 1.653 � 10�3 1.584 � 10�3 2.396 � 10�2 2.098 � 10�2 2.089 � 10�2

4 7.951 � 10�8 6.271 � 10�9 3.982 � 10�9 1.864 � 10�3 1.589 � 10�3 1.584 � 10�3 2.168 � 10�2 2.090 � 10�2 2.089 � 10�2

5 1.100 � 10�8 4.164 � 10�9 3.974 � 10�9 1.653 � 10�3 1.584 � 10�3 1.584 � 10�3 2.109 � 10�2 2.089 � 10�2 2.089 � 10�2

6 5.273 � 10�9 3.987 � 10�9 3.973 � 10�9 1.601 � 10�3 1.584 � 10�3 1.584 � 10�3 2.094 � 10�2 2.089 � 10�2 2.089 � 10�2

aThe CH algorithm employed t0 = 0.1266.

Table 2. Isotope Effect (H/D) for the HO Calculated by the
PA, TI, and CH Algorithms at Various k-Levels at T = 100 K

QH/QD (T = 100 K)

log2 P PA TI CHa CHb

1 5.031 � 10�1 2.584 � 10�1 2.969 � 10�2 2.977 � 10�2

2 2.609 � 10�1 7.875 � 10�2 6.384 � 10�3 6.484 � 10�3

3 8.363 � 10�2 1.561 � 10�2 3.557 � 10�3 3.688 � 10�3

4 1.938 � 10�2 4.925 � 10�3 3.414 � 10�3 3.492 � 10�3

5 6.558 � 10�3 3.619 � 10�3 3.460 � 10�3 3.486 � 10�3

6 4.176 � 10�3 3.495 � 10�3 3.478 � 10�3 3.486 � 10�3

aThe CH method employed t0 = 1/6. bThe CH method employed t0 =
0.1266.

Figure 1. Partition functions for the HO calculated by the CH algo-
rithm atT = 100, 300, and 500 K, with varying values of the parameter t0.
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at T = 100 K shows that using PA the partition function
converges to within 1% of the exact partition function value of
2.57 � 10�3 at a k-level of 7, corresponding to P = 128 integrals
(results not shown). Using TI reduces this to k = 5, correspond-
ing to 32 integrals, whereas with CH the desired accuracy is
reached with k = 3with the optimal t0, requiring 24 integrals. AtT
= 300 K the exact partition function value is 1.75 � 10�1. PA
converges with k = 5, TI requires k = 3, and CH converges with k
= 1. At T = 500K the exact value of the partition function is 4.59
� 10�1. To reach convergence PA requires k = 4, TI requires k =
2, whereas CH needs k = 0, the latter corresponding to three
integrals. Thus, at T = 100 and 300 K, the CH method yields a
25% enhancement in performance compared to TI, while at T =
500 K TI is somewhat more efficient. Moreover, CH reaches the

performance of PA at ca. 20% of the cost at T = 100 and 300 K,
while at T = 500 K PA is nearly three times as costly as CH.
4.4. Asymmetric Double Well (ADW). Principal results are

shown in Figure 4 andTable 5. In Figure 4 the convergence of the
CH algorithm with different t0 values is presented at tempera-
tures 100, 300, and 500 K. The optimal t0 values are 0.1055 and
0.1266 for all three temperatures. In Table 5 the partition
function is displayed at temperatures 100, 300, and 500 K for
the PA, TI, and CH. Inspection of the results at T = 100 K shows
that in using PA, the partition function converges to within 1% of
the exact partition function value of 1.69� 10�6 at a k-level of 8
(results not shown). Using TI reduces this to k = 6, whereas with
CH the desired accuracy is reached with k = 4 with the optimal t0.

Figure 2. Partition functions for the MO calculated by the CH
algorithm at T = 100, 300, and 500 K, with varying values of the
parameter t0.

Table 3. Partition Functions for the MO Calculated by the PA, TI, and CH Algorithms at Various k-Levels at Temperatures T =
100, 300, and 500 K

Q (T = 100 K) Q (T = 300 K) Q (T = 500 K)

log2 P PA TI CHa PA TI CHa PA TI CHa

1 1.177 � 10�3 1.639 � 10�5 1.491 � 10�9 1.046 � 10�2 1.201 � 10�3 1.019 � 10�4 2.818 � 10�2 7.739 � 10�3 3.317 � 10�3

2 2.200 � 10�5 6.363 � 10�8 6.639 � 10�12 1.574 � 10�3 2.046 � 10�4 7.054 � 10�5 9.571 � 10�3 3.963 � 10�3 3.140 � 10�3

3 1.133 � 10�7 1.501 � 10�10 5.354 � 10�13 2.938 � 10�4 8.615 � 10�5 6.704 � 10�5 4.741 � 10�3 3.240 � 10�3 3.126 � 10�3

4 3.978 � 10�10 2.068 � 10�12 3.156 � 10�13 1.115 � 10�4 6.906 � 10�5 6.681 � 10�5 3.533 � 10�3 3.135 � 10�3 3.125 � 10�3

5 5.728 � 10�12 4.235 � 10�13 2.989 � 10�13 7.721 � 10�5 6.698 � 10�5 6.679 � 10�5 3.228 � 10�3 3.126 � 10�3 3.125 � 10�3

6 7.519 � 10�13 3.093 � 10�13 2.980 � 10�13 6.935 � 10�5 6.681 � 10�5 6.679 � 10�5 3.151 � 10�3 3.125 � 10�3 3.125 � 10�3

aThe CH algorithm employed t0 = 0.1266.

Figure 3. Partition functions for the SDW potential calculated by the
CH algorithm at T = 100, 300, and 500 K, with varying values of the
parameter t0.
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AtT = 300 K the exact partition function value is 1.19� 10�2. PA
converges with k = 6, TI requires k = 4, and CH converges with k
= 2. At T = 500 K the exact value of the partition function is 7.10
� 10�2. To reach convergence PA requires k = 5, TI requires k =
3, whereas CH needs k = 1. Thus, at all temperatures, the CH
method yields a 25% enhancement in performance compared to
TI. Moreover, CH reaches the performance of PA at ca. 20% of
the cost at all temperatures.
4.5. H2O Molecule. To investigate the application of the

various potentials described in this paper, we employed a water
molecule at the B3LYP/6-31þG(d,p) level of theory. Specifi-
cally, we compute the quantum correction at T = 300 K, where
the quantum effects are modest. These simulations show that the

CH potential is equally applicable to more complex potentials
(Figure 5 and Table 6). At this temperature, TI and CH perform
similarly well, while PA requires approximately four times as
many beads.
4.6. Isotope Effect on Keto�Enol Tautomerism in Alanine

Racemase (AlaR). PLP is an essential cofactor for ubiquitous
enzyme catalyzed transformations of amines and amino acids,
such as racemizations, transaminations, and decarboxylations. A
crucial question in all PLP-dependent enzymes is the tautomeric
nature of the Schiff-base (Scheme 1), as it may exist in either the
iminophenoxide or the enolimine form. The tautomeric form
and hence the Schiff-base hydrogen-bond strength is highly
sensitive to solvent polarity, and this topic has been addressed
experimentally by NMR studies of the hydrogen-bond EIE.75�77

From a computational perspective, it is therefore important to
develop methods which can accurately predict the hydrogen-
bond EIE in enzymes. Herein, we employ the PA, TI, and CH
methods with the mass-perturbation staging algorithm derived in
eqs 31�38.
Initially, to validate the vibrational frequencies of the O�H

and N�H stretches in tautomers of the pyridoxal moiety, we
performed model calculations on the tautomeric ketoamine NH
and enolimine OH forms (Scheme 1). The computed vibrational
frequency for the NH-stretch in zwitterionic ketoamine NH
tautomer was 3211.7 and 3290.9 cm�1 at the target M06/6-
31þG(d,p) level78 and at the AM1-SRP level, respectively
(Table 7). The computed vibrational frequency for the OH-
stretch in the nonzwitterionic enolimine OH tautomer was
3413.6 and 3435.9 cm�1 at the target M06/6-31þG(d,p) level
and at the AM1-SRP level, respectively. Thus, the differences
between the vibrational frequencies of the two tautomeric forms
are 201.9 and 145.1 cm�1 at the M06 and semiempirical levels.
The computed gas-phase equilibrium IE is 0.89 and 1.06 at the
M06 and semiempirical levels, respectively, where we have
employed a scaling factor of 0.98 for M06 frequencies.79

The enzyme quantum simulations employed the PA, TI, and
CH approaches in conjunction with the mass-perturbation
staging algorithm. The PLP cofactor in AlaR is presented in
Figure 6 with a protonated and deuterated Schiff base, and the
numerical results obtained using eqs 1 and 38 are summarized in
Tables 8 and 9. We estimate the converged value of the EIE at
298 K as 1.16 ( 0.06. Interestingly, PA shows robust perfor-
mance with the mass-perturbation staging algorithm for compu-
tation of the EIE. Using only 3 or 6 beads, the EIE is estimated to
be 1.19. With 12 beads, the result is 1.16, while further increasing
the number of beads to 24 or 48 yields 1.15. Surprisingly, the TI
and CH show poor performance using 3 or 6 beads. Using TI the

Table 4. Partition Functions for the SDW Potential Calculated by the PA, TI, and CH Algorithms at Various k-Levels at
Temperatures T = 100, 300, and 500 K

Q (T = 100 K) Q (T = 300 K) Q (T = 500 K)

log2 P PA TI CHa PA TI CHa PA TI CHa

1 3.490 � 10�2 4.542 � 10�3 2.885 � 10�3 2.524 � 10�1 1.889 � 10�1 1.754 � 10�1 5.225 � 10�1 4.693 � 10�1 4.589 � 10�1

2 1.103 � 10�2 3.122 � 10�3 2.649 � 10�3 2.015 � 10�1 1.780 � 10�1 1.747 � 10�1 4.788 � 10�1 4.601 � 10�1 4.587 � 10�1

3 4.879 � 10�3 2.838 � 10�3 2.577 � 10�3 1.826 � 10�1 1.751 � 10�1 1.747 � 10�1 4.642 � 10�1 4.588 � 10�1 4.587 � 10�1

4 3.208 � 10�3 2.618 � 10�3 2.570 � 10�3 1.768 � 10�1 1.747 � 10�1 1.747 � 10�1 4.601 � 10�1 4.587 � 10�1 4.587 � 10�1

5 2.740 � 10�3 2.574 � 10�3 2.570 � 10�3 1.752 � 10�1 1.747 � 10�1 1.747 � 10�1 4.591 � 10�1 4.587 � 10�1 4.587 � 10�1

6 2.613 � 10�3 2.570 � 10�3 2.570 � 10�3 1.748 � 10�1 1.747 � 10�1 1.747 � 10�1 4.588 � 10�1 4.587 � 10�1 4.587 � 10�1

aThe CH algorithm employed t0 = 0.1266.

Figure 4. Partition functions for the ADW potential calculated by the
CH algorithm at T = 100, 300, and 500 K, with varying values of the
parameter t0.
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EIE is estimated to be 1.58 and 1.25 using 3 and 6 beads,
respectively. Using CH the EIE is estimated to be 1.44 and 1.19
using 3 and 6 beads, respectively. Further increasing the number
of beads to 12, 24, or 48 yields converged values for both TI and

CH. At the current simulation temperature and all numbers of
beads employed, TI and CH are still expected to perform better
than PA (i.e., OTI/CH(τ4) < OPA(τ2)). The reason for this seems

Table 5. Partition functions for the ADWpotential calculated by the PA, TI, and CH algorithms at various k-levels at temperatures
T = 100, 300, and 500 K

Q (T = 100 K) Q (T = 300 K) Q (T = 500 K)

log2 P PA TI CHa PA TI CHa PA TI CHa

1 5.246 � 10�3 3.091 � 10�4 4.918 � 10�6 4.501 � 10�2 1.775 � 10�2 1.215 � 10�2 1.125 � 10�1 7.711 � 10�2 7.108 � 10�2

2 4.274 � 10�4 1.858 � 10�5 2.065 � 10�6 2.162 � 10�2 1.303 � 10�2 1.193 � 10�2 8.375 � 10�2 7.189 � 10�2 7.097 � 10�2

3 3.273 � 10�5 3.312 � 10�6 1.725 � 10�6 1.457 � 10�2 1.206 � 10�2 1.192 � 10�2 7.446 � 10�2 7.105 � 10�2 7.096 � 10�2

4 5.462 � 10�6 1.916 � 10�6 1.693 � 10�6 1.261 � 10�2 1.193 � 10�2 1.192 � 10�2 7.186 � 10�2 7.097 � 10�2 7.096 � 10�2

5 2.427 � 10�6 1.714 � 10�6 1.691 � 10�6 1.209 � 10�2 1.192 � 10�2 1.192 � 10�2 7.119 � 10�2 7.096 � 10�2 7.096 � 10�2

6 1.863 � 10�6 1.692 � 10�6 1.691 � 10�6 1.196 � 10�2 1.192 � 10�2 1.192 � 10�2 7.102 � 10�2 7.096 � 10�2 7.096 � 10�2

aThe CH algorithm employed t0 = 0.1266.

Figure 5. Quantized water molecule treated at the B3LYP/6-31þG(d,
p) level with 18 beads (P = 18).

Table 6. Vibrational Quantum f Classical Free Energy
Correctiona (kcal/mol) for a Water Molecule Treated at the
B3LYP/6-31þG(d,p) Level Computed Using the Staging
Algorithm in Conjunction with the PA, TI, and CH Algo-
rithms with Various Numbers of Beads (P) at Temperature T
= 300 K

P PA TI CH

3 4.09 ( 0.06 7.38 ( 0.94 7.25 ( 0.48

6 6.70 ( 0.14 8.89 ( 0.65 8.86 ( 0.46

12 8.42 ( 0.22 9.39 ( 0.31 9.40 ( 0.22

24 9.08 ( 0.17 9.40 ( 0.26 9.27 ( 0.20
aThe calculations used eq 30 with 100 MC staging algorithm steps per
classical point. The total number of classical points was 100. All values
are averaged over 10 independent runs.

Table 7. Computed Unscaled Vibrational Frequencies
(cm�1) of the Schiff-Base Moiety in Tautomers of a Model
Pyridoxal Compound

M06/6-31þG(d,p) AM1-SRP

ketoamine NH-form 3211.7 3290.9

enolimine OH-form 3413. 6 3435.9

Figure 6. Quantized Schiff base and oxyanion in the PLP cofactor in
AlaR with 48 beads and (A) protonated (B) deuterated Schiff base. The
bead distributions were computed with the mass-perturbation staging
algorithm.
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to be the greater uncertainty in the computed EIE using TI and
CH with a low number of beads, which is interestingly due to the
enhanced accuracy of the methods. Inspection of Table 8 reveals
that the simulation error is reduced as the number of beads is
increased. Moreover, the standard deviation is similar for all three
methods. It is important to note that the standard deviation is not
due to the sampling of the kinetic energy term, as this part is
sampled exactly by the free-particle mass-perturbation staging
algorithm, but rather due to sampling of the potential energy
surface. Specifically, both the classical averaging over the poten-
tial energy surface as well as the PI sampling of the potential
surface contribute to the standard deviation. This is due to the
fluctuating nature of the complex potential energy surface in
enzymes. Using TI and CH in computing eq 38 in the RS and PS,
respectively, with a small number of beads yields fairly converged
IE values with respect to number of beads (Table 8). In
computing the EIE we need to divide IE in the PS and RS
(EIE = IEPS/IERS), which in the case of TI and CH are small
numbers with large error bars, yielding greater errors in the
computed EIE (Table 9). On the other hand when using PA, the
absolute error in computing the IE is greater due to the small
number of beads and lack of higher order terms as in TI and CH.
Thus, although PA exhibits greater absolute errors in computing
the IE, these errors largely cancel out in the RS and PS, as the
error is not in the leading digits of the IE.
Finally, we compare the efficiency of the mass perturbation

treatment using the staging and bisection algorithms. Specifically
we computed the EIE in AlaR using 8 beads with the two
methods, using either 10 or 20 MC steps per classical

configuration for a total of 5200 classical configurations. Employ-
ing 10MC steps we obtained 1.19( 0.07 and 1.23( 0.07 for the
staging and bisection algorithms, respectively, while using 20MC
steps we obtained 1.20( 0.05 for both the staging and bisection
algorithms, respectively. Thus, the two methods give comparable
results, and this conclusion is not expected to change when using
a greater number of beads. Indeed, both the bisection and staging
algorithms sample the kinetic part of the action exactly, and
therefore for free particle sampling, their performance will be
comparable. Thus, within the framework of eq 30 both sampling
schemes may in principle be employed. However, the Chin
action requires that the number of beads be a multiple of three
(see eq 22) and may be readily achieved with the staging
algorithm, which can sample any number of beads. However,
the bisection algorithm naturally samples 2k number of beads in a
naïve implementation, where k is the sampling level, and there-
fore is not generally suitable for the Chin action. Thus, the
staging algorithmmay be more flexible with respect to number of
beads. We note that when the sampling entails not only the
kinetic part of the action but also the potential part, the bisection
algorithm may be advantageous. Using the bisection algorithm
when moving P beads, the largest bead move is performed at the
first MC step (i.e., the middle bead), and one may reject the
collective move of P beads based on the move of a single bead (i.
e., a single energy and force calculation as opposed to P such
calculations).

5. DISCUSSION

In this study we initially compare the performance of the PA
algorithm and the higher order TI and CH algorithms on four
model potentials: HO, MO, SDW, and ADW. We find that the
CH algorithm with optimal parameters performs considerably
better than the PA when computing the partition function for the
model chemical potentials. This conclusion is in accordance with
the findings of Sakkos et al for quantum liquids.58 The use of the
CH approach is most beneficial at low temperatures where
quantum effects are more pronounced. Nonetheless, we find
that the TI approach performs nearly as well as CH, and the main
gain is in going beyond the PA. These findings for model systems
are of great importance when moving to condensed phase
systems, where the addition of numerical noise complicates the
performance analysis of the methods.

The parametrized CH algorithm is expected to be of value in
condensed phase simulations where the computational bottle-
neck is the energy evaluation, such as in simulations employing
fully QMor hybrid QM/MMpotential energy surfaces. In typical

Table 8. RS and PS IE Computed for the Keto�Enol Tautomerism in AlaR at T = 298 Ka

RS PS

P PA TI CH PA TI CH

3 0.227 ( 0.009 0.039 ( 0.005 0.041 ( 0.005 0.270 ( 0.009 0.062 ( 0.005 0.059 ( 0.004

6 0.096 ( 0.004 0.034 ( 0.003 0.035 ( 0.003 0.114 ( 0.004 0.043 ( 0.002 0.041 ( 0.003

12 0.060 ( 0.003 0.042 ( 0.002 0.041 ( 0.002 0.070 ( 0.003 0.048 ( 0.002 0.047 ( 0.002

24 0.051 ( 0.002 0.046 ( 0.002 0.045 ( 0.002 0.059 ( 0.002 0.054 ( 0.002 0.053 ( 0.002

48 0.049 ( 0.002 0.047 ( 0.002 0.047 ( 0.002 0.056 ( 0.002 0.055 ( 0.002 0.054 ( 0.002
aThe calculations used eq 38 with 10 MC staging algorithm steps per classical point per isotope. The total number of classical points was 10 400. The
error is estimated as σh = (∑i=1

N σi
2)1/2/N), which is the standard deviation in computing eq 38 in the RS or PS wells using N discrete points, and σi is the

standard deviation in computing IE at a discrete point in the reactant or product well.

Table 9. EIE Computed for the Keto�Enol Tautomerism in
AlaR at T = 298 Ka

P PA TI CH

3 1.19 ( 0.06 1.58 ( 0.25 1.44 ( 0.22

6 1.19 ( 0.07 1.25 ( 0.13 1.19 ( 0.13

12 1.16 ( 0.07 1.14 ( 0.08 1.15 ( 0.08

24 1.15 ( 0.06 1.17 ( 0.07 1.16 ( 0.07

48 1.15 ( 0.06 1.15 ( 0.07 1.16 ( 0.06
aThe calculations used eqs 1 and 38 with 10MC staging algorithm steps
per classical point per isotope. The total number of classical points was
10 400. The error is estimated as σ = ((σhRS/IERS)

2 þ (σhPS/IEPS)
2)1/2 3

(IEPS/IERS), where IE = QL/QH is the IE in either the RS or PS wells,
σh = (∑i=1

N σi
2)1/2/N is the standard deviation in computing eq 38 in the RS

or PS wells using N discrete points, and σi is the standard deviation in
computing IE at a discrete point in the reactant or product well.
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uses of such potentials, iterative self-consistent field calculations
are required in evaluating the potential energy, and these are
computationally expensive. The computation of gradients, on the
other hand, requires less effort than the energy evaluation itself.
Thus, a PI method which can significantly reduce the number of
energy evaluations is of great value. Indeed, the efficiency of the
CH factorization in the calculation of nuclear QM effects using a
complicated potential energy surface is exemplified in this work by
calculations of water treated with DFT. This conclusion is also
correct for a considerably more complex hybrid QM/MM poten-
tial energy surface such as the one employed here in the case of the
enzyme AlaR. However, in computing IEs, numerical noise
hampers the performance of both TI and CHwith a small number
of beads although the quantum effects are treated more accurately
than with PA. This is largely due to the simulation noise inherent
to any sampling method and not due to inherent properties of TI
or CH. This is clear from the model calculations of the IE for the
HO, where TI and CH displayed superb performance. Remark-
ably, PA is highly accurate in computing the EIE on the tautomer-
ism of PLP in AlaR, even when using only three beads, when
employing the mass-perturbation staging algorithm.

The approaches employed in this work (eqs 30 and 38) are
equally applicable to computing the centroid potential of mean
force, and this is currently being investigated in our group.
Additionally, PI schemes based on the flux autocorrelationmethods
which require the calculation of the entire density matrix will benefit
from the CH algorithm. In such chemical rate calculations, the PA
and TI approaches are expected to be much less efficient. Higher
dimensionality derivations of flux autocorrelation methods in con-
junction with the CH method are being pursued in our group.

It is interesting to note that the enzyme environment enhances
the EIE when compared to the gas-phase results. In the gas-phase,
the EIE is computed to be 1.06, while in AlaR it is estimated as
1.16. This is indicative of a weakening of the intramolecular
hydrogen bond relative to the gas phase. This is indeed expected
as the highly polar active site in AlaR reduces the difference
between the zero-point energies of the iminophenoxide or en-
olimine forms. This is in agreement with experimental work on
model PLP systems in solvents of varying degrees of polarity.77We
believe the current approach will be of great use in the study of the
effect of active site polarity on the hydrogen-bond strength in PLP-
dependent enzymes as well as other enzymes.

Finally, it may be instructive to compare the current approach for
computing IEs to other related approaches. Recently, Wong et al.
employed classical TST, PI quantum TST, and the quantum
instanton approaches to evaluate the quantized potential of mean
force and KIE in malonaldehyde.80 In this study, the latter two
approaches were found to give KIEs in reasonable agreement with
eachother, although a clear relationship between the twomethods has
not yet been established. The current mass-perturbation staging
approach is in principle similar to the PI quantum TST with
thermodynamic integration approach employed by Wong et al.
However, the advantage of the current approach is that PI sampling
is only required for the light and heavy isotopes, and no sampling of
intermediate mass values is required during the perturbation. This
one-step perturbation is highly efficient and is possible due to the fact
that the current PI sampling is performed using free-particle MC.

6. CONCLUSIONS

Higher-order corrections to the primitive approximation
(PA) may considerably enhance the performance of quantum

simulation methods. In this report we compare the PA and the
higher order Takahashi�Imada (TI) algorithm with the gradi-
ent-based forward corrector algorithm due to Chin (CH) on a
variety of model potentials. We find a unique parameter for the
Chin algorithm which gives a good performance for all model
potentials tested. Moreover, the PA, TI, and CH factorizations
are employed to compute the quantum correction to a water
molecule treated with the B3LYP functional with a 6-31þG(d,p)
basis set. Finally, we employ the PA, TI, and CH methods to
compute the equilibrium IE on the Schiff base�oxyanion
tautomerism in the cofactor pyridoxal-50-phosphate in the en-
zyme alanine racemase using a novel mass-perturbation staging
algorithm. We find that the Chin algorithm performs well for the
complex molecular systems as well, although numerical noise
might hamper its performance when computing IEs with a small
number of beads.
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ABSTRACT: The coupled cluster (CC) ansatz is generally recognized as providing one of the best wave function-based
descriptions of electronic correlation in small- and medium-sized molecules. The fact that the CC equations with double excitations
(CCD) may be expressed as a handful of dense matrix�matrix multiplications makes it an ideal method to be ported to graphics
processing units (GPUs). We present our implementation of the spin-free CCD equations in which the entire iterative procedure is
evaluated on the GPU. The GPU-accelerated algorithm readily achieves a factor of 4�5 speedup relative to the multithreaded CPU
algorithm on same-generation hardware. The GPU-accelerated algorithm is approximately 8�12 times faster than Molpro, 17�22
times faster than NWChem, and 21�29 times faster than GAMESS for each CC iteration. Single-precision GPU-accelerated
computations are also performed, leading to an additional doubling of performance. Single-precision errors in the energy are
typically on the order of 10�6 hartrees and can be improved by about an order of magnitude by performing one additional iteration
in double precision.

1. INTRODUCTION

The accuracy and extensibility of computational chemistry
methods, particularly those which approximately solve the
Schr€odinger equation, are ultimately limited by the speed at
which computer processors can execute floating point and
memory operations. Due to fundamental limitations in processor
technology, clock speeds are not increasing, and all future
increases in computational capability are expected to come from
parallelism, which now more than ever can be found within a
single processor. Graphics processing units (GPUs) are a type of
massively parallel processor in which hundreds of cores can
execute many instructions at once, provided they are sufficiently
regular. Recently, many groups have demonstrated the incredible
power of GPUs for scientific applications when sufficient effort is
devoted to programming them to exploit their high degree of
instruction-level parallelism.1 The programmability of GPUs has
increased dramatically with the NVIDIA CUDA API2 and
associated SDK including CUBLAS and CUFFT, although these
tools as well as the vendor-independent alternative, OpenCL,3

require more programming effort to realize the same relative
performance as CPUs, especially for irregular algorithms.

To date, many computational chemistry methods have been
implemented on GPUs (or other accelerators), including
classical molecular dynamics,4�7 atomic integrals,8�10 density
functional11�14 and Hartree�Fock theory,15,16 low-order per-
turbation theory,17�19 and quantum Monte Carlo (QMC) for
both fermions20,21 and bosons.22 Related efforts include the
development of fast multipole methods for biomolecular
electrostatics.23 Notably lacking is an implementation of a
high-accuracy many-body method, such as coupled cluster
(CC) or configuration-interaction (CI), for GPUs. Both CC
and CI have high floating point cost (N6 or greater, where N is
the number of electrons correlated) and are memory intensive,
hence they are ideally suited for GPUs, which have significantly

greater floating point capability and memory bandwidth than
equivalently priced CPUs.

In this paper, we report the first demonstration of CC
executed entirely on GPUs. Specifically, the coupled cluster
doubles method (CCD) has been implemented using CUDA
and the associated dense linear algebra routines (BLAS). The
utility of BLAS, specifically dense matrix�matrix multiplication
(MMM) kernels, to achieve high performance in coupled cluster
methods is well-known, having been central to the implementa-
tion of CC for vector processors in the 1980s24,25 followed by
scalar and superscalar processors in the 1990s.26 However,
simply moving BLAS calls from the CPU to the GPU is not
sufficient to achieve good performance. The modest amount of
memory available on the GPU relative to the CPU requires the
programmer to move data back and forth between the two
devices across the PCI bus, which has limited bandwidth
compared to that within each device. Simply inlining GPU BLAS
calls would generate significantly more data motion than neces-
sary and inhibit performance significantly. Our implementation
of CCD minimizes memory motion both by organizing BLAS
calls on the GPU in an optimal way and by performing all other
computations (e.g., tensor permutations) on the GPU. We
utilized both the independence of the different terms in CCD
to decompose the calculation as well as by splitting large arrays
into tiles when the total input and output required for a particular
BLAS call could not fit on the GPU. These two strategies allow us
to realize a significant fraction of the theoretical performance
possible for CCD and are extensible to more complicated CC
theories or other methods relying heavily upon tensor contrac-
tions. While the cost of tensor permutations is not significant in
CCD, it will become a greater portion of the run time for CCSD

Received: October 13, 2010
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and higher-order CC methods, hence our code addresses an
important issue for implementing more complex theories.

CCD is quite reasonable as a first demonstration of iterative
CC on GPUs. The addition of singles provides a method
(CCSD) which is not significantly more expensive,27 but CCD
contains all of the same computational bottlenecks, and its
simplicity facilitates the design of an optimal algorithm. In
addition, accurate energies require an approximate treatment
of triples, e.g., CCSD(T), and it is well-known that the non-
iterative triples contribution beyond CCSD is a series of very
large MMMs even more amenable to GPUs than CCD.28�30

Hence, the implementation strategy and performance analysis in
this paper are immediately applicable to CCSD(T), which is the
ultimate goal of our ongoing efforts in this area. Very recently,
Kowalski and co-workers demonstrated an 8-fold speedup using
GPUs for the computation of perturbative triples corrections.30

The performance of our implementation of spin-free CCD is
analyzed in two ways. First, the same code is executed on both
CPU and GPU; the code runs 4.0�5.2 times faster on a single
NVIDIA C2050 GPU than it does on two Intel Xeon CPUs. In
both cases, the hardware is fully utilized with vendor-optimized
BLAS routines (CUBLAS and Intel MKL), and other routines
are parallelized for the GPU using CUDA. Second, we compare
to several implementations of CCD found in well-known elec-
tronic structure packages, including GAMESS,31 NWChem,32

andMolpro.33 Running on the C2050, our CCD implementation
outperforms all other CCD implementations by at least a factor
of eight when using double precision throughout. An additional
factor of two speed-up can be achieved by performing GPU
computations in single precision. Single precision computations
give errors on the order of 10�6 hartrees; a single iteration in
double precision following convergence in single precision
reduces the numerical error to 10�7 hartrees. While far from the
“magic” 100-fold speed-up observed in other applications,
both the CPU and GPU implementations use tuned BLAS
libraries, which precludes a defective comparison between
CPU and GPU implementations of vastly different quality.34 In
fact, the comparison of algorithms dominated by BLAS routines
favors the CPU since we find that tuned BLAS libraries for CPUs
achieve a higher percentage of theoretical peak than their GPU
counterparts, although we find that the gap in implementation
quality of BLAS has decreased significantly in CUDA 3.2.

This paper is organized as follows: In Section 2, the equations
of CCD are presented, followed by a description of their
implementation (Section 3). Performance results and analysis
of numerical precision for hydrocarbons with as many as 20
carbon atoms can be found in Section 4. Section 5 contains our
conclusions and a discussion of future work.

2. THEORY

A detailed perspective of coupled cluster theory is available in
the literature,26,35,36 so we describe only the equations necessary
to understand the specifics of our algorithm. The cluster
amplitudes, tij

ab, for the spin-free CC equations with double
excitations are determined by the solution of the set of nonlinear
equations

Dab
ij t

ab
ij ¼ vabij þ Pðia, jbÞ taeij I

b
e � tabimI

m
j þ 1

2
vabef t

ef
ij þ

1
2
tabmnI

mn
ij

�

� taemjI
mb
ie � Imaie tebmj þ ð2teami � teaimÞImbej

i
ð1Þ

where we have slightly modified the tensors given by Piecuch
et al.:26

Iab ¼ ð�2vmneb þ vmnbe Þteamn ð2Þ

Iij ¼ ð2vmief � vimef Þtefmj ð3Þ

Iijkl ¼ vijkl þ vijef t
ef
kl ð4Þ

Iiajb ¼ viajb �
1
2
vimeb t

ea
jm ð5Þ

Iiabj ¼ viabj þ vimbe teamj �
1
2
taemj

� �
� 1
2
vmibe t
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mj ð6Þ

Dab
ij ¼ fii þ fjj � faa � fbb ð7Þ

Here the indices i, j, k, l, m, and n (a, b, c, d, e, and f) represent
those orbitals that are occupied (unoccupied) in the reference
function. We have used the Einstein summation convention in
which repeated upper and lower indices are summed; note,
however, that the left-hand side of eq 1 involves no sum. The
permutation operator, P(ia,jb), involves a sum of two terms:
P(ia,jb)vij

ab = vij
ab þ vji

ba. The Fock matrix elements are denoted
by fpq, and the two-electron integrals are given by

vabij ¼
Z Z

j
�
að1Þj

�
bð2Þ

1
r12

jið1Þjjð2Þ ð8Þ

where φ represents a canonical molecular orbital. In this spin-free
representation, eqs 1�6 require 9 MMMs that scale as the sixth
power of system size and 4 that scale as the fifth power of system
size. The dimensions for these multiplications are given in Table 1.

Equation 1 is solved iteratively, beginning with an MP2
guess for tij

ab. Evaluating the right-hand side of eq 1 yields the
updated amplitudes. The algorithm proceeds by simple substitu-
tion until the convergence criterion is satisfied, when the norm of
the change in tij

ab between iterations falls below 1 � 10�7. If all
integrals and amplitudes are stored on the device, the evaluation
of this norm represents the only communication between device
and host following the initial copy of the Fock matrix and the
two-electron integrals to the GPU. However, if the vcd

ab block of
integrals is prohibitively large, the associated MMM may be
blocked, and the integrals copied to the device as needed.

Table 1. Dimensions of the Matrix�Matrix Multiplications
That Comprise the Spin-Free CCD Equationsa

dimension

no. of occurrences M N K

1 o2 o2 v2

1 o2 v2 v2

1 o2 v2 o2

6 ov ov ov

1 v v o2v

1 v o2v v

1 o o ov2

1 o ov2 o
aThe dimensions correspond to C(M � N) = A(M � K) 3B(K � N).
The symbols o and v refer to the number of occupied and unoccupied
orbitals in the reference function.
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3. COMPUTATIONAL DETAILS

The CC equations presented in eqs 1�7 were implemented
in both single (SP) and double precision (DP) for computations

with CPU and GPU hardware. The CPU implementation evalu-
ates the tensor contractions with dense matrix multiplication
routines (SGEMM or DGEMM) provided by Intel MKL 10.2.
The CPU hardware utilized was a dual socket quad-core 2.67
GHz Intel Xeon X5550 processor with 36 GB of available
memory. Both NVIDIA C1060 Tesla and NVIDIA C2050 Tesla
graphics processors with total memories of 4 and 2.6 GB (with
ECC enabled), respectively, were used to perform GPU compu-
tations. See Table 2 for important hardware parameters for both
the CPU and GPU processors used in this study. The SP and DP
GPU implementations were achieved using an identical algo-
rithm with the MKL BLAS routines substituted with the corre-
sponding routines of the CUBLAS 3.2 library. The required one-
and two-electron integrals were generated by the GAMESS
electronic structure package on a CPU. For SP GPU computa-
tions, the Fock matrix was computed on the host in DP before
demoting its elements to SP for use on the device.

Table 3 presents pseudocode for three different algorithms to
evaluate one of the more complicated diagrams of CCD using
either a CPU or GPU. The naive GPU implementation, labeled
GPU 1, copies data to and from the GPU for nearly every MMM
and performs all tensor permutations and amplitude updates on
the CPU. These operations represent wasted opportunity for
acceleration by the enhanced memory bandwidth of the GPU.

Table 3. CPU and GPU Algorithms for Evaluating One Diagram of CCDa

CPU GPU 1 GPU 2

Ijb
ia = vjb

ia � 1/2veb
imtjm

ea

cudaMemcpy(tgpu r t(e,a,j,m))

cudaMemcpy(vgpu
1 r v(i,m,e,b))

cudaMemcpy(vgpu
2 r v(i,a,j,b))

t0(a,j,m,e) r t(e,a,j,m) t0(a,j,m,e) r t(e,a,j,m) tgpu0 (a,j,m,e) r tgpu(e,a,j,m)

v1(m,e,i,b) r v(i,m,e,b) v1(m,e,i,b) r v(i,m,e,b) vgpu0 (m,e,i,b) r vgpu
1 (i,m,e,b)

I(a,j,i,b) = v(i,a,j,b) v2(a,i,j,b) r v(i,a,j,b) Igpu(a,j,i,b) = vgpu
2 (i,a,j,b)

cudaMemcpy(vgpu0 r v1)

cudaMemcpy(tgpu0 r t0)
cudaMemcpy(Igpu r v2)

I(a,j,i,b) � = 1/2t0(a,j,m,e)-
v1(m,e,i,b) (DGEMM)

Igpu(a,j,i,b) � = 1/2tgpu0 (a,j,m,e)-

vgpu0 (m,e,i,b) (cublasDgemm)

Igpu(a,j,i,b) � = 1/2tgpu0 (a,j,m,e)-

vgpu0 (m,e,i,b) (cublasDgemm)

Rij
ab þ = �tmj

ae Iie
mb�Iie

matmj
eb

R0(b,i,a,j) = I(b,i,m,e)[t0(a,j,m,e)]T

(DGEMM)

vgpu0 (b,i,a,j) = Igpu(b,i,m,e)[t0gpu(a,j,m,e)]
T

(cublasDgemm)

vgpu0 (b,i,a,j) = Igpu(b,i,m,e)[t0gpu(a,j,m,e)]
T

(cublasDgemm)

cudaMemcpy(R0 r vgpu0 )

R(a,b,i,j) � = R0(b,i,a,j) þ R0(a,j,b,i) R(a,b,i,j) � = R0(b,i,a,j) þ R0(a,j,b,i) Rgpu(a,b,i,j) � = vgpu0 (b,i,a,j) þ vgpu0 (a,j,b,i)

t0(m,e,b,j) r t(e,b,m,j) t0(m,e,b,j) r t(e,b,m,j) tgpu0 (m,e,b,j) r tgpu(e,b,m,j)

cudaMemcpy(tgpu0 r t0)
R0(a,i,b,j) = I(a,i,m,e)t0(m,e,b,j) (DGEMM) vgpu0 (a,i,b,j) = Igpu(a,i,m,e)tgpu0 (m,e,b,j) (cublasDgemm) vgpu0 (a,i,b,j) = Igpu(a,i,m,e)tgpu0 (m,e,b,j) (cublasDgemm)

cudaMemcpy(R0 r vgpu0 )

R(a,b,i,j) � = R0(a,i,b,j) þ R0(b,j,a,i) R(a,b,i,j) � = R0(a,i,b,j) þ R0(b,j,a,i) Rgpu(a,b,i,j) � = vgpu0 (a,i,b,j) þ vgpu0 (b,j,a,i)

update t with R update t with R update tgpu with Rgpu

GPU storage requirements

0 3o2v2 5o2v2

aNote that for both GPU implementations, the temporary array vgpu0 can be reused. The naive GPU implementation, GPU 1, performs many
unnecessary memory transfers and fails to exploit the high memory bandwidth of the GPU for additions and tensor permutations. For GPU
implementation 2, all memory transfers can occur before CCD iterations begin, and the amplitudes can be directly updated on the GPU. R denotes the
residual of the CCD equations and is defined by the right-hand side of eq 1.

Table 2. Summary of Hardware Details for the Processors
Useda

CPU GPU

X5550b C1060c C2050d

processor speed (MHz) 2660 1300 1150

memory bandwidth (GB/s) 32 102 144

memory speed (MHz) 1066 800 1500

ECC available yes no yes

SP peak (GF) 85.1 933 1030

DP peak (GF) 42.6 78 515

power usage (W) 95e 188 238
aNote that details are given for a single Intel X5550 processor, but two
processors were used for all CPU calculations. b http://ark.intel.com/
Product.aspx?id=37106. c http://www.nvidia.com/object/product_
tesla_c1060_us.html. d http://www.nvidia.com/object/product_tesla_
C2050_C2070_us.html. eCPU power usage does not include CPU
DRAM, whereas GPU power usage includes GPU DRAM.
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The algorithm labeled GPU 2 is a better implementation that
moves data between host and device as seldom as possible and
performs all tensor permutations and updates to the CC ampli-
tudes on the GPU. Algorithm GPU 2 is designed such that all
memory transfers occur before the CC iterations begin. By
monitoring convergence on the device, the amplitudes need
never be copied from the GPU. Algorithm GPU 2 has greater
memory requirements than GPU 1 for the evaluation of this
diagram, but the temporary arrays used therein are useful in the
evaulation of the remainder of the CCD equations, and the
difference in storage requirements is insignificant when consid-
ering the storage of the vcd

ab block of integrals. The present GPU
implementation is most similar to GPU 2.

For systems with hundreds of active orbitals, the limited
memory of GPUs necessitates an algorithm which repeatedly
copies data from CPU to GPU memory. In single precision, the
global memory of the C1060 GPU can accommodate the vcd

ab

block of integrals (the largest array required by CCD or CCSD)
for no more than 181 virtual orbitals, and the storage require-
ments for the CC amplitudes and all other blocks of integrals
further limit the size of systems which can be treated before such
repeated memory transfers become necessary. In our algorithm,
all two-electron integrals and CC amplitudes are stored in GPU
memory whenever possible. In addition, we allocate several
arrays to contain convenient permutations of the amplitudes
and smaller blocks of integrals. While on-device storage of the
two-electron integrals and CC amplitudes will ultimately limit
the size of the applications that may be treated with our code, the
lack of significant host/device communication will result in a best
case for performance acceleration. To extend the applicability of
this implementation, large MMMs can be blocked, and integrals
copied to the GPU on-demand. Such tiling of the matrix multi-
plication involving the vcd

ab block of two-electron integrals will
alleviate some of these memory limitations but will result in the
new overhead of transferring the integrals to the device every
iteration. A different approach to large matrix multiplications is
the streaming approach employed in LINPACK, wherein the
matrix dimensions are much greater than 10 000. We are
currently exploring whether this approach is suitable for the
evaluation of the CC equations. The two-electron integral
memory bottleneck may be entirely avoided through integral-
direct techniques, provided one has an atomic integral code that
can run on the GPU.
3.1. Comparison to Other Codes. The performance of the

multicore CPU and GPU implementations of CCD is compared
to a number of implementations in well-known packages. Only
the GAMESS package implements the same equations as ours
does, but we have also compared to the Molpro and NWChem
implementation of CCD. Timings for CCSD are reported for
these three packages as well as PSI337 to estimate the perfor-
mance of a GPU CCSD code. It is important to point out if and
how each CPU implementation is parallelized, given the essential
role of fine-grain parallelism in our implementation. None of the
codes tested have threading in their CC codes. In principle, all
can take advantage of threading in the BLAS library, but this only
improves performance for large matrices (dimension J500).
Both NWChem and Molpro are parallelized using global arrays.
It was previously determined that NWChem performance is no
worse, and in some cases significantly better, when one core is
dedicated to communication, which is an artifact of optimiz-
ing interprocess communication within the node.38 Hence,
all NWChem and Molpro jobs used only seven cores for

computation. For consistency, all computations are performed
in C1 symmetry.
3.1.1. GAMESS. The CCD algorithm contained in the GA-

MESS package is detailed in ref 26 and is essentially identical to
that presented herein. The algorithm makes heavy use of BLAS
DGEMM calls, but these are constrained by design to only use
one thread, significantly restricting performance. We note that
the present algorithm, when executing on a single CPU core,
performs nearly identically to the GAMESS algorithm.
3.1.2. NWChem. NWChem implements CC in two different

modules: the first is spin-free and AO-direct in the three- and
four-virtual integrals,39 while the second module (TCE) uses the
more expensive spin�orbital CC equations.40 Due to the much
larger memory footprint of the two-electron integrals in spin�
orbital form, a comparison could be made to this procedure only
for small systems. However, the TCE module also permits of
the use spin-free integrals with spin�orbital amplitudes, which
provides the generality of the spin�orbital representation with a
much-reduced memory footprint.41

Neither the TCE implementation of CCD and CCSD nor the
partially direct spin-free implementation of CCSD in NWChem
are directly comparable to our CCD code. However, as
NWChem is parallel throughout, it is capable of utilizing a large
number of CPU cores per node, unlike GAMESS.
3.1.3. Molpro.Molpro33 implements CCD as a special case of

spin-free CCSD where single excitations are set to zero. The
CCD algorithm is thus not optimal and performs identically to
the CCSD algorithm. The spin-free implementation is described
in ref 42 .

4. RESULTS

Three different methods were used to evaluate the perfor-
mance of CCD on CPU and GPU processors. First, we compare
both our CPU and GPU implementations of CCD to those
found in GAMESS, Molpro, and NWChem. Second, the perfor-
mance benefit of using single-precision is considered due to the
large gap in single- and double-precision performance of some
GPUs. Finally, the performance of MMM was measured in both
single and double precision on the CPU and GPU to establish an
approximate upper bound on the performance of a CC code
implemented using BLAS for tensor contractions. The perfor-
mance of the present implementations is compared to that of the
underlying BLAS routines.

The polyacetylene series, CnHnþ2, with n ranging from 8 to 18,
the acene series for 2-, 3-, and 4-fused benzene rings, and the
smallest fullerene, C20, were used to evaluate the performance of
the CC implementations. The 6-31G basis set used throughout
was not selected on the basis of chemical considerations but
rather to allow us to consider a wide range of system sizes. By
using a relatively small basis set, more emphasis is placed upon
the performance of tensor contractions involving more than two
occupied indices. A very large basis set places almost all the
computational work in the evaluation of a single diagram
involving four virtual indices. While this may provide a very high
flop rate due to the presence of a very large MMM call, it is not
particularly useful for evaluating implementation quality.
4.1. Comparison of CPU and GPU Implementations. The

per iteration computational costs of our double-precision GPU
and CPU algorithms are compared to implementations found in
well-known electronic structure packages in Table 4. For our
CPU and GPU implementations, the timings correspond to



1291 dx.doi.org/10.1021/ct100584w |J. Chem. Theory Comput. 2011, 7, 1287–1295

Journal of Chemical Theory and Computation ARTICLE

those required to evaluate all tensors given by eqs 2�6 and to
update the CC amplitudes according to eq 1. Timings for the
GPU version exclude the initial integral push to the device. For
standard packages, timings correspond to only the iterative
portions of the CCD algorithms; integral generation and sorting
were excluded. The four-index transformation and the related
I/O and processing are excluded for three reasons: (1) the
implementation of these procedures varies greatly between
different packages, (2) for larger calculations the time required
to generate the integrals is insignificant, as it scales as N5 while
many CC diagrams scale asN6, and (3) the transfer time from the
CPU to GPU will disappear when it is possible to compute all
integrals directly on the GPU.
The C2050 GPU-accelerated CCD algorithm outperforms all

other implementations on a per iteration basis. As compared to
the threaded CPU implementation, we observe application

accelerations of 4.0�5.2 for all systems considered. In addition
to the acceleration of MMMs, all required transposes are
performed on the GPU, which has significantly higher memory
bandwidth than the CPU, making these operations much faster.
The C1060 GPU-accelerated algorithm performs anywhere from
2.6 to 3.7 times worse than the C2050 algorithm. This generation
of hardware provides relatively poor double-precision perfor-
mance and is thus not optimal for general-purpose scientific
computing.
Aside from our CPU algorithm, the best CPU CCD imple-

mentation presented here is that found inMolpro. Because CCD
is implemented inMolpro as a special case of CCSD, the addition
of singles results in a marginal increases in computational cost,
and the comparison to the GPU-accelerated CCD code is thus
slightly biased in favor of the GPU. Regardless of this deficiency,
the Molpro CCD implementation is still the best available, and
the GPU-accelerated algorithm consistently outperforms it by a
factor of 8�12. For the largest system studied, C18H20, a single
iteration in Molpro requires about 2.5 min, while a C2050
iteration requires only 20 s.
For comparison, we present in Table 5 the costs for both CCD

and CCSD in GAMESS, Molpro, and NWChem. We have also
included the CCSD timings for PSI3, which does not implement
the CCD method. The addition of single excitations does not
significantly increase the cost of CCD, as supported by the
relative costs of CCD and CCSD given here. The GAMESS
CCD and CCSD timings suggest that the addition of single
excitations in our algorithm will increase the cost of the serial
CPU algorithm by around 25%. The cost of the threaded CCSD
code may be slightly worse than expected due to a less-than-
optimal performance of threaded MKL BLAS for some of the
very small MMMs that arise in CCSD. Nonetheless, we predict
that the CCSD algorithm given in ref 26 would be several times
faster than the best available CPU-based CCSD algorithms if
implemented properly for GPU hardware.
As stated above, the limited global memory associated with

GPUs limits the size of the applications that may be directly
treated by eq 1, especially in double precision. For larger systems,
the vcd

ab block of integrals will not fit into global memory, and it is
necessary to break up the associatedMMM into multiple calls for
subblocks of the input arrays (known as tiling). Those instances
in which tiling was necessary are noted accordingly in Table 4. In

Table 5. Comparison of GAMESS, Molpro, NWChem, and
PSI3 Implementations of CCD and CCSDa

GAMESS Molpro NWChem PSI3

molecule CCD CCSD CCD CCSD CCSDb CCDc CCSDc CCSD

C8H10 6.2 7.2 2.3 2.4 9.6/3.6 5.1 8.4 7.9

C10H8 12.7 15.3 4.8 5.1 22.8/8.2 10.6 16.8 17.9

C10H12 19.7 23.6 7.1 7.2 20.5/11.3 16.2 25.2 23.6

C12H14 57.7 65.1 17.6 19.0 53.6/29.4 42.0 64.4 54.2

C14H10 78.5 92.9 29.9 31.0 92.7/49.1 59.5 90.7 61.4

C14H16 129.3 163.7 41.5 43.1 103.2/65.0 90.2 129.2 103.4

C20 238.9 277.5 103.0 102.0 294.6/175.7 166.3 233.9 162.6

C16H18 279.5 345.8 83.3 84.1 169.1/117.5 190.8 267.9 192.4

C18H12 329.4 380.0 111.8 116.2 274.2/178.6 218.4 304.5 216.4

C18H20 555.5 641.3 157.4 161.4 278.1/216.3 372.1 512.0 306.9
bThe spin-free CCSD code in NWChem is integral direct for the terms
with integrals having 3 or 4 virtual indices. The first number is the
first iteration when the stored integrals (those with 0�2 virtual
indices) are computed and written to disk; the second number is for
subsequent iterations when the stored integrals are read from disk.
c TCE implementation with spin�orbital CC equations but using
compacted (spin-free) integrals. a The data given are seconds per
CC iteration.

Table 4. Comparison of CPU and GPU Implementations of CCDa

present implementation X5550

molecule o v C1060 C2050 X5550 GAMESS Molpro NWChem (TCE)b

C8H10 21 63 0.8 0.3 1.3 6.2 2.3 5.1 (4.7)

C10H8 24 72 1.5 0.5 2.5 12.7 4.8 10.6 (10.1)

C10H12 26 78 2.5 0.8 3.5 19.7 7.1 16.2 (15.1)

C12H14 31 93 7.1 2.0 10.0 57.7 17.6 42.0

C14H10 33 99 10.2 2.7 13.9 78.5 29.9 59.5

C14H16 36 108 16.7 4.5 21.6 129.3 41.5 90.2

C20 40 120 29.9 8.8c 40.3 238.9 103.0 166.3

C16H18 41 123 35.9 10.5c 50.2 279.5 83.3 190.8

C18H12 42 126 42.2c 12.7c,d 50.3 329.4 111.8 218.4

C18H20 46 138 73.0c 20.1c,d 86.6 555.5 157.4 372.1
aTimings per CC iteration are given in seconds. The symbols o and v represent the number of doubly occupied and virtual orbitals in each system,
respectively. bNumbers in parentheses are for uncompacted (spin�orbital) two-electron integrals, which runs out of memory for even medium-
sized jobs. cThe MMM involving vcd

ab was tiled. d Some two-electron integrals were pushed to the GPU every iteration.
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addition, some permutations of integrals that scale as o2v2 were,
in some cases, pushed to the GPU as needed. The timings
presented in Table 4 include all memory transfers occurring
during the iterative portions of the algorithm, and the overhead
associated with these transfers has minimal implications for
performance. In the case of C18H20, the vcd

ab block of integrals
represents 2.7 GB of data. These data, as well as several hundreds
of MB of o2v2 integrals, are pushed to the GPU every iteration;
regardless, the GPU-accelerated algorithm is more than four
times faster per iteration than the corresponding CPU imple-
mentation and almost eight times faster than the Molpro
package. This result suggests that larger systems can be treated
with this algorithm provided that the larger MMMs are appro-
priately tiled. The notion of tiling leads naturally to a framework
for many GPU CC; scalable parallelization can be realized by
distributing comparably sized tiles among many GPUs.
4.2. Impact of Numerical Precision upon Accuracy and

Performance.Many implementations of scientific algorithms on
GPU hardware utilize single or mixed precision due to the
markedly reduced DP performance of older graphics cards. As
accelerator software and hardware mature for HPC, GPUs are
becoming increasingly efficient at performing DP operations. On
the other hand, most commodity graphics processors cannot
support DP. It is important to understand the performance
advantages of low-precision computing as weighed against the
disadvantages. We have implemented our CCD algorithm in SP
on the same CPU and GPU hardware discussed above, and the
SP timings are presented in Table 6. In general, we observe the
same GPU/CPU accelerations for SP computations as we did for
strictly DP computations. On the C2050 processor, SP per
iteration costs are 4.2�5.8 times less than that of the SP costs
of the CPU-based threaded MKL algorithm, and C2050 SP
operations are roughly half the cost of DP operations. The
advantages of SP computations are more evident for the older
C1060 card, where DP is 3.9�4.4 times more expensive than SP.
Table 6 also lists the energy errors associated with the SP

algorithm. For all systems investigated, the observed SP errors
are at worst on the order of 10�5 Eh. Chemical accuracy is

considered to be kcal/mol, which corresponds to roughly 1.6 �
10�3 Eh. Clearly, SP CCD on the GPU yields more than
acceptable accuracy for single-point energy evaluations. Should
the need for higher accuracy arise, it is not difficult to design an
algorithm in which we converge to a SP solution, promote the
amplitudes to DP, and perform a single iteration in DP. The
results in Table 6 labeled “mixed” represent such an algorithm. A
single CC iteration in DP on the C2050 graphics card costs about
two times as much as a single iteration in SP and can increase the
accuracy of the computation by an order of magnitude. Five of
the mixed precision errors in Table 6 are below 1� 10�7 Eh; the
largest error decreased from�15.03 μEh to only�1.30 μEh. For
larger systems, the SP energy errors may be larger, necessitating
further DP iterations. Total application speedup is only margin-
ally affected by the final DP iteration.
4.3. Matrix�Matrix Multiplication Performance. The per-

formance of SGEMM and DGEMM with the X5550 using MKL
and C2050 using CUBLAS 3.2 are shown in Figures 1 and 2,
respectively. MKL SGEMM and DGEMM implementations are
threaded and utilize eight threads. The GPU is superior in
performance to the CPU for larger matrices (dimension greater
than ∼600 for SGEMM), and the performance of the GPU is

Table 6. SP and DP GPU and CPU Timings in Secondsa

time (s)

C1060 C2050 X5550 error (μEh)

molecule SP DP SP DP SP DP SP mixed

C8H10 0.2 0.8 0.2 0.3 0.7 1.3 0.05 0.01

C10H8 0.4 1.5 0.2 0.5 1.3 2.5 �0.42 �0.04

C10H12 0.7 2.5 0.4 0.8 2.0 3.5 �0.13 �0.02

C12H14 1.8 7.1 1.0 2.0 5.6 10.0 �0.30 �0.04

C14H10 2.6 10.2 1.5 2.7 8.4 13.9 �3.74 �0.35

C14H16 4.1 16.7 2.4 4.5 12.1 21.6 �1.00 �0.16

C20 6.7 29.9 4.1 8.8b 22.3 40.3 �1.43 0.09

C16H18 9.0 35.9 5.0 10.5b 28.8 50.2 �2.66 �0.44

C18H12 10.1 42.2b 5.6 12.7b,c 29.4 50.3 �15.03 �1.30

C18H20 17.2 73.0b 10.1b 20.1b,c 47.0 86.6 �5.72 �0.91
a Errors in the energy for single- and mixed-precision algorithms are
presented. Themixed-precision algorithm converges in SP and performs
one iteration in DP. All errors are given in units of μEh (10

�6 hartrees).
bThe MMM involving vcd

ab was tiled. c Some two-electron integrals were
pushed to the GPU every iteration.

Figure 1. Performance in gigaflop/s (109 floating point operations
per second) for SGEMMonCPU andGPU devices. The CPU SGEMM
implementation utilizes eight threads. The maximum gigaflop/s for the
CPU and GPU are 156.2 and 717.6, respectively.

Figure 2. Performance in gigaflop/s (109 floating point operations
per second) for DGEMM on CPU and GPU devices. The CPU
DGEMM implementation utilizes eight threads. The maximum giga-
flop/s for the CPU and GPU are 79.2 and 335.6, respectively.
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more than four times better than that of the CPU in the limit of
very large matrices. The best-case performance of the GPU for
SGEMM is greater than 700 gigaflop/s (GF), which is approxi-
mately 70% of the theoretical peak performance. On the C2050,
the performance of DGEMM is approximately half of that of
SGEMM, which again is approximately 70% of peak. The 2:1
ratio of single- and double-precision performance is new as of the
Fermi GPU architecture; a much larger ratio of single to double
precision performance was observed with the Tesla GPU archi-
tecture (C1060). The variation in the performance as a function
of matrix dimension on the C2050 is more than on the CPU but
significantly less than previous generations of NVIDIA hardware
and software. The absolute performance of SGEMM and
DGEMM also changed significantly upon the release of CUDA
3.2. Prior to this release, algorithm performance was tightly
coupled to system size and could be maximized by padding
matrix dimensions in an effort to match warp sizes. However, as
of CUDA 3.2, padding appears to have been integrated into the
implementation of BLAS, and our manual implementation of
padding no longer improves performance. Finally, previous
generations of CUBLAS achieve only ∼50% of peak for very
large matrices, whereas the latest version achieves∼70% of peak.
Assuming no overhead for computing transposes and data

transfers, the CPU and GPUCCD algorithms should achieve the
flop rates of the underlying DGEMM and SGEMM kernels
depicted in Figures 1 and 2. Figure 3 depicts the performance of
the CPU and GPU implementations of spin-free CCD for all of
the systems studied here. The SP CPU implementation utilizes
threaded MKL SGEMM calls and achieves 69�105 GF on the
Intel Xeon X5550 CPU. The DP implementation achieves only
half of that flop rate, 35�57 GF. The C2050 is capable of
delivering at or near 500GF of SP performance for systems larger
than and including C20, while DP performance approaches 250
GF. The release of CUDA 3.2 provides enhanced DP capabilities
on the C2050 graphics card that is well beyond those of older
Tesla products. For the C1060, we observe considerably lower
flop rates of only 209�319 (60�72) GF for SP (DP).

5. CONCLUSIONS

We have reported the first implementation of the iterative
procedures of any coupled cluster method running entirely on a

GPU. We find that the NVIDIA C2050 graphics processor can
achieve approximately 500 gigaflop/s performance in single
precision (SP) and 250 gigaflop/s in double precision (DP).
This performance translates to per iteration accelerations of
4.2�5.8 for SP and 4.0�5.2 for DP as compared to the multi-
threaded CPU implementation. The quality of both the CPU and
GPU implementations are as similar as possible, as both employ
the vendor-optimized BLAS libraries provided by Intel and
NVIDIA, respectively. To the best of our knowledge, this is the
first time such a direct evaluation of hardware performance has
been undertaken for any quantum chemistry kernel; previous
papers compare an optimized GPU implementation to a stan-
dard package written for CPUs or evaluated the impact of using
GPUs for a limited set of procedures. In contrast, the entire
iterative CC procedure is computed using the GPU, and the
overhead of transferring integrals from CPU memory is demon-
strated to be nominal. As most CPU packages are neither
multithreaded (e.g., with OpenMP) nor optimized for vector
floating point instructions (e.g., SSE3 for x86 processors), such a
comparison is intrinsically unfair to the CPU. Unless special
effort has been devoted to architecture-specific optimization of
CPU code, as is done for BLAS calls, it is impossible tomake a fair
comparison of CPU and GPU hardware.

Our DP implementation running on the C2050 GPU pro-
cessor is more than an order of magnitude faster than several
well-known electronic structure packages for the CC iterative
procedure, which dominates the total wall time of a CC calcula-
tion (when neglecting the perturbative triples correction). Spe-
cifically, the DP algorithm was shown to be 8�12 times faster
than Molpro and 17�22 times faster than NWChem when each
is executed on two quad-core CPUs. Our DP implementation is
21�29 times faster than the serial implementation of CCD
implmented in GAMESS executing on a single CPU core. It is
important to point out that none of the software packages tested
make efficient use of multicore CPUs using threads. GAMESS is
constrained by design to run on a single CPU core and using
multiple threads in BLAS did not improve the performance of
PSI3 as much as it did ours. For example, our CCD iteration
timings for C12H14 reduced from 51 to 10 s when the number of
threads increased from 1 to 8, whereas we found that the
performance of PSI3 improved by less than 50% for the same
8-fold increase in thread utilization. While it was possible for
NWChem and Molpro to utilize two quad-core CPUs using
global arrays, this process-based parallelism necessarily divides
the data into smaller chunks, reducing the efficiency of BLAS
calls. In the end, the best predictor of the performance improve-
ment of CC codes using GPUs instead of CPUs is our own CPU
code, for which the performance improvement of four to five
times is in good agreement with the relative performance of
SGEMM and DGEMM we measured.

Because most GPUs have modest DP performance relative to
what can be done in SP, computing in SP or somemixture of SP and
DP can improve performance, provided the results are still numeri-
cally accurate.We demonstrate that CC is amenable to a very simple
multiprecision algorithm due to its iterative nature and that we can
converge to a standard DP threshold while performing all but one
iteration in SP. While the state-of-the art NVIDIA C2050 (Fermi)
processor has a similar ratio of SP toDP performance, as is found on
CPU hardware, the older NVIDIA C1060 (Tesla) architecture and
noncompute-oriented commodity GPUs have a much larger dis-
crepancy between SP and DP. While the Fermi architecture may
be more relevant to computational chemists using dedicated

Figure 3. Performance in gigaflop/s (109 floating point operations
per second) for different implementations of spin-free CCD. Results are
given for both CPU and GPU hardware, and CPU BLAS routines utilize
eight threads. S SP and DP performance data are given.
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high-performance computing resources, which are likely to be
equipped with more expensive hardware that is more suitable for
scientific computation, the commodity GPU hardware found in
laptop and desktop computers is likely to continue to provide
substantially more performance in SP than DP. Thus, our mixed
precision algorithm will still be relevant in the future. We also
note that the mixed precision approach can be used on the CPU
as well, but the performance gain will not bemore than two times,
as all modern CPU architectures we are aware of are optimized
for DP floating point computation.

The present implementation of GPU-accelerated CCD at-
tempts to store all two-electron integrals and CC amplitudes in
global memory on the GPU device and is thus limited in its
applicability to systems with less than 200 spatial orbitals. We
have experimented with tiling the multiplication involving the vcd

ab

block of integrals to allow us to treat systems as large as C18H20 in
a 6-31G basis in full double precision on the C2050 card, which
has only 2.6 GB of global memory. It was shown that this system
could be treated roughly four timesmore efficiently by the C2050
GPU than with the X5550 CPU, despite the fact that 3 GB of
integrals were transferred to the GPU every iteration. An
algorithm dominated by tiled DGEMM calls is also naturally
amenable to parallelization. In the extension of this algorithm to
multiple GPUs, the cost of the required MPI collectives will
eventually dominate the integral push�pull time. Regardless of
these arguments for tiled matrix multiplications, the memory
limitation is completely artificial in the sense that it is coupled to
current hardware limitations and will therefore change as GPU
hardware matures for scientific applications; the NVIDIA C2070
card, which was not used in these experiments, has 6 GB of global
memory.

The tremendous performance increase observed for these
moderate systems can have profound implications for computa-
tions that require multiple energy evaluations. An obvious target
of fast CC calculations on GPUs is ab initio molecular dynamics
of small molecules. Such calculations might require higher than
SP for accurate results, but as has been shown herein, it is trivial to
design a mixed precision algorithm that can yield DP accuracy in
SP time. Additionally, computations on clusters of GPUs would
be ideal for local correlation approximations such as the clusters-
in-molecule (CIM) approximation.43,44 The CIM-CC methods
are embarrassingly parallel, and the 1 � 10�6 Eh error for SP
GPU algorithms is negligible compared to the corresponding
CIM errors, which can be three orders of magnitude larger. Thus,
it would be straightforward to utilize many GPUs by performing
each cluster simulation on a single GPU, since no data needs to
be communicated between subsystem calculations after the
original partitioning of the molecule into clusters.

Future work will include the implementation of the full CCSD
equations for similar studies in GPU acceleration. Based upon
our current results and the performance of the GAMESS
implementations of CCD and CCSD, we expect GPU-acceler-
ated CCSD to be several times more efficient than any existing
CPU implementation. Additionally, preliminary tests of our
implementation of CC for multiple GPUs suggest that distribut-
ing independent diagrams allows for the utilization of 5�10
GPUs. Scaling to more than 10 GPUs requires breaking up a
single diagram computation across multiple GPUs, which ismore
difficult due to increased communication but certainly possible
for larger calculations. Because CCSD has more diagrams and
because these vary greatly in computational cost, more care is
required to load balance these calculations to fully utilize all

available processor resources. However, we believe that sig-
nificant speed-ups can be obtained by overlapping CPU and
GPU computations in a hybrid CPU-GPU implementation of
CCSD.
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ABSTRACT: The electronic spectrum of alternant polycyclic aromatic hydrocarbons (PAHs) includes two singlet excited states
that are often denoted 1La and

1Lb. Time-dependent density functional theory (TD-DFT) affords reasonable excitation energies for
the 1Lb state in such molecules, but often severely underestimates 1La excitation energies and fails to reproduce observed trends in
the 1La excitation energy as a function of molecular size. Here, we examine the performance of long-range-corrected (LRC) density
functionals for the 1La and

1Lb states of various PAHs. With an appropriate choice for the Coulomb attenuation parameter, we find
that LRC functionals avoid the severe underestimation of the 1La excitation energies that afflicts other TD-DFT approaches, while
errors in the 1Lb excitation energies are less sensitive to this parameter. This suggests that the 1La states of certain PAHs exhibit some
sort of charge-separated character, consistent with the description of this state within valence-bond theory, but such character proves
difficult to identify a priori. We conclude that TD-DFT calculations in medium-size, conjugated organic molecules may involve
significant but hard-to-detect errors. Comparison of LRC and non-LRC results is recommended as a qualitative diagnostic.

I. INTRODUCTION

Most contemporary density-functional approximations, in-
cluding those based on generalized gradient approximations
(GGAs) as well as hybrid functionals that do not incorporate
full Hartree�Fock (HF) exchange, afford an incorrect asympto-
tic distance dependence for charge-transfer (CT) excitation
energies.1 In the context of time-dependent density functional
theory (TD-DFT), this artifact leads to predictions of spurious,
low-energy CT states in large molecules,2�4 liquids,5 and
clusters.6,7 One means to mitigate this problem, while retaining
the computational simplicity of TD-DFT, is to use long-range-
corrected (LRC) density functionals.8�20 The basic idea behind
LRC-DFT is to treat the electron�electron exchange interaction
using HF theory at large separation, since HF theory affords the
proper distance dependence for CT excitation energies,1 but to
use GGA exchange at short range, in the interest of obtaining an
accurate description of dynamical electron correlation. This
length-scale separation is accomplished by partitioning the
electron�electron Coulomb operator into short- and long-range
components.8,15,21�23

While conventional TD-DFT’s propensity to overstabilize CT
states1�7 and Rydberg states19,24 is well-known, this method’s
admirable accuracy for localized, valence excitations in small
organic molecules is similarly well-documented.25,26 For alter-
nant polycyclic aromatic hydrocarbon (PAH) molecules, how-
ever, TD-DFT calculations sometimes afford large errors in
excitation energies,27,28 for states that one would not ordinarily
associate with CT character.

A particular class of examples is the homologous sequence of
linear-condensed acenes (benzene, naphthalene, anthracene,
etc.), which exhibit two low-lying 1ππ* excited states, commonly
denoted 1La and

1Lb.
29�31 The transition densities for these two

states are polarized along the short and long axes of the molecule,
respectively (see Figure 1), with the 1Lb transition density
exhibiting nodes at the atoms and the 1La transition density
displaying nodes at the bond midpoints.30,31 For the 1La state
in the linear acene sequence, errors in TD-DFT excitation
energies increase dramatically as a function of the number of
aromatic rings, yet errors in the 1Lb excitation energies appear
to be uncorrelated with molecular size.27,32 (This is perhaps all
the more surprising in view of the fact that the 1Lb state in
benzene and naphthalene exhibits substantial double-excita-
tion character, whereas the 1La state does not.

33�35) Recently,
however, certain TD-LRC-DFT have been shown to afford
accurate 1La excitation energies for the linear acenes,eliminat-
ing the length-dependent trend in the errors.36,37

The 1La and 1Lb states in linear acenes have long been
discussed as being “ionic” and “covalent”, respectively, in
the language of valence-bond (VB) theory.31 In other words,
the 1La wave function is thought to include determinants
where both π electrons from a CdC bond are assigned to the
same carbon atom. Detailed VB calculations corroborate this
conceptual picture,33�35,38 and this might lead one to suspect
that charge separation in the 1La state, which somehow
increases as a function of molecular size, could explain the
errors observed in TD-DFT excitation energies for the 1La
state. This is precisely what was concluded in a recent study,27

based on a semiempirical charge-decomposition analysis. The
goal of the present work is to analyze all-electron TD-DFT
and TD-LRC-DFT calculations of 1La and 1Lb on a more
diverse set of PAHs.

Received: October 25, 2010



1297 dx.doi.org/10.1021/ct100607w |J. Chem. Theory Comput. 2011, 7, 1296–1306

Journal of Chemical Theory and Computation ARTICLE

II. METHODS

Ground-state geometries were optimized at the B3LYP/
6-31G* level, and vertical excitation energies (for singlet states
only) were subsequently calculated at the TD-DFT/cc-pVTZ
level, using various density functionals. The SG-1 quadrature
grid39 was used for all TD-DFT calculations, as tests using
significantly finer grids resulted in changes of less than 0.01 eV
in the excitation energies. Except where noted, the commonly
used Tamm�Dancoff approximation40 is not employed here. All
calculations were performed using a locally modified version of
Q-Chem.41 Cartesian coordinates for the optimized PAH geo-
metries, along with tabulated TD-DFT excitation energies, can
be found in the Supporting Information.

A variety of LRC density functionals are examined in this
work, including LRC-μBLYP, LRC-μBOP, LRC-ωPBE, and
LRC-ωPBEh. The notations “μBLYP” and “μBOP” indicate that
the BLYP42,43 and BOP44 functionals are used, but with a short-
range version of Becke’s GGA exchange functional42 that is
constructed according to the prescription developed by Hirao
and co-workers.8 The notation “ωPBE” indicates a short-range
version of the PBE exchange functional,45 constructed according
to the procedure of Scuseria and co-workers.15 (The aforemen-
tioned notation is consistent with that used in the Q-Chem
program but differs from the nomenclature used in some recent
papers.46) The LRC-ωPBEh function is a hybrid (“h”) that
includes 20% HF exchange at short range.19 All of the LRC
functionals examined here include full HF exchange at long
range:

ELRCxc ¼ Ec þ EGGA, SRx þ CHFE
HF, SR
x þ EHF, LRx ð1Þ

Here, “SR” and “LR” indicate use of the short-range and long-
range components of the Coulomb operator, respectively, and
CHF is the coefficient of short-range HF exchange.

TD-LRC-DFT excitation energies can be quite sensitive to the
value of the Coulomb attenuation parameter (μ or ω),18,19

especially for CT-type excitations.49 Values of μ or ω that are
optimized using ground-state properties (e.g., atomization en-
ergies, ionization potentials, or reaction barrier heights) may
afford large errors in TD-DFT excitation energies.18,19 Previous
studies by our group4,19 have shown that LRC-ωPBE with ω =
0.3 a0

�1 and LRC-ωPBEh with ω = 0.2 a0
�1 afford the best

statistical performance for excitation energies, without degrading
ground-state properties. As such, we focus primarily on these two
functionals. With the aforementioned parameters, the LRC-
ωPBEh functional affords average errors of ∼0.3 eV for both
localized and CT excitation energies,19 while the LRC-ωPBE
functional performs similarly whenω lies in the range of 0.2�0.3
a0

�1.4,26

As compared to LRC functionals based upon ωPBE, the
functionals μBLYP and μBOP, which utilize the short-range

“μB88” functional46 developed by Hirao and co-workers,8 have
not been studied as extensively in the context of TD-DFT
excitation energies. It does appear that the LRC-μPBE and
LRC-ωPBE functionals afford comparable excitation energies,
at a given value of the Coulomb attenuation parameter (μ or
ω),19 although predicted ground-state properties may be quite
different.18

In view of these facts, we choose the value μ = 0.3 a0
�1 for

the LRC-ωPBE and LRC-μBLYP functionals, a choice that is
supported by results from a recent TD-LRC-DFT study of
linear acenes.37 At the same time, the value μ = 0.17 a0

�1 was
found to provide the most accurate excitation energies in a
recent TD-LRC-μBLYP study of intramolecular CT states in
Coumarin dyes,50 although the value μ = 0.31 a0

�1 performs
better for oligothiophenes.51 Thus, for completeness we will
consider LRC-μBLYP with μ = 0.17 a0

�1. Finally, Hirao and
co-workers advocate the use of LRC-μBOP with μ = 0.47
a0

�1,10 so we will assess this functional as well, even though
our previous work indicates that values of μ J 0.5 a0

�1 often
afford large errors in ground-state properties.18 Table 1 lists
the parameters for each of the LRC functionals used in
this work.

Figure 1. Transition densities for (a) the 1La state and (b) the
1Lb state

of naphthalene, computed at the TD-B3LYP level. The isosurface in
either plot encapsulates 90% of the transition density.

Table 1. Parameters for the LRC Functionals Employed in
This Work

functional μ or ω/a0
�1 CHF functional μ or ω/a0

�1 CHF

LRC-μBOP 0.47 0.0 LRC-ωPBE 0.30 0.0

LRC-μBLYPa 0.17 0.0 LRC-ωPBEh 0.20 0.2

LRC-μBLYPa 0.30 0.0
aTwo different values of μ are used for LRC-μBLYP.

Figure 2. TD-DFT errors in the vertical excitation energies for the 1La
state, expressed in wavelength units. Panel (a) illustrates the divergence
of the TD-B3LYP and TD-BP86 excitation energies as a function of n,
while panel (b) shows a close-up view of the errors engendered by
several different LRC functionals.
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III. RESULTS

A. Linear-Condensed Acenes. The 1La and
1Lb states in the

linear-condensed acene series are characterized by transition
densities that are polarized along the short and long axes of the
molecule, respectively,30,31 as illustrated for naphthalene in
Figure 1. Consistent with previous calculations,27,33�35,37,38,52

we find that the S0 f
1La excitation is dominated (>90%) by a

transition between the highest occupied and lowest unoccupied
molecular orbitals (HOMO f LUMO), whereas the S0 f

1Lb
excitation involves (HOMO � 1) f LUMO and HOMO f
(LUMO þ 1) transitions, with approximately equal weights.
As noted in previous studies,27,32,37 errors in the 1La excitation

wavelength computed using TD-DFT methods often increase
rapidly as a function of the number of aromatic rings, n. Errors in
the 1La excitation wavelength are plotted in Figure 2 as a function
of n, for the set of functionals considered here. (We note that
Wong andHsieh37 have recently published similar results, using a
slightly different set of LRC functionals.) Also included in
Figure 2 are the errors obtained using approximate coupled-
cluster theory (CC2), which were obtained from ref 27. Errors
are computed on the basis of experimental band maxima that
have been corrected to account for excited-state geometry
relaxation.27

Wong and Hsieh37 have noted previously that size-dependent
errors in the 1La excitation wavelength that are obtained at the
TD-BP86 and TD-B3LYP level are greatly reduced using certain
TD-LRC-DFT approaches, for which a qualitatively correct
distance dependence is obtained. Our results add a caveat,
namely, that the erroneous n-dependence of the excitation
wavelength remains in LRC-μBLYP calculations performed
using μ = 0.17 a0

�1. This value of μ, which was suggested in
two different studies of CT states in Coumarin dyes,50,53 is the
smallest value of the Coulomb attenuation parameter that has
been suggested in any benchmark study of LRC-DFT of which
we are aware. Other LRC functionals examined here use a
Coulomb attenuation parameter of either 0.2 a0

�1 or 0.3 a0
�1,

and for these functionals the errors in 1La excitation wavelengths
for the linear acene series is uncorrelated with molecular size.
At the same time, one should recognize that the length-

dependent trends that are evident in the excitation wavelength
data in Figure 2 amount to relatively small changes in excitation
energies, at least in comparison to the∼0.3 eV statistical error bar
that is typically ascribed to TD-DFT calculations. Errors in
excitation energies for the 1La state of the linear acene sequence
are shown in Figure 3. From these data, it is difficult to ascribe any

length-dependent trend to the errors obtained using LRC-
μBLYP(μ = 0.17 a0

�1); rather, these excitation energies appear
to be systematically overestimated by about 0.3 eV. [Mean
absolute errors (MAEs) for each method are listed in Table 2.]
Excitation energies calculated using LRC-ωPBE (ω = 0.3 a0

�1)
and LRC-μBLYP (μ = 0.3 a0

�1) are in good agreement with CC2
calculations. As noted by Wong and Hsieh,37 LRC functionals
significantly outperform B3LYP for the 1La excitation energies,
but B3LYP affords a smaller MAE for the 1Lb excitation energies.
In contrast to the 1La results, TD-DFT errors for the 1Lb

excitation energies show no clear trend with respect to n, even for
the non-LRC functionals (see Figure 4). With the exception of
the TD-BP86 calculations, the n-dependence of the TD-DFT
errors tracks the CC2 results quite well, albeit with a constant
energy offset that varies from one functional to another. This
observation, along with the fact that the CC2 MAE is somewhat
larger for 1Lb than for

1La (0.22 eV versus 0.08 eV), suggests that
the correction applied to the experimental band maxima in order
to obtain an experimental estimate of the vertical excitation
energy27may be somewhat less accurate for 1Lb. In any case, most
of the TD-DFT MAEs for the 1Lb state are j0.3 eV, which is
within the generally accepted accuracy of TD-DFT excitation
energies.

Figure 3. TD-DFT errors in the vertical excitation energies for the 1La
state of the linear acene sequence, expressed in energy units.

Table 2. Mean Absolute Errors (MAEs) in Excitation En-
ergies for the Linear Acene Sequence, n = 2�6

MAE a/eV

method 1La
1Lb

CC2b 0.08 0.22

TD-BP86 0.72 0.62

TD-B3LYP 0.45 0.15

TD-LRC-μBLYP (μ = 0.17 a0
�1) 0.30 0.18

TD-LRC-μBLYP (μ = 0.30 a0
�1) 0.07 0.31

TD-LRC-ωPBE 0.04 0.33

TD-LRC-ωPBEh 0.08 0.35

TD-LRC-μBOP 0.08 0.37
aRelative to experimental values corrected for excited-state geometry
relaxation (from ref 27). bValues taken from ref 27.

Figure 4. TD-DFT errors in the vertical excitation energies for the 1Lb
state, expressed in (a) wavelength units and (b) energy units.
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Another point worth noting is the effect of the Tamm�Danc-
off approximation (TDA).40 In benchmark calculations for small
molecules, this approximation provides excitation energies with-
in 0.15 eV of full TD-DFT results, at somewhat reduced cost. In
larger molecules, however, we have observed that TD-DFT/TDA
discrepancies are sometimes more significant. Table 3 summarizes
the difference between TDA and full TD-DFT excitation energies
for two different density functionals. We find that the TDA
systematically increases both the 1La and

1Lb excitation energies,
by about 0.3 eV. In the case of the 1La state, a 0.3 eV shift would
bring the TD-LRC-μBLYP (μ = 0.17 a0

�1) excitation energies into
good agreement with experiment, thereby masking errors that
appear to indicate a too-small value of μ. In fact, it has previously
been suggested that TD-DFT calculations on PAHs should invoke
the TDA, as more accurate results are obtained (using B3LYP) with
the TDA than with full TD-DFT.52 In our view, this is most likely a
fortuitous cancellation of errors, as only full TD-DFT affords the
proper linear response of the ground-state density.
It has been determined, experimentally, that the 1La state lies

above the 1Lb state for n e 2, but that 1Lb is higher in energy
starting at n = 3.54 Both TD-B3LYP and TD-BP86 calculations
incorrectly predict that 1Lb is higher in energy starting at n = 2,
whereas all of the TD-LRC-DFT methods examined here, with
the exception of LRC-μBLYP with μ = 0.17 a0

�1, place 1La and
1Lb in the correct energetic order as a function of molecular size,
both within the TDA and also at the full TD-DFT level. The
failure of TD-B3LYP in this context is potentially a problem in
applications beyond PAHs, since indole (and, consequently,
tryptophan) also exhibits 1La and

1Lb states, whose electronic
structure is thought to be similar to the corresponding states in
naphthalene.55 TD-B3LYP also fails to predict the correct order
of the 1La and

1Lb states in tryptophan.56

B. Nonlinear PAHs. Although LRC-DFT calculations of the
linear acenes have been reported previously,36,37 these methods
have not yet been studied for more general, nonlinear PAHs. The
TD-B3LYP and TD-BP86 methods have been applied to certain
larger PAHs, and large errors in the 1La excitation energies are
observed in some cases.28,52 Here, we apply TD-LRC-DFT to a
set of nonlinear PAHs, the structures of which are depicted in
Figure 5. This data set includes both cata-condensed and peri-
condensed examples,31 ranging in size from three to seven six-
membered rings. A numbering scheme for these molecules is
introduced in Figure 5; as a rough guideline, larger numbers
correspond to larger molecules, although the data set does
contain several structural isomers.
For these molecules, we shall restrict our calculations to the

functionals B3LYP, LRC-ωPBE, and LRC-ωPBEh. Results

presented above and in ref 37 demonstrate that other LRC
functionals afford very similar excitation energies for the linear
acenes, provided that μ (or ω) is chosen appropriately. In
particular, Wong and Hsieh37 considered several different func-
tionals with CHF = 0 and μ ≈ 0.3 a0

�1 and found that MAEs
across the linear acene sequence differ by no more than 0.05 eV,
for both 1La and

1Lb. Our results (section III.A) show that μ can

Table 3. Comparison of Excitation Energies (in eV) for the
1La State of the Linear Acene Sequence, Computed Using Full
TD-DFT and also the Tamm�Dancoff Approximation
(TDA)

LRC-ωPBE LRC-ωPBEh

n TD-DFT TDA TD-DFT TDA

2 4.76 5.01 4.66 4.89

3 3.64 3.92 3.53 3.80

4 2.88 3.19 2.78 3.07

5 2.35 2.69 2.26 2.57

6 1.97 2.31 1.88 2.21

Figure 5. Clar-type resonance structures57,58 of the nonlinear PAHs
considered in this work, along with the numbering scheme that is used to
refer to them in the text and figures: phenanthrene (1), pyrene (2),
triphenylene (3), chrysene (4), benz[a]anthracene (5), perylene (6),
benzo[e]pyrene (7), benzo[a]pyrene (8), picene (9), dibenz[a,
j]anthracene (10), dibenz[a,c]anthracene (11), dibenz[a,h]anthracene
(12), benzo[b]chrysene (13), anthanthrene (14), and coronene (15).

Figure 6. Errors (theory minus experiment) in 1La excitation energies
for the PAHs depicted in Figure 5. Dashed horizontal lines represent the
average error for each method. Experimental benchmarks are band
maxima in nonpolar solvents. The solvent correction suggested in ref 52
would reduce the TD-LRC-DFT errors by 0.11 eV and would make the
TD-B3LYP errors more negative by 0.11 eV.
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be reduced if short-range HF exchange is introduced, as in LRC-
ωPBEh. This conclusion is in accord with previous findings using
a more diverse set of molecules and excited states.19

Figure 6 shows the errors in the calculated vertical excitation
energies for the 1La state of the nonlinear PAHs. As in the case of
the linear acenes, B3LYP consistently underestimates the excita-
tion energies, with most of the largest errors associated with the
larger PAHs. (Note that the errors in Figure 6 are signed
quantities.) The two LRC functionals, on the other hand,
consistently overestimate the excitation energies, which was also
observed for the linear acene sequence, although the errors are
somewhat larger here. Interestingly, the largest errors observed at
the TD-B3LYP level seem to correlate with the smallest errors
obtained using the LRC functionals.
We should note that the experimental excitation energies used

to compute the TD-DFT errors are taken from ref 59 (they are
also tabulated in ref 28) and represent band maxima in nonpolar
solvents. On the basis of a comparison of solution-phase
absorption spectra to gas-phase photoelectron spectra,60 Wang
and Wu52 suggest that these values should be corrected upward
by 0.11 eV to obtain an estimate of the gas-phase S0 f

1La
excitation energy. This correction has not been applied in
Figure 6. If we were to apply this correction, then the mean
error in 1La excitation energies computed at the TD-B3LYP
cc-pVTZ level would change from�0.21 eV (the value indicated
in Figure 6) to �0.32 eV. Meanwhile, the TD-LRC-DFT values
would become more accurate, with corrected mean errors of
0.1�0.2 eV, which is only slightly larger than the mean errors
obtained for the linear acenes using these same LRC functionals.
Figure 7 depicts errors in the 1Lb excitation energies for the

nonlinear PAHs. (The solvent correction is also absent from
these data, but the value suggested by Wang and Wu52 is only
0.03 eV for the 1Lb state.) As in the case of the linear acenes, all
three of the TD-DFT methods consistently overestimate the 1Lb
excitation energies, with no clear size-dependent trend, and TD-
B3LYP consistently outperforms the LRC functionals. For these
molecules, the mean error in TD-LRC-DFT excitations energies
(≈ 0.5 eV) is somewhat larger than for the 1Lb states of the linear
acenes and lies outside of the ∼0.3 eV accuracy established for
these functionals in previous benchmark calculations.4,19,26

As mentioned above, for the nonlinear PAHs many of the
largest TD-B3LYP errors for 1La excitation energies coincide
with the largest molecules in this data set, whereas TD-B3LYP
errors tend to be smaller for the PAHs that are more condensed
(in the sense of possessing more fused rings), and therefore
smaller. To analyze this further, we have partitioned the full set of
nonlinear PAHs into various subsets that reflect the degree and
manner of annulation. In addition to cata-condensed and peri-
condensed subsets, we consider a subset “1-2” in which each ring
is fused to no more than two other rings, and another subset
“3þ” in which at least one ring is fused to three other rings.
Table 4 lists separateMAEs for each of these subsets, and these

statistics do suggest that the accuracy of TD-B3LYP for the 1La
excitation energy is related to the extent of condensation. The
cata-condensed and 1�2 subsets have MAEs that are larger than
the MAE for the full data set, at the TD-B3LYP level, whereas in
the case of the two LRC functionals, the MAE is largely
unaffected by how the data set is partitioned. (For 1Lb excitation
energies, the MAE is largely unaffected by the partitioning even
in the case of B3LYP.) However, this trend is not strictly related
to molecular size. For example, the TD-B3LYP error for picene,
9, is well below the mean, despite having one of the longer end-
to-end distances among the nonlinear PAHs considered here.

IV. ANALYSIS AND DISCUSSION

A. Valence-Bond Considerations. One might hypothesize
that size-dependent errors in 1La excitation energies are related to
well-known size-dependent errors in TD-DFT polarizabilities
and hyperpolarizabilities for conjugatedmolecules,61,62 problems
that are mitigated when LRC functionals are employed.63

Because the 1Lb state exhibits no such size-dependent errors,
however, we must look elsewhere for an explanation.
Grimme and Parac27 have previously noted these size-depen-

dent errors for the 1La state and explained them in terms of an
excited-state wave function having significant contributions from
ionic determinants, to use valence-bond language. In other
words, the valence-bond picture is that the 1La wave function
exhibits charge separation at the level of individual C�C
bonds.33�35 (The dipole moment of the 1La state is zero, by
symmetry, so the S0 f

1La excitation cannot be associated with
any net charge separation. In addition, the S0 f

1La transition is
primarily a HOMO f LUMO excitation, and both the HOMO
and the LUMO are delocalized over the entire molecule, as
required by symmetry.)

Figure 7. Errors (theory minus experiment) in 1Lb excitation energies
for the PAHs depicted in Figure 5. Dashed horizontal lines represent the
average error for each method. Experimental benchmarks are band
maxima in nonpolar solvents, and omissions from the data set in Figure 5
correspond to molecules for which no experimental value for the 1Lb
excitation energy is available. The solvent correction suggested in ref 52
would reduce all of the errors by 0.03 eV.

Table 4. Mean Absolute Errors (eV) in TD-DFT Excitation
Energies for Various Subsets of Nonlinear PAHs

MAE(1La)
b MAE(1Lb)

b

subseta B3LYP

LRC-

ωPBE

LRC-

ωPBEh B3LYP

LRC-

ωPBE

LRC-

ωPBEh

full set 0.32 0.17 0.07 0.19 0.55 0.52

cata 0.39 0.14 0.03 0.18 0.57 0.53

peri 0.22 0.23 0.12 0.22 0.51 0.49

1-2 0.36 0.17 0.06 0.19 0.57 0.53

3þ 0.29 0.17 0.07 0.19 0.53 0.50
aThe full data set is shown in Figure 5; see the text for a description of
the various subsets. bRelative to solution-phase band maxima corrected
for solvent effects.52
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Parac and Grimme28 developed an “ionicity metric” based
upon a Mulliken-style atomic partition of time-dependent Pariser�
Parr�Pople64�66 (TD-PPP) transition densities and demon-
strated that this metric is strongly correlated with errors in
excitation energies computed at the TD-BP86 level. We at-
tempted a similar analysis, using transition densities computed
from all-electron TD-DFT calculations, and taking proper ac-
count for the nonorthogonality of the atomic orbital (AO) basis.
However, we found that the trends obtained from these all-
electron calculations were far more muddled and ambiguous
than those reported by Parac and Grimme, even when minimal
basis sets were used in an effort to avoid well-known problems
with Mulliken analysis in extended basis sets.
On the other hand, natural transition orbitals67 (NTOs) for

the 1La state do support the notion of charge separation within
the C�C bonds. As an example, Figure 8 depicts the most
significant pair of NTOs for the 1La state of naphthalene; this pair
of NTOs accounts for 88% of the norm of the S0 f

1La tran-
sition density matrix, and the product of these two NTOs is
qualitatively similar to the S0 f

1La transition density (cf.
Figure 1a). The same sort of charge separation that is seen in
this pair of NTOs might be inferred from the transition density
itself, insofar as the latter has nodes centered on the C�C bonds,
whereas the S0 f

1Lb transition density has nodes located on the
carbon atoms. These TD-B3LYP transition densities are consistent
with the predictions of a simple particle-on-a-ringmodel,30,31 which
has long been used as a qualitative model for understanding the
electronic structure of the linear acenes.
With the benefit of hindsight and the availability of VB

calculations for naphthalene and anthracene,33�35,38 this analysis
of NTOs and transition densities for the linear acenes could be
used to rationalize the size-dependence of TD-B3LYP results for
the 1La state and the lack of size dependence in TD-B3LYP
results for the 1Lb state. Analysis of the NTOs is more compli-
cated in the case of the nonlinear PAHs, however. Consider two
representative examples: benzo[e]pyrene (7), forwhichTD-B3LYP

predicts an accurate 1La excitation energy; and dibenz[a,c]-
anthracene (11), for which TD-B3LYP significantly underesti-
mates the 1La excitation energy. The NTOs that dominate the
S0 f

1La transition for each of these two PAHs are pictured in
Figure 9. In both cases, one could argue that the NTOs show
evidence of charge separation within individual C�C bonds.
Detailed VB calculations are not generally available (or even

feasible), and in their absence, we must conclude that one cannot
unambiguously infer ionic character from NTOs and transition
densities alone. Ideally, we would like a predictive means to
diagnose errors in TD-DFT calculations. The search for such a
diagnostic occupies the remainder of this work.
B. Difference Densities. To this end, we first examine

difference densities,

ΔF ¼ FðexcitedÞ � FðgroundÞ ð2Þ

Figure 8. NTOs for the 1La state of naphthalene, computed at the TD-
B3LYP/cc-pVTZ level.

Figure 9. NTOs for two representative PAHs: (a) benzo[e]pyrene (7)
and (b) dibenz[a,c]anthracene (11). The structure of each molecule is
also shown. The NTOs shown in (a) accounts for 93% of the transition
density, and those in (b) account for 84% of the transition density. Each
NTO was computed at the TD-B3LYP/cc-pVTZ level.

Figure 10. Difference densities, ΔF, for the S0 f
1La and S0 f

1Lb
excitations of the linear acene sequence, computed at the TD-B3LYP
level. The two colored isosurfaces in each plot encapsulate 60% of the
positive/negative part of ΔF.

Figure 11. Difference densities, ΔF, for the 1La and
1Lb states of the

linear acene sequence computed using two different TD-DFT methods.
The two colored isosurfaces in each plot encapsulate 95% of the positive
negative part ofΔF. The difference between the two difference densities,
ΔΔF, is also plotted, using the same isocontour that is used to plotΔF at
the TD-LRC-ωPBE level.
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for the linear acenes. Isosurface representations ofΔF for the 1La
and 1Lb excited states, computed at the TD-B3LYP level, are
depicted in Figure 10. In these isosurface representations, we
have chosen contour values that encapsulate 60% of the positive
and negative lobes of ΔF, a value that was selected in order to
obtain plots that are qualitatively similar to those published in ref
37, where ΔF was computed at the level of second-order
approximate coupled-cluster theory (CC2). Consistent with
the CC2 difference densities plotted in ref 37, the TD-B3LYP
difference densities in Figure 10 show that the S0 f

1La excita-
tions are associated with a greater degree of local charge reorgani-
zation, as compared to the S0 f

1Lb excitations. This fact was
previously noted by Wong and Hsieh,37 as an explanation for
improved performance of TD-LRC-DFT for the 1La state.
Unfortunately, the picture becomes a bit more muddled if one

plots isosurfaces that contain a larger fraction of ΔF, as can be
seen from the 95% isocontour surfaces, computed at the TD-
B3LYP level, that are depicted on the left side of Figure 11. These
isosurface plots fail to provide any clear evidence that the 1La
state exhibits a greater degree of charge separation than does the
1Lb state. Difference densities obtained at the TD-B3LYP level
are nearly identical to those obtained at the TD-LRC-ωPBE
level, as can be seen by plotting the difference between the
difference densities,

ΔΔF ¼ ΔFðB3LYPÞ �ΔFðLRC-ωPBEÞ ð3Þ
Isosurface representations ofΔΔF are similar for both states (see
Figure 11). In other words, any sort of charge separation that one
might infer on the basis of ΔF for one method is present also in
the other method. Analysis of ΔF therefore cannot explain the
fact that non-LRC functionals exhibit a qualitatively different
size-dependence for the 1La state, as compared to LRC
functionals.
Figure 12 presents isosurface representations of ΔF and ΔΔF

for two different nonlinear PAHs, 7 and 11. For 7, where the TD-
B3LYP excitation energy for 1La is reasonably accurate, we find
almost no difference between ΔF computed at the TD-B3LYP
level and ΔF computed at the TD-LRC-ωPBE level; in fact,
differences in ΔF between these two functionals are much more

significant for the 1Lb state. In the case of 11, for which TD-
B3LYP error in the 1La excitation energy is large, we do see
qualitative differences in ΔF between these two methods. How-
ever, these differences are no more significant for the 1La state
than they are for the 1Lb state. (In other words,ΔΔF is similar for
both states.) Since TD-B3LYP is more accurate for the 1Lb
excitation energy of 11, while TD-LRC-ωPBE is more accurate
for the 1La excitation energy, this cannot explain the origin of the
TD-B3LYP errors for 1La .
C. Tozer’s CT Metric. Tozer and co-workers36,47 have pro-

posed a diagnostic test to determine whether a particular TD-
DFT excited state is beset by sufficient CT contamination such
that the predicted excitation energy may not be reliable. This
diagnostic comes in the form of a metric, Λ, given by

Λ ¼
∑
ia
ðXia þ YiaÞ2Oia

∑
jb
ðXjb þ YjbÞ2

ð4Þ

which is defined such that 0eΛe 1. The quantities Xia and Yia
are the TD-DFT transition amplitudes (using standard
notation68), which determine the transition density matrix, and
Oia is the overlap integral between |φi(rB)| and |φa(rB)|, where φi
and φa are occupied and virtual MOs, respectively. WhenΛ = 0,
the transition in question involves donor and acceptor orbitals
with no spatial overlap, and methods such as TD-B3LYP and
TD-BP86 will undoubtedly underestimate the excitation energy
in such cases, probably by a large amount. On the basis of a set of
benchmark tests, Tozer and co-workers suggest that TD-B3LYP
excitation energies are unreliable ifΛ < 0.3,36 although they later
reported an example where this metric fails to detect a proble-
matic CT state.69

Values ofΛ for the linear acene series have been reported in ref
37 and in the Supporting Information for ref 36, but because

Figure 12. Difference densities,ΔF, for the 1La and 1Lb states of PAHs 7
and 11 computed using two different TD-DFT methods. The two
colored isosurfaces in each plot encapsulate 95% of the positive negative
part ofΔF. The difference between the two difference densities,ΔΔF, is
also plotted, using the same isocontour as the TD-LRC-ωPBE plots.

Table 5. Values of the CT Metric (Equation 4) for the 1La
State and the 1Lb State of the Linear Acene Series, Computed
at the TD-B3LYP Level

n = 2 n = 3 n = 4 n = 5 n = 6

Λ(1La) 0.86 0.83 0.89 0.85 0.90

Λ(1Lb) 0.62 0.61 0.63 0.64 0.65

Figure 13. Errors in TD-DFT excitation energies for the nonlinear
PAHs, plotted as a function of the CT metric, Λ. The LRC-ωPBE and
LRC-ωPBEh functionals afford similar results, so only the latter is
shown here.
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these data are relevant to the discussion at hand, they are also
listed in Table 5. In all cases (naphthalene through hexacene), we
find thatΛ > 0.8 for the S0 f

1La excitation, whereasΛ≈ 0.6 for
the S0 f

1Lb excitation. As was pointed out in a previous analysis
of the linear acenes,37 these values are not only above theΛ = 0.3
threshold established in previous tests, but in fact it is the 1Lb
state that exhibits the larger value of the CTmetric! Furthermore,
although TD-DFT errors for the S0 f

1La excitation energy are
clearly correlated with molecular size, Λ exhibits no such size
dependence. This is consistent with a transition density com-
prised of excitations from delocalized π MOs into delocalized
π* MOs.
For the nonlinear PAHs, Figure 13 provides a plot of the

excitation energy errors versus Λ; as with the linear acenes, the
1La state exhibits larger values of Λ than does 1Lb. The original
proposal of Λ as a useful diagnostic was based on an observed
correlation between TD-DFT errors and the value of this
metric,36 but no evidence of any such correlation is found in
the PAH data. On the other hand, a clear correlation is evident in
the data of ref 36 only whenΛj 0.5, whereasΛ > 0.55 for all of
the PAHs. Moreover, the range ofΛ values that is obtained, for a
given excited state, is no different for TD-B3LYP than it is for the
TD-LRC-DFT methods. This is consistent with the observed
similarity between the difference densities computed using
different functionals, and both observations are consistent with
the notion that the calculated 1La (or

1Lb) electron density is not
significantly different among the various functionals. What
changes from one functional to the next is the manner in which
the excitation energies depend on this electron density.
D. Atomic Partition of Particle/HoleDensities.A potentially

useful way to analyze the extent of charge separation is to
decompose the transition density matrices into “particle” and
“hole” components, which can then be analyzed separately. To
do this, we define a density matrix Delec for the excited electron,
whose matrix elements are

Delec
ab ¼ ∑

i
ðX† þ Y†ÞaiðXþ YÞib ð5Þ

A density matrix, Dhole, for the hole that is left behind in the
occupied space is defined similarly:

Dhole
ij ¼ ∑

a
ðX þ YÞiaðX† þ Y†Þaj ð6Þ

Note that Delec þ Dhole = ΔP is the difference between the
ground- and excited-state one-electron density matrices. Upon
transforming Delec and Dhole into the AO basis, one can write

Δq ¼ trðDelecSÞ ¼ � trðDholeSÞ ð7Þ
where S is the AO overlap matrix. The quantity Δq is the total
charge that is transferred from the occupied space to the virtual
space. For TDA calculations, Δq = �1 (exactly), but deviations
from �1 are possible in full TD-DFT calculations. (Typically,
however, the Yia amplitudes are quite small; hence, Δq ≈ �1
even in full TD-DFT calculations.)
Equation (7) immediately suggests that the matrix products

DelecS and DholeS are amenable to Mulliken-style population
analysis, just as PS is analyzed in ground-state calculations.70 In
particular, the matrix element (DelecS)vv represents the νth AO’s
contribution to the excited electron, while (DholeS)vv is a con-
tribution to the hole. The sum of these quantities,

Δqν ¼ ðDelecSÞνν þ ðDholeSÞνν ð8Þ

represents the contribution to Δq arising from the νth AO, and

ΔQA ¼ ∑
ν ∈ A

Δqν ð9Þ

is the change in the Mulliken population of atom A, upon
electronic excitation. Generalization to L€owdin-style population
analysis70 is straightforward, and we have implemented these
“particle/hole” population analyses into a locally modified ver-
sion of Q-Chem. Because Mulliken and L€owdin analysis often
produce erratic results in extended basis sets, we employ the
somewhat more compact 6-31G* basis set for these calculations,
rather than the cc-pVTZ basis that is used elsewhere in this work.
The expectation, based on valence-bond considerations, is that

the 1La state should exhibit charge separation on the length scale of
C�C bonds. In light of this, it is surprising that both Mulliken and
L€owdin population analyses afford an alternating pattern of charges
on the carbon atoms for the 1Lb state (see Figure 14). To some
extent, the 1La state exhibits a similar pattern, but in this case there is
an additional (albeit quite small) accumulation of negative charge at
the ends of the molecule. This suggests that a small amount of
charge is pushed to extremities of the molecule in the 1La state but
not in the case of 1Lb. However, the magnitudes of the charge
differences, ΔQA, are difficult to reconcile with the valence-bond
interpretations of 1La and 1Lb; charge differences on individual
carbon atoms are∼100 times larger in the 1Lb state than in the

1La
state. (This is true even when we resort to minimal basis sets, in the
interest of obtaining more “chemically intuitive”Mulliken charges.)
Analysis of the particle and hole contributions to ΔQA shows that
these contributions, which must have opposite sign, are typically
∼100 times larger than ΔQA itself. This is indicative of delocalized
NTOs, with a very subtle pattern of net charge separation.
Mulliken charge differences for PAHs 7, 10, and 11, computed

at the TD-B3LYP/6-31G* level, are shown in Figure 15.
(Charges computed using LRC functionals are quite similar.)
As compared to the linear acenes, these examples exhibit far less
disparity between the charge differences associated with the
S0 f

1La and S0 f
1Lb excitations. The ΔQA values in both 7

and 11 suggest some intramolecular charge separation (from the
bottom of the molecule to the top of the molecule, as it is shown

Figure 14. Differences between excited-state and ground-state Mulli-
ken charges [ΔQA, from eq (9)] for the carbon atoms in hexacene,
computed at the TD-B3LYP/6-31G* level. Only the symmetry-unique
carbon atoms have been labeled, with S0f

1La charge differences on the
left side and S0f

1Lb charge differences on the right side.
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in Figure 15), and this effect appears to be more significant in 11
than it is in 7.
We consider this result in light of the two partitions of the

PAH data set that were introduced in section III.B. The 1La
excitation energy for 11 is significantly underestimated at the
TD-B3LYP level, despite the fact that this molecule falls into the
peri-condensed subset that has a somewhat smaller MAE as
compared to the cata-condensed subset (see Table 4). PAH 10
falls into the cata-condensed and “3þ” subsets, for which the TD-
B3LYP MAEs are larger than they are for the full data set, and
Figure 15 shows that the magnitudes of the ΔQA values for the
S0 f

1La excitation in 10 are comparable to those observed for
11, even though the former does not exhibit the sort of overall
charge separation that is observed in the latter. In both 10 and 11,
the magnitudes of the ΔQA values are notably larger than they
are in 7.

This analysis suggests that the magnitude of the TD-B3LYP
error in the 1La excitation energy is somehow related to the
extent of charge reorganization upon S0 f

1La excitation. This is
certainly not a predictive metric, however, and it is further
complicated by examination of the Mulliken charge differences
for the S0 f

1Lb excitations in Figure 15. In both 7 and 11, the
ΔQA values exhibit similar patterns for both S0 f

1La and
S0 f

1Lb excitation; namely, the Mulliken charge differences
alternate in sign across the carbon backbone. The magnitudes of
theΔQA values are also quite similar for both states. Thus, while it
appears that Mulliken charge differences may help to explain why
the 1La excitation energies in certain PAHs suffer larger TD-B3LYP
errors than others, these charge differences are of little help in
understanding why these errors are smaller for 1Lb than for

1La.
E. Summary. In view of these observations, we are left with the

following situation. The trends in TD-DFT excitations energies
with respect to molecular size strongly suggest that the 1La state
in many different PAHs exhibits some sort of CT or charge-
separation character that is not present in the 1Lb state. The fact
that TD-LRC-DFT calculations largely mitigate this problem
adds to the (circumstantial) evidence for CT character in the
1La state of the linear acene molecules. At the same time,
attempts to discern this charge-separated character from the
NTOs or transition densities are quite tenuous, and at best these
analyses suggest only a very slight concentration of charge at the
ends of the molecule. It is essentially impossible to discern any
CT character from the MOs or difference density plots, and the
TD-DFT charge-overlap metric introduced by Tozer and co-
workers36,47 also fails to raise any warning flags. Mulliken- or
L€owdin-style analyses of the transition densities and excited-state
atomic charges offer some insight into the nature of the charge
separation, but some such charge separation is observed even in
the case of excitations where TD-B3LYP predicts the excitation
energy accurately.

V. CONCLUSIONS

We have evaluated the performance of TD-DFT and TD-
LRC-DFT approaches for calculation of the vertical excitation
energies of the 1La and 1Lb states of various PAHs. While
methods such as TD-B3LYP and TD-BP86 provide reasonably
accurate values for the 1Lb excitation energies, 1La excitation
energies are consistently underestimated, with errors that in-
crease as the size of the molecule increases. In contrast, TD-LRC-
DFT excitation energies are accurate to within ∼0.1 eV for the
1La excitation energies. In the linear acene sequence, these
methods also correctly predict a crossover point at which the
1La state becomes lower in energy than the 1Lb state. At the same
time, 1Lb excitation energies are systematically overestimated by
LRC functionals (but without any clear size-dependent trend)
and are somewhat less accurate than TD-B3LYP results.

The most important result to emerge from this work is an
indication, based upon size-dependent trends in excitation en-
ergies, that the 1La excited state in many PAHs exhibits some sort
of charge-separated character that is not present in the 1Lb state.
This feature causes 1La excitation energies to diverge from
experimental values as the size of the molecule increases, when
methods such as TD-B3LYP, TD-PBE0, or TD-BP86 are
employed. Our hypothesis concerning the charge-separated
nature of the 1La state is consistent with the valence-bond
language that has long been used to describe the 1La and

1Lb
states, according to which the 1La state is ionic while 1Lb is

Figure 15. Differences between excited-state and ground-state Mulli-
ken charges for the carbon atoms in PAHs 7, 10, and 11. Charges were
computed at the TD-B3LYP/6-31G* level and are listed for the
symmetry-unique carbon only; blue labels (left side) correspond to
1La and red labels (right side) correspond to 1Lb.
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covalent.30�35 However, although the ionic character of 1La
emerges cleanly from analysis of TD-PPP calculations,28 where
it correlates well with the error in TD-BP86 excitation energies,
analysis of all-electron TD-DFT calculations is much more
ambiguous in this respect.

While it is possible, in post hoc analysis, to rationalize the
relatively ionic character of 1La by examining TD-DFT transition
densities and NTOs, other forms of analysis—including TD-
DFT difference density plots andMulliken population analysis of
particle and hole density matrices—do not obviously suggest
that 1La exhibits any more CT character than does 1Lb. A metric
specifically designed to detect and quantify CT character in TD-
DFT calculations,36 and which has been successful in this respect,
for a variety of molecules,36,47 also fails to indicate that 1La is
more “CT-like” than 1Lb. This metric is certainly not perfect, and
Peach et al.69 have identified a case where it fails to flag an
excitation that (based on examination of theMOs) is clearly a CT
state and where the excitation energy is substantially under-
estimated at the TD-PBE and TD-PBE0 levels. The difference
here is that the 1La states in the PAHs are not clear examples of
CT states.

These observations suggest the possibility that medium- to
large-size conjugated organic molecules may exhibit subtle
charge-separation effects that are difficult to identify a priori
but which cause conventional TD-DFT methods to overstabilize
these states, possibly by a significant amount. This is a potentially
serious problem in cases where TD-DFT is applied to molecules
that are too large to perform any high-level ab initio benchmarks
and where reliable experimental data are unavailable. Further
analysis is required in order to develop a diagnostic that can
automatically detect such states. In the meantime, we recom-
mend performing TD-DFT calculations with both LRC func-
tionals (e.g., LRC-ωPBE or LRC-ωPBEh) and also non-LRC
functionals (e.g., B3LYP or PBE0) so that the results may be
compared and potentially problematic states may be detected.
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ABSTRACT: We present an algorithmic extension of a numerical optimization scheme for analytic capping potentials for use in
mixed quantum�classical (quantum mechanical/molecular mechanical, QM/MM) ab initio calculations. Our goal is to minimize
bond-cleavage-induced perturbations in the electronic structure, measured by means of a suitable penalty functional. The
optimization algorithm—a variant of the artificial bee colony (ABC) algorithm, which relies on swarm intelligence—couples
deterministic (downhill gradient) and stochastic elements to avoid local minimum trapping. The ABC algorithm outperforms the
conventional downhill gradient approach, if the penalty hypersurface exhibits wiggles that prevent a straight minimization pathway.
We characterize the optimized capping potentials by computing NMR chemical shifts. This approach will increase the accuracy of
QM/MM calculations of complex biomolecules.

1. INTRODUCTION

Accurate simulation of structural and dynamical phenomena
of complex biomolecular systems by means of first-principles
molecular dynamics simulation techniques is still a challenge for
modern physics and chemistry. Despite enormous progress in
recent decades, predictive modeling of the interplay of intramo-
lecular and intermolecular interactions is still far from being a
routine problem. For determination of structural data in biophy-
sics and biochemistry, the combination of spectroscopic experi-
ments with advanced theoretical predictions and computer
simulations is becoming increasingly popular, because this
combination often yields a predictive power above the sum of
the individual approaches.1�9 Nevertheless, the first-principles
prediction of noncovalent packing effects and the ab initio
prediction of experimentally observable spectra is not possible
for regular biosystems because of their inherent complexity
and, last but not least, their sheer size. Thus, one has to resort
either to the modeling of elementary subunits10�14 or alterna-
tively to hybrid quantum-mechanical þ mechanical modeling
(QM/MM) approaches.15�31 One of the difficulties of such a
hybrid approach is the interface region between the two different
regions. If one of the atoms is located in the quantum (QM)
region and the other in the classical (MM) part, then a chemical
bond is “broken” as a consequence. This situation is sketched
in Figure 1. Similar problems arise when MM atoms are located
near a QM region, because the QM and MM descriptions are
not genuinely compatible. Thus, a suitable interface has to be
used, which can mutually couple the two schemes in a
realistic way.

There are several well-established methods to tackle the bond
saturation problem, in particular hydrogen32 or fluorine33 atoms,
precomputed (frozen) atomic orbitals,34,35 generalized hybrid
orbitals,36�38 quantum capping potentials,39�42 or designed hep-
tavalent capping potentials.43 Complementary, effective fragment
potentials44,45 and field-adapted adjustable density matrix
assembler46�48 approach the repartiotioning problem itself. Our

approach is conceptually simpler thanmost of the former ones; we
aim at designing a fictitious capping atom to saturate the QM
subsystem, which is realized by a regular atomic pseudopotential.

Specifically,wewant to improve amethod that has beendeveloped
recently49 in view of more complex bond-cleavage situations. This
approach is based on analytical effective core potentials (pseudo-
potentials) of Goedecker�Teter�Hutter (GTH) type,50,51 in line
with previous QM/MM studies.14,23,52 Our goal is to optimize the
pseudopotential parameters in such a way that the change of
electronic density in the quantum part of a QM/MM calculation is
minimal with respect to a “full-QM” calculation.

In this way, we also ensure that structural parameters and
spectroscopic properties in the direct neighborhood of a QM/
MM bond cleavage are modeled with a high degree of reliability.

To achieve this aim, we define a penalty functional that
quantifies the deviation of the electronic density in a molecular
fragment from the corresponding density in the complete
molecule, while simultaneously penalizing changes in the equi-
librium bond distance and frequency. The penalty functional is
minimized iteratively by varying the coefficients of the capping
potential placed at the bond-cleavage site.

However, a straightforward mimization approach like steepest
descent53,54 or a simplex method55 carries the risk of getting stuck
in localminima. To avoid this pitfall, we aim for global optimization
including stochastic elements by means of a swarm intelligence-
based algorithm. In recent years, biology-inspired algorithms56,57

turned out to be more effective than conventional algorithms.58

In this work, we employ a variation of the artificial bee colony
algorithm59�61 (ABC), which mimicks the foraging behavior of
honeybees for function minimization. We are especially inter-
ested in proving the usablility for optimizations within electronic
structure calculations and studying the performance of the
algorithm. The optimized capping potentials are intended to

Received: December 10, 2010
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saturate the quantum region in hybrid QM/MM calculations. In
most cases, this saturation affects a single C�C bond and can
therefore be done bymeans of a hydrogenoid atom; however, the
properties of this hydrogenoid atom should resemble as much as
possible the characteristics of the carbon atom that has been “cut”
out from the quantum calculation. Hence, we need a fictitious
atom that is monovalent but behaves like a (four-valent) carbon
atom in terms of bond distance, potential energy curve(s), and
electronic structure.

We further characterize the perturbative effect of bond cleavage
by means of NMR chemical shifts, which are known to be
particularly sensitive to both intramolecular electronic structure
and intermolecular effects such as hydrogen bonding.62�66Hence,
we can not only gauge the direct perturbing effect of the cleaved
bond on the electronic structure of the remaining part of a
molecule but also quantitatively describe how strongly its response
properties are tainted by the QM/MM bond cleavage.

2. OPTIMIZATION APPROACH

InQM/MMcalculations, the dummyatomhas to saturate the last
covalent bond in the quantum region of the molecule, that is, the
bond that is cleaved by QM/MM repartitioning. The true character
of the bond, however, cannot be easily reproduced by a simple
terminal atom. It is therefore necessary to tune the dummy’s
properties in a way that the resulting deviation in the quantum
region’s electronic structure is minimal. To do so, one has to find a
capping potential that equips the dummywith the desired properties.
2.1. Definition of Penalty Functional. Our optimization

scheme aims to find a capping potential Vcap that gives rise to
an electronic density in the quantum region (F[Vcap]) that
deviates only in a minimal manner from the reference electron
density (Fref), that is, the density when the whole molecule is
quantum-mechanically treated. Further, we want to preserve the
equilibrium bond length and vibrational properties of the bond
that is cleaved to allow for an easy coupling of the first classical
MM atom and to avoid the need for additional geometric
constraints (see Komin and Sebastiani49 and von Lilienfeld-Toal
et al.67 for a more detailed description).
Therefore, we define a functional that penalizes deviations of

these properties from their target values obtained in a full-QM
calculation:

P ½Vcap� ¼ ωF ∑
Ngeo

j¼ 1

Z
Ω
d3r jFjref ðrÞ � Fj½Vcap�ðrÞj2 þωf ∑

Ngeo

j¼ 1
jFjref

� Fj½Vcap�j2 þωe ∑
Ngeo

j¼ 2
jðEjref � E1

ref Þ � ðEj½Vcap� � E1½Vcap�Þj2

ð1Þ

The integration volume Ω is restricted to an area where
penalization is meaningful, that is, the union of spheres around
all QM atoms except the dummywith radii rcov

spc, where rcov
spc is

the covalent radius of the atom species (spc). F denotes the force
acting on the dummy (with respect to its uncapped counterpart)
and E is the total energy.ωF,ωf, andωe are weighting factors that
ensure an adequate relative importance between density, force,
and energy penalization. Finally, the penalty is evaluated for
Ngeo = 3molecular geometries, which correspond to variations of
the cleaving bond length.
We note at this point that we have replaced a multielectron

group (e.g., methyl) with a fictitious monovalent atom, which
changes the total number of electrons in the system. Hence, the
integration of a direct density difference can never vanish
completely, unless the affected regions are entirely excluded
from the integration. This also leads to the effect that the penalty
functional will in general never reach zero during a capping
potential optimization.
2.2. GTH Pseudopotentials. We assume that an optimal

capping potential can be expressed as an analytical GTH
potential:50,51

Vcapðr, r0Þ ¼ VlocðrÞ þ ∑
lmax

l¼ 0
Vlðr, r0Þ ð2Þ

consisting of a local component Vloc, eq 3, and 0�3 (lmax)
nonlocal components Vl, eq 4, with the form

VlocðrÞ ¼ �Zion
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Zion is a valence charge, Yl,m are spherical harmonics, and hi,j
l are

scalars that define the energetic weighting of projectors pi/j
l , eq 5,

in each angular momentum channel l.
A potential of this type is fully defined via the set of Nσ

parameters:

frloc,C1,C2,C3,C4, r0, h
0
1, 1, h

0
2, 2, h

0
3, 3, r1, h

1
1, 1, :::, r2, h

2
1, 1, :::g ð6Þ

In the following, we use {σ} as simplified notation for this set.
From physical considerations, we impose an allowed interval

for each parameter. Thus, the optimization takes place in an Nσ

dimensional orthorhombic manifold in RNσ.
2.3. Artificial Bee Colony (ABC). The actual optimization

algorithm is taken from the field of swarm intelligence and as
such is inspired by nature itself. It mimicks the foraging behavior
of honeybees to sample a scalar function defined on an Nσ-
dimensional unit cube (Uσ) in an efficient manner. We use a set
of linear transformations to rescale and shift the allowed para-
meter space into the unit cube.
We define a population as a set of Npop agents, each represent-

ing a configuration {σ}a ∈ Uσ and the corresponding penalty

Figure 1. General QM/MM repartioning principle in which the C�R2
bond crosses the QM/MM border and is cleaved. The CH2 group is
replaced by a capping potential associated with a fictitious particle D,
saturating the C�R1 bond and hence terminating the QM region.
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P [{σ}a]. This artificial bee colony (ABC) algorithm distiguishes
three types of agents which, like honeybees in nature, fulfill
simple but different tasks:
• Scout-type agents have the biggest exploration tendency of
the three types. A scout chooses in every cycle a random
point {σ} from uniform distribution in Uσ and moves
unconditionally to that spot (global sampling).

• Employee-type agents have an additional local sampling
component. An employee type starts like a scout but
examines in each cycle a random spot {σ}0 from a uniform
distribution in a sphere of radius rs around its present
position {σ}. The agent moves only ifP [{σ}0] < P [{σ}].
Furthermore, if the agent cannot move for Na successive
cycles, it abandons its present position and restarts the search
again from a fully random spot in Uσ.

• Onlooker-type agents act, from the point of view of the
entire agent population, as feedback and amplify the ex-
ploitation of promising areas in Uσ that have been found by
other agents. Equipped with knowledge of all agents’ posi-
tions and penalties, an onlooker type randomly choses
another agent’s parameter set {σ}, inversely weighted by
the penalties. Then it chooses a spot {σ}0 from a uniform
distribution in a sphere of radius rs around {σ} and moves if
P [{σ}0] is smaller than its original penalty. Thus, this type
depends on the other agents’ results and ensures that good
parameter regions are not lost during an employee-type
resetting.

A more detailed description of employee- and onlooker-type
agents and their “interactions” is given in the flowcharts in
Figure 2.
Optimization starts with initialization of the population. In this

phase, every agent, regardless of its type, is randomly placed in
Uσ. Afterward, the ABC algorithm performs Ncycle cycles, each a
sequence of three steps:
1. Send the employee- and onlooker-type agents to their

destinations and evaluate the penalties.
2. Place the scout-type agents and the employee-type agents

that abandoned their positions randomly in Uσ.
3. Store the pseudopotential parameter set {σ} with the

lowest penalty in the present population.
Thus, the interaction of the three types of agents, determined

by the ABC algorithm, successivly searches for the global
minimum P [{σ}min] of the penalty functional.
The pseudocode of the ABC algorithm is given in Chart 1.

2.4. Evolution and Convergence of Optimization. We
define a combined index for the evolution of all agents:

τ :¼ i 3Npop ð7Þ
where 0 e i e Ncycle denotes the current optimization cycle.
Thus, τ corresponds to the computational cost under the
assumption that determination of the penalty P [{σ}] has a
fixed computational cost for all choices of {σ}. As this assump-
tion cannot be enforced formally, we limit the number of self-
consistent-field (SCF) iterations during the wave function
optimization for each penalty evaluation to 30. With this
combined index we can describe the evolution of the ensemble
of agents during one optimization run via

P ðτ ¼ 0Þ :¼ min
j¼ 1, :::,Npop

fP ½fσgj, i¼ 0�g

P ðτ > 0Þ :¼ min P ðτ�NpopÞ, min
j¼ 1, :::,Npop

fP ½fσgj, i 6¼0�g
� �

ð8Þ
where {σ}j,i are the pseudopotential parameters of agent j in the
ith optmization cycle (the case i = 0 denotes the initialization
phase). Hence, (τ) and {σ}(τ) refer to the minimal penalty after
an optimization time τ and the corresponding pseudopotential
parameter set.
To account for the stochastic nature of the optimization

process, we run Ntrial independent optimizations for each set of
control parameters (i.e., the number of employee- and onlooker-
type agents as well as the radius of the neighborhood sphere rs).
This enables us to describe the convergence behavior in statistical
terms. We distinguish between different optimization runs by a
new superscript 1 e k e Ntrial:

P minðτÞ ¼ min
k¼ 1, :::,Ntrial

fP kðτÞg ð9Þ

P maxðτÞ ¼ max
k¼ 1, :::,Ntrial

fP kðτÞg ð10Þ

Equations 9 and 10 describe a window in which all P k(τ) are
located for a fixed setting of control parameters (best- and worst-
case scenarios).
2.5. Computational Details. We perform all calculations

within density functional theory68�70 using the BLYP71,72 exchan-
ge�correlation functional, as implemented in theCPMDpackage.73,74

Figure 2. Employee-type (top) and onlooker-type (bottom) agents.
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We use standard norm-conserving pseudopotentials50,51 and an
energy cutoff of 70 Ry for the plane-wave expansion of the
Kohn�Sham orbitals.
Calculation of spectroscopic parameters, for example, NMR

chemical shifts, is done within density functional perturbation
theory as implemented in the linear response package of
CPMD.75�77

3. RESULTS

3.1. Stochastic Optimization of Capping Potentials. We
have applied the ABC algorithm to the optimization of GTH-type
cappingpotentialsVcap for hybridQM/MMcalculationswithinDFT.
In particular, we have examined the influence of control parameters
of the ABC algorithm (i.e., the number of employee and onlooker
type agents and the radius of the neighborhood sphere rs) on the
optimization process. For this purpose, we benchmarked a series of
capping potential optimizations for an isolated ethane molecule
(C2H6) inwhich onemethyl group is replaced by a capping potential,
with respect to a dummy particle D, as shown in Figure 3.
We begin the presentation of our optimization benchmarks

with the effect of number of employee- (E) and onlooker- (O)
type agents on evolution of the ensemble of agents for different
population sizes. For the initial benchmarks, a fixed value of
rs = 0.2 is used.Na is set to 10 and the penalty weights areωF = 1,
ωf = 0.01, andωe = 2 (arbitrary units).We initialize the first agent
in each optimization run with the standard carbon GTH pseudo-
potential. To allow for a higher level of flexibility of the capping
potential, we add an angular momentum channel (l = 1) with one
projector, which leads to a 7-dimensional parameter space.
Figures 4�6 show penalty minimization over an optimization

time 0e τe 800 forNpop = 4, 12, and 20, respectively. Each figure
shows the penalty evolution window as described by eqs 9 and 10
for different population setups Eþ O =Npop. The number of trial
runs is Ntrial = 5 for each choice of E/O. An employee-type agent
abandons its position after Na = 10 unsuccessful cycles.
We observe in Figure 4 (Npop = 4) a fast decrease of the lower

penalty boundaryP min(τ) during τe 100 for allE/O combinations.

This boundary remains practically unchanged for the remaining
optimization. On the other hand, the upper penalty boundary
P max(τ) shows a decay comparable to that of the lower penalty
boundary but only for combinations with no or few employee-type
agents. For equal numbers of employee/onlooker-type agents or a
higher amout of employee types, the upper penalty boundary
decreases on a much slower time scale with practically no conver-
gence in the all-employee-type case (E = Npop).
Very similar behavior of the lower penalty boundary is observed

for Npop = 12 (Figure 5). The decrease of the upper penalty
boundary is similar for combinations from 0 to 6 employee-type
agents, and significantly slower for higher numbers of E. The
decrease of P max(τ) happens on a slightly longer time scale
compared to the optimization benchmarks with Npop = 4.
This trend remains valid forNpop = 20 (Figure 6). The decrease

of the penalty window (i.e., the interval [P min(τ),P max(τ)]) is
significantly slower compared to smaller populations.
As an extreme case of employee/onlooker combinations, we

show in Figure 7 the upper and lower penalty boundaries for a
series ofNtrial = 5 optimization runs with a population consisting
of only one agent of employee type and Na > Ncycle The lower
penalty boundary reaches its minimum after an optimization
time of τ ≈ 230. The upper penalty boundary needs nearly τ ≈
800 to approach the value of the lower boundary.
The second control parameter of the optimization algorithm is

the size of the neighborhood sphere rs. Again, we run a series of
independent optimizations with a fixed population setup of 3
employee and 9 onlooker types, with Na = 10, ωσ = 1, ωf = 0.01,
and ωe = 2. We show in Figure 8 the upper penalty boundary
P max(τ) and lower penalty boundaryP min(τ) for different radii
rs, with Ntrial = 5 runs each.
We observe a steady (but slow) minimization behavior for

small radii rse 0.01. Intermediate radii (rs = 0.1 and 0.2) lead to a
fast decrease of the penalty window ([P min(τ),P max(τ)]).

Chart 1. Pseudocode of the ABC Algorithm

initialize population randomly
for i = 1...N_cycles do

run employee types
run onlooker types
run scout types
abandon solutions
update best solution

done

Figure 3. Ethane (C2H6) as test system for benchmarking. One methyl
group is replaced by a capping potential (green particle), which saturates
the remaining methyl group.

Figure 4. Population size/setup benchmarks: upper penalty boundary
P max(τ) and lower penalty boundaryP min(τ) with EþO = 4, rs = 0.2,
and Ntrial = 5.
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Bigger radii lead to a comparable decrease in the lower penalty
boundary. The upper penalty boundary, however, decreases
quite slowly and unsteadily.
The optimizations presented so far have all used the conven-

tional carbon GTH pseudopotential as starting point. While this
appears adequate for the particular situation of homolytic C�C

bond capping, we aim at designing capping potentials for more
complex settings. In order to test the performance of our ABC
algorithm in more difficult circumstances, we repeat the optimi-
zation of our C�C capping potential from a starting point with
randomized capping parameters.
For a population of E þ O = 12, Na = 10, rs = 0.2, ωF = 1,

ωf = 0.01, andωe = 2, we perform Ntrial = 5 independent optimi-
zations with varying combinations for E/O. The evolution for
this unfavorable initialization of agents is shown in Figure 9.
The behavior of the lower penalty boundary is nearly identical

for small to intermediate numbers of employee types. It decreases
more slowly for a higher amount of employee types. The upper
penalty boundary shows a similar pattern for all E/O combina-
tions, but an equal amount of employee and onlooker types shows
the best performance in an early stage of the optimization.
Regarding the combination of employee and onlooker agents,

it turns out that the optimal ratio depends strongly on whether
the present set of agents is “in direct view” of the final minimum,

Figure 5. Population size/setup benchmarks: upper penalty boundary
P max(τ) and lower penalty boundaryP min(τ) with EþO = 12, rs = 0.2,
and Ntrial = 5.

Figure 7. Single employee-type agent: lower penalty boundary P min-
(τ) and upper penalty boundaryP max(τ) with E =Npop = 1, rs = 0.2, and
Ntrial = 5.

Figure 6. Population size/setup benchmarks: upper penalty boundary
P max(τ) and lower penalty boundaryP min(τ) with EþO = 20, rs = 0.2,
and Ntrial = 5.

Figure 8. Sphere radius rs benchmarks: upper penalty boundaryP max-
(τ) and lower penalty boundary P min(τ) with Npop = 12, E/O = 3/9,
and Ntrial = 5.
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that is, in its proximity and without additional barriers on the way.
For a good starting point of the optimization, for example, the
feedback process inherent to onlooker agents leads to a speedup
of the optimization, and zero agents of employee type are best.
On the other hand, a nonoptimal starting point (as obtained via
the randomized initialization) requires a certain number of
agents with explorative character, that is, employee (or scout)
type agents. Hence, it might eventually be useful to switch the
distribution of employee versus onlooker types during the
progress of the optimization. Investigation of this effect, however,
exceeds the scope of the present paper.
As for the sphere radius rs, we find that a small value leads to a

slow “speed” of the agents in parameter space. A large value, on
the other hand, allows for large moves. However, the plateaus in
the evolution ofP max (Figure 8) for rsg 0.4 illustrate that a large
neigborhood area leads to a high rejection rate for the proposed
moves of the agents. We find that an intermediate choice of 0.1e
rse 0.2 leads to the fastest decay of the penalty window, due to a
trade-off between the “speed” of the agents in parameter space
and their rejection rate. We believe that this behavior indicates a
rich structure of the penalty surface, even for this simple case of
homolytic C�C bond capping.
3.2. Initial Benchmark of Optimized Capping Potentials.

To examine the quality of optimized capping potentials obtained
during our benchmarks, we compute electronic linear response
properties for a linear alkane molecule (hexane) in which the
terminal methyl group is replaced by a capping potential. In
particular, we compute spectroscopic properties that involve
both the occupied and excited manifold of electronic orbitals.
These parameters measure the performance of our capping
potential beyond the scope that is accessible by the penalty
functional (eq 1) because the latter is based only on the ground-
state density.

We have chosen 13C NMR chemical shifts δ for the character-
ization of our capping potentials. These chemical shifts are the
result of a complex interplay of occupied and excited electronic
states. Nevertheless, they are relatively short-sighted, which
means that a perturbation in the electronic spectrum reaches
no further than a few covalent bonds. Hence, they allow us to
monitor the range in which the QM/MM-induced bond cleavage
perturbs the electronic subsystem.
Specifically, we compute the distribution of deviations of the

trace of the nuclear shielding tensor σRβ for a capped molecule
with respect to a full calculation:

Δδ ¼ TrðσRβ½full-QM� � σRβ½QM=MM�Þ ð11Þ

This is done (1) in the optimized geometry of the full hexane
molecule and (2) in a geometry that has been optimized by use of
Vcap. In both cases, we obtain an ensemble of chemical shift
values from the ensemble of independent optimization runs.
Figure 10 shows the distribution of Δδ of carbon atoms Ci,

where C1 is the direct neighbor of Vcap. For both geometries, we
observe a similar picture: Δδ of the direct neighbor of Vcap has a
broad distribution with a clustering between �3 and �2 ppm.
The distribution for next two carbon atoms (C2 and C3) have
distinct peaks at �2 and 4 ppm, respectively. As for the last two
carbons, we find only minor deviations, far below 1 ppm, from
the reference NMR signature.
3.3. Application to Octane. While the main focus in this

article is on the algorithmic performance of the ABC algorithm in
the QM/MM context, we have nevertheless applied the ABC/
capping potential algorithm to C�C bond cleavage in a larger
molecule, specifically octane. Here, a butane fragment has been
replaced by a capping potential; see Figure 11.

Figure 10. Distribution n(Δδ) of the isotropic NMR chemical shiftΔδ
of carbon atoms in hexane with Vcap bound to C1 for an ensemble of 75
capping potentials obtained from independent optimizations: (top)
hexane geometry; (bottom) optimized geometry for Vcap.

Figure 9. Population setup benchmarks: upper penalty boundaryP max

(τ) and lower penalty boundaryP min(τ) with Eþ O = 12, rs = 0.2, and
Ntrial = 5 with fully random initialization.
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The optimization is performed over 500 cycles with E = 4 and
O = 6, a neigborhood sphere radius of rs = 0.1, and an integration
volume for the density difference consisting of spheres of size 1.5�
covalent radius around each atom exceptVcap. The penaltyweighting
factors areωF =ωf =ωe = 1. See Table 1 for the initial guess (regular
carbon) and optimized capping potential parameters (Vcap).
All geometric parameters (shown in Table 2) of the capped

octane molecule are in excellent agreement with the full octane
reference. This agreement holds for our new optimized potential
as well as for a previous version,49 and to some degree even for
the simpler hydrogen and fluorine cappings. While the hydrogen
termination looks like an accurate way of capping when theH�C
bond distance is ignored, it has a strong effect on the properties of
the subsequent C�C bond. This is shown in the potential energy
curve (Figure 12) of the C8�C11 bond: when hydrogen capping
is applied, the equilibrium distance is shortened by about 0.1 Å
and its frequency is considerably blue-shifted.
When the NMR chemical shift deviations (shown in Table 3)

are examined, a more heterogeneous picture arises. The conven-
tional H- and F-based cappings are only in very rough agreement
with the reference system, while both capping potentials yield
satisfactory results. When the latter two are compared, it turns
out that in our presently optimized capping potential (Vcap), the
first (C11) and third (C5) carbon atoms exhibit somewhat larger
deviations than the potential from ref 49, while the intermediate
carbon (C8) and most of the hydrogens show better agreement.
It is not clear at present what is the specific reason for these

deviations in terms of the capping parameters (given numerically
in Table 1). It is obvious, however, that the two capping
potentials have very different characteristics in terms of the range
of their local and nonlocal parts; in particular, the radius of the
local part (rloc) differs by a factor of more than 3, as does r1.
Nevertheless, this result clearly illustrates that the ABC algo-

rithm with its stochastic elements has the very important ability

Figure 11. Reference system octane and its capped counterpart: (top)
bond-capping scheme and (bottom) atom numbering.

Table 1. GTH Parameters for Regular Carbon and
Optimized C�C Capping Potential Vcap

rloc C1 C2 r0 h1,1
0 r1 h1,1

1

regular C 0.3376 �9.1285 1.4251 0.3025 9.6507

Vcap 0.2101 �13.1925 3.4867 0.2416 6.2451 0.3125 9.7340

ref 49 0.7221 9.9086 �2.5466 0.5120 �3.5081 1.4664 0.2316

Table 2. Optimized Bond Lengths, Angles, and Dihedrals of
the Octane Reference Molecule and Its Capped Counterpart

reference Vcap hydrogen fluorine ref 49

C1�C5 (Å) 1.54 1.55 1.55 1.54 1.55

C5�C8 (Å) 1.55 1.55 1.55 1.55 1.55

C8�C11 (Å) 1.55 1.54 1.55 1.53 1.55

C11�Vcap (Å) 1.55 1.62 1.10 1.47 1.55

C1�C5�C8 (deg) 113.4 113.5 113.6 113.1 113.7

C5�C8�C11(deg) 113.6 113.5 113.6 111.7 113.4

C8�C11�Vcap (deg) 114.0 113.7 111.3 110.2 116.2

C1�C5�C8�C11 (deg) �179.3 �179.9 179.8 �179.6 �177.2

C5�C8�C11�Vcap (deg) �179.5 �178.2 �179.3 179.6 179.7

Figure 12. Potential energy curve of the C8�C11 bond.

Table 3. 1H and 13C NMR Chemical Shift Changes of the
Capped Octane Molecule with Respect to Its Octane Refer-
ence, Δδ = σcap � σref

chemical shift change (ppm)

Δδ Vcap hydrogen fluorine ref 49

C1 0.16 �0.08 0.56 0.56

H2 0.03 0.01 �0.02 0.02

H3 0.04 0.01 �0.06 0.03

H4 0.04 0.02 �0.05 0.02

C5 �5.03 �1.56 6.77 �1.12

H6 0.12 0.07 0.14 0.14

H7 0.13 0.07 0.15 0.22

C8 �0.02 5.52 0.81 �0.32

H9 �0.40 �0.07 �0.47 �0.34

H10 �0.41 �0.06 �0.48 �0.41

C11 12.08 18.01 �52.08 �2.44

H12 �0.23 0.37 �3.49 �0.18

H13 �0.24 0.36 �3.47 �0.15
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to discover new regions of parameter space, which a downhill
algorithm (e.g., conjugate gradients) would never explore. In
order to obtain better capping potentials in terms of spectro-
scopic parameters, the optimization can now be adjusted by
means of weighting factors and the exact definition of penalty
integration volume. However, this is beyond the scope of the
present work and will be highlighted in a forthcoming article.

4. CONCLUSION

In this work, we have presented an algorithmic extension of a
numerical optimization scheme for capping potentials that can be
used for mixed quantum�classical (QM/MM) ab initio calcula-
tions. The new algorithm mixes deterministic (downhill
gradient) techniques with stochastic (Monte Carlo-like) moves,
which are applied to an analytic potential such that the electronic
structure in the quantum region is preserved as well as possible
with respect to a reference (full-QM) calculation. Deviations
from the ideal electronic (and geometric) structure are charac-
terized by a suitably designed penalty functional, which repre-
sents the target quantity that is minimized with respect to the
parameters of the capping potential.

Our algorithm is a variant of the artificial bee colony (ABC)
approach, which has certain analogies to the foraging behavior of
honeybees in nature. From a computational view, it bears simila-
rities to the ideas used in parallel tempering schemes. The stochastic
elements that are incorporated into the ABC optimization avoid
trapping in local minima of the penalty functional hypersurface. For
the benchmark molecule (ethane) used in this work, this surface is
still relatively smooth; however, as soon asmore complexmolecules
are targeted, the stochastic components of the ABC algorithm are
very important due to the presence of numerous wiggles in this
surface. This could be shown by using a randomized starting point
for the capping potential optimization. For such more
complex situations, several control parameters of the ABC scheme
can be adjusted in order to improve the convergence behavior.

The properties of the resulting capping potentials have been
characterized in terms of the deviations of carbon NMR chemical
shift values with respect to a reference calculation. For our
homolytic cleavage of a Csp3�Csp3 bond, the properties resemble
those of the optimized capping potentials that were obtained
previously by the deterministic simplex minimization approach.49

In turn, our new algorithm has found a considerably different set
of values of the capping parameters, mainly because of the use of
a slightly different set of weighting parameters within the penalty
functional. This illustrates that the penalty surface has indeed a
rich substructure, even in a very simple case such as the homolytic
capping of ethane.

We believe that the new ABC optimization scheme will help
generating better capping potentials for more complex situations
in which special care is necessary. In particular, we are presently
applying the algorithm to heterolytic bond cleavage (i.e., C�N
and C�O bonds), as well as the capping of highly polar and
charged groups (i.e., COOH and COO�), which are of crucial
importance for most biophysical QM/MM simulations.
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ABSTRACT:The details of the graphical processing unit (GPU) implementation of themost computationally intensive (T)-part of
the recently introduced regularized CCSD(T) (Reg-CCSD(T)) method [Kowalski, K.; Valiev, M. J. Chem. Phys. 2009, 131, No.
234107] for calculating electronic energies of strongly correlated systems are discussed. Parallel tests performed for several
molecular systems show very good scalability of the triples part of the Reg-CCSD(T) approach. We also discuss the performance of
the Reg-CCSD(T) GPU implementation as a function of the parameters defining the partitioning of the spinorbital domain (tiling
structure). The accuracy of the Reg-CCSD(T) method is illustrated on three examples: the methyfluoride molecule, dissociation of
dodecane, and open-shell Spiro cation (5,50(4H,4H0)-spirobi[cyclopenta[c]pyrrole] 2,20,6,60-tetrahydro cation), which is a
frequently used model to study electron transfer processes. It is demonstrated that a simple regularization of the cluster amplitudes
used in the noniterative corrections accounting for the effect of triply excited configurations significantly improves the accuracies of
ground-state energies in the presence of strong quasidegeneracy effects. For methylfluoride, we compare the Reg-CCSD(T) results
with the CR-CC(2,3) and CCSDT energies, whereas for Spiro cation we compare Reg-CCSD(T) results with the energies obtained
with completely renormalized CCSD(T) method. Performance tests for the Spiro, dodecane, and uracil molecules are also
discussed.

1. INTRODUCTION

The widespread use of highly correlated methods in electronic
structure calculations is contingent upon the interplay between
advances in the theory and the possibility of utilizing ever-
growing computer power of emerging architectures. Due to their
accuracy, coupled cluster (CC) methods1�4 have assumed a
special position in high-precision calculations for molecular
systems.5�7 The well established family of iterative approxima-
tions CCSD (CC with singles and doubles),8,9 CCSDT (CC
with singles, doubles, and triples),10,11 etc., provide an increasing
level of accuracy of resulting energies. Unfortunately, due to the
steep numerical complexity, CCSDT applications are very
limited. The development of perturbative methods has played
a large part to overcome these difficulties. In the CCSD[T]12 and
CCSD(T)13 approaches, the perturbative corrections are con-
structed in terms of converged CCSD cluster amplitudes. For
equilibrium geometries of closed-shell systems the CCSD(T)
approach is capable of providing nearly CCSDT level of accuracy.
For problems that require knowledge of ground-state potential
energy surfaces (PESs) and energies for stretched internuclear
geometries, many approaches have been devised to alleviate the
problems caused by the divergent nature of the perturba-
tive expansion. There are two main groups of these approaches.
The first class of methods is related to alternative perturbative
expansions for similarity transformed Hamiltonian,14�28 while
the other class of methods is deeply rooted in the Method of
Moments of Coupled Cluster equations.29�35 Regardless of
the origin, all these noniterative methods lead to very accurate
results for processes where a single bond is broken. These

CCSD(T)-like approaches (and approaches of even higher
order) can be also used in highly accurate thermochemistry
calculations.36,37

Given the importance of CCSD(T)-like methods for high-
precision calculations, significant progress has been made toward
the development of scalable CC codes38�47 enabling calculations
on large-scale molecular systems. The NWChem48 implementa-
tion of the (T)-part of the CCSD(T) approach has been shown
to scale across 250 000 cores,49 which should be attributed to the
natural parallelism of noniterative approaches. Other compo-
nents of the whole CCSD(T) calculation, Hartree�Fock, 4-in-
dex transformation, and CCSD implementations, because of
the much smaller task pool, scale across much smaller number
of cores.

Equally important to the development of new theoretical
algorithms are the implementations on emerging computer
architectures. The emergence of general purpose graphic proces-
sing units (GPGPUs) has revolutionized computational science
by making available an unprecedented amount of computing
capability. There are several examples of successful development
of GPU-based software in computational chemistry.50�64 While
GPUs have been employed in accelerating scientific calculations
in the past, programming them required mapping the application
to the graphic processing pipeline, a challenging task. The advent
of higher-level programming support, such as through CUDA
and OpenCL, has made it easier to exploit their potential. The

Received: December 16, 2010
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widespread availability of GPU-accelerated systems, ranging
from workstations to supercomputers, stresses the need to
develop algorithms to effectively utilize them, and the work’s
impact on researchers with access to varying computing re-
sources. Recently, we discussed the first GPU implementation
of the CCSD(T) method,65 which due to its large flop count is
ideally suited for this type of computer architectures. In this
paper, we will discuss accuracies and numerical performance of
the GPU implementation of the regularized CCSD(T) approach
(Reg-CCSD(T)),66 which can be used in calculations for
strongly correlated systems. In analogy to the CCSD(T)method,
the Reg-CCSD(T) approach is characterized by the same no

3nu
4

(no and nu designate the number of occupied and unoccupied
orbitals, respectively) numerical complexity. This high numerical
overhead is associated with calculating triples correction or (T)-
part in short, which is especially challenging for systems with
large number of correlated electrons and large virtual space
(assuming that two (T) calculations were performed with the
same numberN of correlated orbitals,N = noþ nu = 1000, but for
two different values of no, no = 20, and no = 400, the latter
calculations is more than 3 orders of magnitude more expensive
compared to the no = 20 case). Our discussion will be based on
the calculations for several challenging systems: C�F bond
elongation in the methylfluoride, dissociation of dodecane,
C12H26, into C11H23 and CH3, and the mixed valence system
5,50(4H,4H0)-spirobi[cyclopenta[c]pyrrole]2,20,6,60-tetrahydro
cation (or Spiro cation for short).67 While the methylfluoride
and dodecane molecules epitomize common problems the
CCSD(T) approach stumble into when both static and dynamic
correlation effects play an equally important role, the Spiro
molecule is frequently used in fundamental studies of charge
transport processes and poses a significant challenge even for
multireference perturbative methods.67�70 The paper is orga-
nized as follows: in section 2, we give a brief overview of
regularization techniques for CC theory, in section 3 details of
the GPU implementation of the most expensive (T)-part are
described. In section 4 we discuss the quality of the potential
energy surfaces (PESs) for methylfluoride, C12H26 dissociation,
and Spiro cation and illustrate the parallel performance on the
example of calculations for Spiro cation and uracil.

2. THEORY

In this section, we present only the salient features of the
regularized methods derived from the generating functional
expansion of ref 71, where it was demonstrated that the exact
energy (E) for the ground electronic state can be expanded as

E ¼ EðAÞ þ ∑
J;J 6¼0

MðAÞ
J

D
DSJ

WðΣ, SÞ
" #�����

SðAÞ ¼TðAÞ;SðRÞ ¼ 0

ð1Þ

Here the energy E(A) is an approximate energy obtained in
approximate CC calculations (CC-A) defined by the approxi-
mate cluster operator T(A)

TðAÞ ¼ ∑
mA

n¼ 1
Tn ð2Þ

Tn ¼ ∑
i1 < ::: < in;a1 < ::: < an

ti1:::ina1:::an
Xþ
a1
:::Xþ

an
Xin :::Xi1 ð3Þ

The i1, ..., in (a1, ..., an) indices refer to the occupied
(unoccupied) spinorbitals in the reference function |Φæ and

the Xp
þ (Xp) operators are creation (annihilation) operators for

electrons in p-th single particle state. The cluster operator
includes excitations of rank equal or lower than mA. In practice
mA, N (N stands for the total number of correlated electrons).
In expansion (eq 1) the Σ operator corresponds to the exact
cluster operator (Σ = ∑n=1

N Σn, where the n-tuply excited many-
body component Σn of Σ, in analogy to (eq 2) is defined by the
Σa1...an

i1...in amplitudes). The auxiliary cluster operator S (S = ∑n=1
N Sn),

introduced in refs 66 and 71 is chosen in such a way that
the auxiliary wave function eS|Φæ is in a close vicinity of the
approximate wave function eT

(A)

|Φæ. We also assume that the
exact wave function falls into the same vicinity (these assump-
tions are critical from the point of view of convergence properties
of the connected form of the generating functional). The S(A)

part of the S operator in eq 1 is defined by the excitations used to
define the T(A) operator, while the S(R) part of the S operator
contains higher excitations. The reference function |Φæ is usually
represented by the Hartree�Fock (HF) determinant. In eq 1
the quantities MhJ

(A) correspond to the matrix elements of the
moments operator (see ref 71 for details) and are defined as

MðAÞ
J ¼ ÆΦa1:::an

i1:::in jH
_ðAÞjΦæ ð4Þ

where the string convention of ref 32 is invoked, that is, the
nonzero string J corresponds to the excitation designated by
the ordered set of occupied/unoccupied indices {i1 < ... < in;
a1 < ... < an}. The similarity transformed Hamiltonian, Hh(A),
is defined asHh(A) = e�T(A)

HeT
(A)

, where theH operator represents
the electronic Hamiltonian. The Hh(A) operator contains con-
nected diagrams only. The central role in eq 1 is played by the so-
called generating functional W(Σ,S), which is defined as a
connected part of the overlap between the exact CC wave
function and auxiliary wave function defined by the auxiliary
cluster operator, that is,

WðΣ, SÞ ¼ ÆΦjðeΣþ
eSÞCjΦæ ¼ lnðÆΦjeΣþ

eSjΦæÞ
¼ lnð1þ γðΣ, SÞÞ ð5Þ

where subscript “C” designates connected part of a given
expression and theγ(Σ,S) function corresponds to the correlated
part of the overlap between auxiliary and exact CC functions, that
is, γ(Σ,S) = ÆΦ|(eΣ

þ�1)(eS�1)|Φæ, where Σþ is a Hermitian
conjugate of the Σ operator. The features of the generating
functional fully determine the basic features of the expansion in
eq 1. In particular, the connectedness of W(Σ,S) implicates the
connectedness of expansion eq 1 (assuming the connectedness
of cluster amplitudes). The formula (eq 1) was derived using the
Taylor expansion for ln(1 þ γ(Σ,S)), which is only valid when
the condition

jγðΣ, SÞj < 1 ð6Þ
is satisfied. This fact limits the applicability of the expansion in
(eq 1) to weakly correlated systems. To maintain the form of the
expansion in eq 1 in the strong interaction regime one has to
artificially redefine certain parameters of the generating func-
tional expansion in order to decrease the value of |γ(Σ,S)|. This
type of procedure is commonly referred to as the regularization
procedure. There is great flexibility as far as the choice of the
regularization procedure is concerned. For the sake of simplicity,
we pursue perhaps the most obvious choice corresponding to the
regularization of the Σ operator in the generating functional
W(Σ,S).71 To address this issue we adopted ideas similar to the
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Tikhonov regularization, which have recently been explored by
Taube and Bartlett72 in the context of ill defined linear CC
equations for quasidegenerate systems. In our procedure, de-
scribed in ref 66, the regularized Σ operator (Σreg) is obtained
by solving modified CC equations, which use the regularized
form of the Hamiltonian (Hreg) defined as

Hreg ¼ H þω2Nu ð7Þ
where theNu operator is defined asNu = ∑aXa

þXa, and represents
particle number operator for particles in virtual states. The
presence of this operator in the equations for regularized cluster
operators Σreg is similar to the level shift techniques.

The described regularization scheme was used to define the
due-to-triples corrections to energies obtained with the CCSD
approach (mA = 2, T(A) = T1 þ T2, E

(A) = ECCSD). For this
purpose, we used the following form of the generating functional:

W
_
ðΣreg, S3Þ = Φ

�����
*

Σreg, 3 þ Σreg, 1Σreg, 2

��

þ 1
6
ðΣreg, 1Þ3

�†

S3

)
C

�����Φ
+

ð8Þ

where the contributions containing only S1 and S2 were ne-
glected because singly (MJ1

CCSD) and doubly excited moments
(MJ2

CCSD) are zeroed in the process of solving CCSD equations.
By substituting eq 8 into eq 1, we can derive the so-called Reg-
GF(T) approximation (see ref 66)

EReg-GFðTÞ ¼ ECCSD þ Φ

�����
*

Σreg, 3 þ Σreg, 1Σreg, 2

��

þ 1
6
ðΣreg, 1Þ3

�†

MCCSD
3

)
C

�����Φ
+

ð9Þ

where Σreg,1, Σreg,2, and Σreg,3 are the regularized Σ amplitudes.
While the Σreg,1 and Σreg,2 amplitudes are approximated by singly
and doubly excited cluster amplitudes obtained by solving CCSD
equations with regularized form of the electronic Hamiltonian
Hreg, theΣreg,3 amplitudes (Σ~a1a2a3

i1i2i3 ) are obtained in a perturbative
manner

~Σ i1 i2 i3
a1a2a3 ¼ Mi1 i2 i3

a1a2a3
ðΣreg, 1,Σreg, 2Þ

εi1 þ εi2 þ εi3 � εa1 � εa2 � εa3 � 3ω2
ð10Þ

where Mha1a2a3
i1 i2i3 (Σreg,1,Σreg,2) are triply excited moments for regu-

larized CCSD equations. In ref 66, the regularized version of the
CCSD(T) approach (Reg-CCSD(T)) was introduced

EReg-CCSDðTÞ ¼ ECCSD þ ÆΦjðVNΣreg, 2

þ VNΣreg, 1ÞþRð3Þ
0 ðω2ÞðVNT2ÞjΦæ ð11Þ

whereVN is two-body part of the electronic Hamiltonian in normal
product form and R0

(3)(ω2) is theω2-dependent resolvent defined
by eq 33 of ref 66. The Reg-CCSD(T) approach can be easily
implemented using existing CCSD(T) implementations. In the
current form both Reg-GF(T) and Reg-CCSD(T) approaches as
ω2-dependent methods should be classified as semiempirical
approaches. Despite its simplicity, the Reg-CCSD(T) method
offers considerable improvements upon the CCSD(T) results
especially for strongly correlated systems at the same no

3nu
4 numer-

ical cost as the genuineCCSD(T)method.Webelieve that efficient

parallel GPU implementation of the triples part of the regularized
CCSD(T)method has potential to evolve into a tool that is capable
of providing credible predictions for strongly correlated systems. In
the forthcoming sections, we will give details of our (T) imple-
mentations and discuss their parallel performance.

3. IMPLEMENTATION DETAILS

In this section, we present the evaluation of the noniterative triples
correctiononGPUs. It involves a code-generationbased approach to
generating CUDA code from a high-level specification of tensor
contractions. Several optimizations are identified in mapping the
tensor contractions to the resources in a GPU. We then develop a
hybrid implementation that effectively utilizes the cores and GPU
accelerators available in a cluster of SMP nodes with GPUs.

To calculate triples correction two general type quantities,
which appear on the right and on the left of the R0

(3)(ω2)
resolvent, need to be calculated:

ÆΦabc
ijk jVNT2jΦæ ¼ vijmat

mk
bc � vijmbt

mk
ac þ vijmct

mk
ab

� vikmat
mj
bc þ vikmbt

mj
ac � vikmct

mj
ab þ vjkmat

mi
bc � vjkmbt

mi
ac þ vjkmct

mi
ab

� veiabt
jk
ec þ veiact

jk
eb � veibct

jk
ea þ vejabt

ik
ec � vejact

ik
eb þ vejbct

ik
ea

� vekabt
ij
ec þ vekact

ij
eb � vekbct

ij
ea, ði < j < k, a < b < cÞ ð12Þ

and

ÆΦabc
ijk jVNT1jΦæ ¼ vijabt

k
c � vijact

k
b þ vijbct

k
a � vikabt

j
c þ vikact

j
b

� vikbct
j
a þ vjkabt

i
c � vjkact

i
b þ vjkbct

i
a, ði < j < k, a < b < cÞ ð13Þ

where T1 and T2 refer either to genuine or regularized CCSD
amplitudes. The i, j, k, l, m, n, ... (a, b, c, d, e, ...) indices designate
occupied (unoccupied) spinorbitals. Of the two terms described
by the above equations, the first one (section 3) contributes to
the no

3nu
4 scaling. Tensors corresponding to 2-electron integrals

and doubly excited amplitudes are assumed to be antisymmetric
in all pairs of lower and upper indices. In order to provide
granularity for the parallel Tensor Contraction Engine38 gener-
ated codes, the whole spinrobital domain is partitioned into
smaller pieces called tileswhich contain several spinorbitals of the
same spatial- and spin-symmetry. The maximum number of
elements in the tile is often referred to as the tilesize. This
partitioning induces partitioning or block-structure of all tensors
used in the CC calculations, including: amplitudes, recursive
intermediates, integrals, and residual vectors. In the parallel
implementation of the (T)-part each core takes care of different
set of projections defined by tiles: [i], [j], [k], [a], [b], [c], i.e.,
each core generates on-the-fly the set of ÆΦijk

abc|VNT2|Φæ and
ÆΦijk

abc|VNT1|Φæ projections with i∈[i], j∈[j], k∈[k], a∈[a],
b∈[b], c∈[c]. These projections are stored on the six-dimen-
sional matrices P3 (ÆΦijk

abc|VNT2|Φæ)and R3 (ÆΦijk
abc|VNT1|Φæ).

In our implementation, this condition is replaced by the do -loop
structure for each tile corresponding to ([i]e [j]e [k]) and ([a]e
[b]e [c]).This incurs a small amountof redundancy at theboundary
of the conditionals (when the equality is satisfied). This has been
shown in practice to be very small as compared to the total work done
and is correctly incorporated through the use of appropriate constant
coefficients. For example, P3 is defined as the following matrix

P3 � P3ðdim½a�, dim½b�, dim½c�, dim½i�, dim½j�, dim½k�Þ ð14Þ
where dim[i], ..., dim[c] are the dimensions of the corresponding tiles
(they will be denoted id, jd, kd, ad, bd, cd). Therefore, the local
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memory requirement for storing P3 and R3 matrices is defined by
tilesize6. If tilesize equals 20 this is equivalent to 0.48 GB (in recently
developed algorithm for (T)-part of TCE these tensors can be
“sliced” along the first two dimensions, which lead to a less intensive
use of the localmemory and effectively larger tilesize canbe used in the
(T) calculations). Because the totalflopcount oneach core associated
with forming P3 and R3 tensors is proportional to tilesize6 *nu, where
nu stands here for the total number of correlated virtual spinorbitals,
this type of calculation is ideally suited to take advantage of GPU
accelerators. The whole process is split into number of smaller tasks,
where the summation goes over indices from a single tile, for example

P3ða, b, c, i, j, kÞ � ¼ ∑
e ∈ ½e�

Vða, b, e, iÞ�T2ðj, k, e, cÞ

ði ∈ ½i�, j ∈ ½j�, k ∈ ½k�, a ∈ ½a�, b ∈ ½b�, c ∈ ½c�Þ ð15Þ
where V(a,b,e,i) and T2(j,k,e,c) are 2-electron integrals and doubly
excited amplitudes tensors. For this elementary task the flop count is
equal to tilesize7, which for tilesize = 20 corresponds to 1.2 GF. We
expect, that the utilization of the GPU accelerators should lead to
considerable speedups in the case of large numerical load, which is
created by the use of larger tiles.
3.1. GPU Architecture and Execution Model. CUDA73 is a

language extension to C developed by NVIDIA to program
GPGPUs. GPU devices that support the CUDA programming
environment consist of severalmultiprocessors (SMs), eachwith a
fast sharedmemory, a constant cache, a single instruction unit, and
multiple processor cores.
The CUDA programming model views the GPU as an

accelerator to which parts of the computation, referred to as
kernels, are offloaded by the host CPU. A kernel consists of a grid
of thread blocks, with each thread block consisting of multiple
threads. All threads in a kernel invocation can access the global
memory, which is persistent across kernel invocations. A thread-
block is mapped to a multiprocessor (MP). The shared memory
associated with the MP is only accessible to threads in a thread
block, and is not persistent across thread blocks. Given that each
MP consists of a single instruction unit, effective utilization
requires that all threads execute the same instruction whenever
possible. Conditional branches that diverge among the threads
can greatly reduce achieved performance. The execution in a
thread block in which few threads are performing work, referred
to as thread block under-utilization, also inhibits performance.
Each thread can identify its position in the thread block, and in
the grid of thread blocks through implicit variables. These are the

only distinguishing identifiers of a given thread, and are used to
encode all thread-specific computation.
Table 1 summarizes the specification of the two GPU architec-

tures that were the target of our optimizations. Tesla T10 contains
the GF100 GPU processor, while Tesla T20, known as “Fermi”, is
the latest series of graphic card products by NVIDIA. The peak
double precision performance has improved from previous gen-
erations by a factor of 6.6 (a peak of∼480 GFlops). However, the
memory bandwidth and the clock speed for device memory
accesses, and the data transfer rates between the host and the
device, have improved by a much smaller factor. Thus, we can
expect that accesses to device memory and data transfers from host
memory can be even more of a bottleneck with T20 cards. Fermi
has a much larger shared memory with respect to previous genera-
tions, that can also act as a Level 1 data cache. It can be configured as
48 KB sharedmemory and 16 KB L1 cache, or 48 KB L1 cache and
16KB shared memory. Shared memory is still allocated per thread
block. The register file is also much larger. Unlike previous cards, a
Level 2 cache is also available.
3.2. Multi-Dimensional Tensor Contractions. We are inter-

ested in a direct implementation of optimized tensor contractions
on CUDA-programmable GPU devices. A tensor contraction can
be viewed as a generalized multidimensional matrix multiplication.
Often, it is transformed into a regular matrix multiplication opera-
tion through transposition operations. However, such an approach
might not most effectively utilize the available hardware resources.
While matrix multiplication can be optimized assuming large

dimensions lending themselves to tiling for every level of the
memory hierarchy to ensure that the operation is computation-
bound, the large dimensionality of the tensors could often result
in each dimension being relatively small. The small size of each
dimension interferes with achieving good locality. The encoding
of the indices into the thread coordinates incurs high index
computation overhead. The small size of the common dimension
results in the equivalent of highly rectangular matrix multiplica-
tion operations, which are harder to optimize than the square
versions typically employed in benchmark studies.
3.3. CUDA-Targeted Tensor Contraction Implementation.

In this section, we present the various optimizations performed, with
illustrative code snippets, in generating an efficient CUDA imple-
mentation of a given tensor contraction.Webeginwith optimizations
that are generally applicable to CUDA-capable devices, in particular
both T10 and T20 NVIDIA GPU cards. This discussion is followed
by a presentation of the optimizations specifically targeted at the T20
cards with their latest generation Fermi GPUs. We consider a typical
tensor contraction specification given by the following example:

P3ðb,c,a,i,k,jÞ � ¼ ∑
l ∈ ½l�

V2ðl,a,i,jÞ�T2ðl,k,c,bÞ

which is taken from theTCEgenerated code for the noniterative (T)
correction (slightly different convention is used in eq 15. P3, V2,
and T2 are tensors, and a, b, c, i, k, j, and l are particle or hole
indices as appropriate).Note that theGPU implementation faithfully
reproduces the computation structure on the CPU, ensuring
correctness of the results produced and avoiding any potential
redundant computation, other than those in the CPU version.
3.3.1. Memory Management. A typical computation in the

application involves numerous calls to the sequential tensor
contraction. Allocating and deallocating CUDA memory, both
on the host and on the device, for every kernel invocation would
be expensive. We implemented a memory manager that serves
allocation requests from previously allocated memory that is

Table 1. Architectural Comparison of Tesla T10 and T20
Series

Tesla T10 Tesla T20

num. multiprocessors (SM) 30 14

num. cores per SM 8 32

SM clock frequency 1.3 GHz 1.15 GHz

single precision peak GFLOPS 933 1030

double precision peak GFLOPS 78 515

memory frequency 800 MHz 1.5 GHz

memory bandwidth 102 GB/sec 144 GB/sec

memory interface 512 bit 384 bit

shared memory 16 KB 16 KB/48 KB

L1 cache 48 KB/16 KB

L2 cache 768 KB
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current not being used. Thememory allocation for the arrays is as
shown. The getGPUmem calls are the wrappers implemented
for more efficient memory management

double *P3_d=getGPUmem(size_of_P3);
double *T2_d=getGPUmem(size_of_T2);
double *V2_d=getGPUmem(size_of_V2);
In the sample code above, size_of_P3 denote the size of

the array P3. It reuses the previously freed GPU memory if it is
enough for P3.
3.3.2. Kernel Arguments. Accessing portions of multidimen-

sional arrays in GPU memory requires computation of the strides
along the different dimensions. This scalar arithmetic is redundantly
executed by each thread and cannot be overlapped with memory or
floating-point operations on these systems. We therefore compute
the strides in the host CPU, as shown below, and pass them as
arguments to the kernel.Note that P3 is stored as a one-dimensional
array. The offsets for other arrays are calculated in a similar fashion.

/* parameters calculated in host: */
P3_offset_c = bd;
P3_offset_a = bd*cd;

3 3 3
/* offset computation in GPU kernel: */
int offset_P3(b,c,a,i,k,j) {

return b þ P3_offset_c*c þ
P3_offset_a*a þ 3 3 3 þ

P3_offset_j*j;
}
/* offset_T2(1,k,c,b)
and offset_V2(l,a,i,j) are
similarly defined */

3.3.3. Encoding Thread-Block Specific Arguments. The
indices to be operated upon by a given thread are decoded from
its coordinates in the thread block and thread block grid by
modulo and division operations. These operations are not
very efficient onGPUs as they require the use of Special Function
Units. To reduce such operations, the indices of the output
matrix are mapped to a two dimensional thread grid, according to
the two input matrices, which means the indices from the first
input matrix are mapped to the y dimension of the thread grid,
and indices from the second input matrix are mapped to the x
dimension, resulting in the configuration below.

dim2 dimGrid(ceil(kd/BLOCK_DIM_Y)*cd
*bd,ceil(ad/BLOCK_DIM_X)*id*jd);

3.3.4. Index Combining. In some tensor contractions, a se-
quence of indicesmight occur in the sameorder in every occurrence.
These sequences of indices can be replaced by a combined index.
This optimization reduces index computation overhead while
improving thread block utilization. While combining of indices
might not be possible for all tensor contractions, there is no negative
side-effect and we employ this optimization where possible. For the
illustrative tensor contraction, by using index combining, we set x as
the multiplication of a and i, therefore it results in the following:

P3ðb,c,x,k,jÞ � ¼ T2ðl,k,c,bÞ�V2ðl,x,jÞ
3.3.5. Dimension Flattening. Tiling of the loops in a tensor

contraction enables different threads to cooperate in data move-
ment, and enables maximal reuse of the transferred data to
minimize data transfer per floating point operation. The tensor
contraction could be implemented as a sequence of matrix
multiplication on possibly strided data. In the example that we

have been using through this section, all threads in one thread
block work on elements P3(b,c,aT:aTþ16,i,kT:
kTþ16,j), assuming one block has 16 � 16 threads. This
works well when the tiled dimensions are large or match the
thread block configuration. The application tile sizes encountered
at runtime often do not match the fixed thread block size chosen
at compile time. The result is the execution of numerous thread-
blocks with fewer threads than available, with ensuing poor
utilization of threads blocks and poor performance. For example,
a dimension size of 17 for a thread block size of 16 results in two
thread blocks, with total only 17 of total 32 threads being used.
To solve this problem, we optimize the code by dimension

flattening. This is illustrated in Figure 1. In the dimension-flattened
version, we group the indices of the output array into two dimen-
sions, according to the origin of the indices. In the example we have
been using, the two groups are(k,c,b) and(a,i,j). Tiling is
done on the grouped indices, instead of a single index as in the
original algorithm. Thus, different threads in one thread block could
compute output elements that havemore than two different indices.
The order in which the indices are flattened has an impact on the
data access costs for the arrays. We considered flattening orders that
favors inputs and outputs and found the order favoring the inputs to
be most effective. This is the order used in the experiments.
3.3.6. Pipelined Execution. In a parallel execution of coupled

cluster calculations, the data is transferred from remote to local
memory for processing by the host CPU. This data needs to be
transferred to the GPU memory prior to kernel invocation and
the result transferred back to host memory. CUDA enables
overlap of this data transfer with kernel invocation through the
use of streams. To ensure efficient data transfer, we use the
outermost dimension of the output tensor as the streaming index.
The number of kernel invocations is the same as the value of the
streaming index. dimension.

Figure 1. Illustration of dimension flattening. The solid lines correspond
to different two-dimensional regions. The dotted lines correspond to the
mapping of the data blocks to the thread blocks. A and B matrices are
implicitly flattened into two-dimensional arrays. This implicit flattening is
used to map the work to be performed to the thread blocks. As shown in
the figure, this results in most thread-blocks being fully utilized.
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Building upon the streaming strategy we also implement a
pipelined approach with the host participating in the contraction
by performing the accumulation and thus avoiding the initial copy
of the large tensors in the GPU memory. With this approach we
traded off data transfer with computation, allowing a better
utilization of the available resources and reducing the amount of
traffic on the PCI-Express bus. This three-stage pipelined design
ensures that the different components of the architecture: theCPU,
the GPU, and the PCI-express bus are all utilized to minimize the
execution time. Figure 2 shows the concept above-discussed,
assuming the total amount of streams to transfer equal to N.
3.3.7. Hybrid Execution. The above optimization, with the

GPU and CPU collaborating in performing a single contrac-
tion, is a clear instance of hybrid execution. However, general high-
performance SMP nodes (as the one used in our experiments)
have more CPU computing cores than GPUs. As each GPU in an
SMP node requires a separate core that drives the kernel execution
and participates in its pipelined processing, the “spare” cores can
be used to compute serially other contractions. This can be seen as
a second level of hybrid execution.We implemented this approach
introducing a high level load balancer to distribute the contrac-
tions. This design maximally utilizes the computational resources
available to reduce the time to solution.
3.3.8. Optimizations Specific to the Fermi (T20) GPU Archi-

tecture.TheCUDA code generator had to bemodified to adapt to
the different architectural trade-offs presented by the Fermi GPU
architecture. Here we identify the specific architectural differences
and the adaptations we undertook to account for them.
3.3.8.1. Elimination of PCI Express Data Transfer. As

discussed above, the data transfer across the PCI express can be
effectively overlapped with the kernel execution on the GPU,
through different pipelining approaches. The greater factor of
improvement in the computation rate on the Fermi GPU archi-
tecture as compared to the improvement in memory bandwidth
results in the execution being bound by data transfer, evenwith the
pipelining approaches. To achieve the best execution time, we
modified the application to keep the intermediate in memory,
across tensor contractions. The inputs need to be transferred into
the GPU. The intermediate is computed and translated into a
scalar contribution to the energy value, which is transferred back to
the host memory. The compute structure is shown below:

double *P3_s = getGPUmem(size_inter-
mediate);
/*intermediate tile */
double *P3_d = getGPUmem(sizeof(
double));
/*energy scalar*/
ccsd_t_single(P3_s);
/*Moves inputs to GPU memory;*/
/*Result updated in GPU memory*/

ccsd_t_doubles_1((P3_s); /*as above*/
ccsd_t_doubles_2(P3_s); /* -do- */
compute_energy(P3_s, P3_d); /* -do- */
transfer_to_cpu(P3_d);/*oneelement*/
3.3.8.2. Register Tiling. Fermi includes a wider register file and

larger shared memory enabling register tiling, which improves
data reuse and reduces the data transfer with the GPU memory
hierarchy. We modified our implementation such that each
thread contributes to 16 output elements, rather than 1 as in
the original algorithm. All contributions are stored in 16 double
precision registers and finally written back to GPU memory.
3.3.8.3. Scalar Optimizations. While the double precision

performance is improved by a factor of 6.6 in Fermi, the scalar
instructions do not see a corresponding improvement in perfor-
mance. However, register tiling results in each thread performing
more computation enabling scalar optimizations across calcula-
tions for the 16 output elements. Each write to the GPUmemory
is enclosed in a boundary check to ensure that thread has a valid
contribution to make, in cases when the tile being executed is
smalled the thread block size. We coalesce the condition checks
to minimize them in the common case. The original boundary
checking order for four output elements is as shown below:

if(thread_y<total_y)
p3[offset_1]þ=tlocal1

if(thread_yþ16<total_y)
p3[offset_2]þ=tlocal2;

if(thread_yþ16*2<total_y)
p3[offset_3]þ=tlocal3;

if(thread_yþ16*3<total_y)
p3[offset_4]þ=tlocal4;

The modified order we employ is shown below:
if(thread_yþ16*3<total_y)

{ p3[offset_1]þ=tlocal1;
p3[offset_2]þ=tlocal2;
p3[offset_3]þ=tlocal3;
p3[offset_4]þ=tlocal4;
}

else if(thread_yþ16*2<total_y)
{ p3[offset_1]þ=tlocal1;
p3[offset_2]þ=tlocal2;
p3[offset_3]þ=tlocal3;
}

else if(thread_yþ16<total_y)
{ p3[offset_1]þ=tlocal1;
p3[offset_2]þ=tlocal2;
p3[offset_3]þ=tlocal3;
}

else if(thread_y<total_y)
{ p3[offset_1]þ=tlocal1;
}

Figure 2. Three-stage pipelined execution with CPU and GPU concurrently participating in the contraction.
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Note that the above optimizations do not have an impact on
the older GPU architecture, while being crucial to maximize
performance on Fermi.

4. RESULTS AND DISCUSSION

In this section, we discuss the quality of the Reg-CCSD(T)
method when applied to several challenging molecular systems
and provide several illustrative performance examples of our
GPU implementation of the noniterative triples Reg-CCSD(T)
correction.

For the H3CF system we used the cc-pVDZ basis set,74 for the
dodecane we employed 6-311G basis set,75 whereas for Spiro
cation we used Sadlej’s basis set (POL1),76 which is composed of
486 atomic basis set functions. The geometry of the methylfuor-
ide molecule was optimized with the B3LYP method77 using cc-
pVTZ basis set.74 The geometry of Spiro cation is as discussed
in ref 78. The geometry of dodecane was optimized with the
B3LYP approach using cc-pVTZ basis set. In all calculations
reported here core electrons were not correlated.

It is well-known that various renormalized CC approaches can
provide correct description of processes involving single bond
breaking. The first two examples are to illustrate the performance
of the Reg-CCSD(T) methods for these processes. We start our
discussion from the ground-state singlet potential energy surface
of the methylfluoride molecule H3CF as a function of the C�F
bond elongation. The B3LYP/cc-pVTZ equilibrium values of the
H�C (RH�C(eq)) and C�F (RC�F(eq)) bond lengths are equal
to 1.09021 and 1.38655 Å, respectively, whereas the equilibrium
H�C�H angle is equal to 109.878 deg. The geometry of the
system is defined by a single parameter R (see Figure 3 and
Figure 4), which defines the C�F distance (RC�F as RC�F =
RRC�F(eq)). In the present studies we consider the set of
geometries with corresponding R’s falling into the 0.8,2.5 interval.

It has been already shown79 that for larger internuclear
distances the restricted Hartree�Fock (RHF) determinant is a
rather poor choice of the reference, which results in divergent
behavior of perturbative triples estimates of the CCSD(T)
method. These problems are eliminated by the iterative inclusion

of connected triply excited clusters which is sufficinet to obtain
nearlyMRCI(Q)80,81 level of accuracy for geometries considered
here (see ref 79). Since the approximate CCSDT method (the
CCSDT-1b approach12) has been considered in ref 79, we
should expect that the full CCSDT results provide further
improvement of the CCSDT-1b energies, which can in turn be
used to calibrate the accuracy of the regularized CCSD(T)
method.

In Figure 3, we show theCCSD,CCSD(T), CR-CC(2,3),33�35

and CCSDT energies. The CR-CC(2,3) calculations were
perfromed using the GAMESS implementation.82,83 While the
CCSD(T) method provides a good approximation of the
CCSDT results at the equilibrium region (the CCSD(T) energy
error with respect to the CCSDT energy is as small as 0.5 milli-
Hartree) it fails at larger internuclear distances. For example the
CCSD(T) error forR = 2.5 is equal to�158 milliHartree. This is
a direct consequence of the poor choice of the RHF reference.
The absolute values of the largest T1 andT2 amplitudes: 0.60 and
0.96 for R = 2.5, provide a good illustration of these problems.
The very efficient CR-CC(2,3) approach is capable of removing
all deficiences characterizing the CCSD(T) in this case. For
example, the errors of the CR-CC(2,3) method for R = 1.0, 1.5,
2.0, and 2.3 are equal to 0.02, 0.5, 1.8, and 0.6 milliHartree,
respectively (the CR-CC(2,3) results are reported up to R = 2.3
only; for larger distances NWChem and GAMESS were conver-
ging to different RHF solutions).

It is interesting to analyze the extent to which the regulariza-
tion procedure can offset the problems plaguing the CCSD(T)
approach. In Figure 4 we compare the Reg-CCSD(T) results
with the CCSDT ones for two choices of the ω2 parameter: 0.1
and 0.2. The impact of the choice of ω2 on the Reg-CCSD(T)
accuracies was a subject of discussion in ref 66. Using the example
of the HF molecule we concluded that for strong quasidegene-
racy the choice of largerω2 may be beneficial. Indeed, for the HF
system the best agreement between CCSDT and Reg-CCSD(T)
for stretched geometries was obtained for larger values ofω2 (see
ref 66 for details). This can also be observed using the H3CF

Figure 3. CC energies for methylfluoride system as a function of C�F
elongation obtained with the cc-pVDZ basis set (see text for details).

Figure 4. Regularized CC energies for methylfluoride system as a
function of C�F elongation obtained with the cc-pVDZ basis set (see
text for details).
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example. Despite of the fact that the Reg-CCSD(T)(ω2 = 0.1)
approach is capable of reducing the �158 milliHartree CCSD-
(T) error at R = 2.5 almost 4-fold, still large error of �40
milliHartree remains. The increase of the ω2 value results in
further reduction of the Reg-CCSD(T)(ω2 = 0.1) error down
to �5 milliHartrre obtained with the Reg-CCSD(T)(ω2 = 0.2)
approach. At the same time the overall error of the Reg-CCSD(T)
(ω2 = 0.2) approach do not exceed 10 milliHartree for all
geometries considered here (the Reg-CCSD(T)(ω2 = 0.2)
errors are 1.8, 5.1, 9.96, and �4.89 milliHartree for R = 1.0,
1.5, 2.0, and 2.5, respectively). This clearly demonstrate the
advantages of using stronger regularization for quasidegenerate
systems and also demonstrates that more flexible regularization
methods should be developed in order to minimize the errors for
the equilibrium and stretched geometries.

Recently, the state-of-the-art CR-CCSD(2,3) method33�35

was used to describe ground-state PES corresponding to the
C12H26 dissociation into C11H23 and CH3.

84 It was shown that
the CR-CC(2,3) curve along bond breaking coordinates
(corresponding to varied C1�C2 separation, see Figure.3 of ref 84)
smoothly approaches dissociation limit without any unphy-
sical barriers, which are often observed in themethods employing
many-body perturbation theory. With Reg-CCSD(T) method
we performed similar studies using 6-311G basis set. The results
of our calculations are shown in Figure 5. One can notice that the
CCSD(T) curve discloses (in analogy to the methyfluoride)
typical symptoms of perturbative breakdown. As in the previous
example (H3CF), for large internuclear distance, the doubly
excited amplitudes assume the largest values (the largest ampli-
tude assumes �0.8 value). In contrast to methylfluoride no
big T1 amplitudes have been observed in the CCSD calcula-
tions for dodecane. The unphysical hump of the CCSD(T)
method is located around 2.2Re(C1�C2). TheCCSD(T) energy
for 3Re(C1�C2) is located around 9 milliHartree below
the CCSD(T) energy calculated for the “hump” geometry. The

Reg-CCSD(T) approach to a large extent eliminates this patho-
logical behavior: the analogous difference is reduced to 1.8
milliHartree. At the same time the Reg-CCSD(T) method yields
energy of the CCSD(T) quality at the equilibrium geometry.

The main goal of studying the Spiro cation is to characterize
the lowest doublet state of A2 symmetry along a defined reaction
pathway, which corresponds to the electron transfer from one π
to other πmoiety (see refs 67�70 and 78 for details). The Spiro
cation has two equivalent C2v minima, with a D2d intermediate
geometry (the neutral ground state is D2d). In our studies of
electron transfer we used the geometric change parameter ζ from
the work of ref.,70 which defines a simple linear mixing of the two
mirror image C2v minima (QA and QB)

Q ðζÞ ¼ 1
2
� ζ

� �
QA þ 1

2
þ ζ

� �
QB ð16Þ

The barrier region corresponds to ζ = 0.0 value.
Recently, the Spiro cation was the subject of intensive studies

(see refs 68�70 and 78) using high-level theory including
multireference perturbative (MRPT) approaches such as
CASPT2,85 various orders of the NEVPT method,86 and second
order of multiconfigurational quasi-degenerate perturbation the-
ory (MCQDPT2)87). Using the approximate pathway (eq 16) it
was demonstrated that the CASPT2, NEVPT2, and MCQDPT2
formalisms experience a serious problem (an unphysical mini-
mum) in the description of correlation effects in the vicinity of
the avoided crossing between the 12A2 and 22A2 states. This
unphysical minimum on the ground-state PES in the vicinity of
the avoided crossing region can be removed either by invoking
higher orders of theory (NEVPT3) or by averaging the orbital
energies of two charge-localized one particle states.70 In ref 78,
we showed that the single reference CC methods are capable of
providing a satisfactory description of the ground-state PES as a
function of the ζ parameter, avoiding to a large extent the
problems plaguing multireference methods. In this paper we
compare the Reg-CCSD(T) results with those obtained with the
CCSD(T) and CR-CCSD(T) (version CR-CCSD(T),IA of
ref 88) approaches. The CCSD(T), Reg-CCSD(T) (ω2 = 0.1),
and CR-EOMCCSD(T) energies for the 12A2 state are shown in
Table 2 and Figure 6. One should notice that the CCSD(T)
corrections to the CCSD energies are in excess of 100 milliHar-
tree for all geometries discussed here. Moreover, the presence of
the overlap denominator in the CR-CCSD(T) correction makes
the CR-CCSD(T) corrections two times smaller than the
CCSD(T) ones. It is interesting to notice that the Reg-CCSD(T)
results are invariably between the CCSD(T) and CR-CCSD(T)
energies. The same observation is valid for the barrier heights
which are equal to 0.078, 0.065, 0.069, and 0.077 eV for the
CCSD, CCSD(T), Reg-CCSD(T), and CR-CCSD(T)methods,
respectively. Unlike higher orders of MRPT theory, the single
reference formulations suffer from cuspy behavior at the transi-
tion state geometry (ζ = 0.0). We believe that this feature can be
eliminated by employing MCSCF orbitals. Another unresolved
issue is related to a “kink” at all levels of CC theory in the vicinity
of ζ = ( 0.25. We expect that this may be associated with the
reference change or ROHF instability at that region. Unfortu-
nately, using even very small ζ increments and continuing the
ROHF solution from the equilibrium geometry we could not find
an alternative solution.

We now focus on evaluating the performance of our imple-
mentation. The experiments were performed on two clusters,

Figure 5. CCSD, CCSD(T), Reg-CCSD(T)(ω2 = 0.1) energies as
functions of the C1�C2 bond stretch in dodecane.



1324 dx.doi.org/10.1021/ct1007247 |J. Chem. Theory Comput. 2011, 7, 1316–1327

Journal of Chemical Theory and Computation ARTICLE

one with Tesla T10 GPUs, and the other with the Fermi cards.
The T10 cluster consists of 64 nodes while the T20 cluster
contains 16 nodes. Each node on the cluster with Tesla T10
GPUs has two Quad-Core Intel Xeon X5560 CPUs, with a
frequency of 2.80GHz, and 8MBL2 cache. Two nodes share one
Tesla S1070 box, implying that every node has two Tesla T10
GPUs. Each node on the Fermi cluster is equipped with two
Quad-Core Intel Xeon E5520 CPUs, with the frequency of 2.27
GHz. Each node has a single GPU. PCI Express 2.0 is used for
I/O between the host and the device on both systems. GNU
4.1.2 and NVCC 2.3 compilers are used for compilation, and

CUBLAS 2.3 was used for the cublas-dgemm based algorithm.
We begin with an evaluation of the individual block contribu-
tions, which constitute a parallel tensor contraction, on single
GPUs, followed by the full parallel execution on the two clusters
of GPUs.

In Table 3, we show the effects of our optimizations. These
experiments are done on a micro benchmark which only includes
one block contribution, on 3 problem sizes, using a single
process. The comparison is among 5 versions, explained
as below.
cublasDgemm. This is based on the original algorithm, in

which each tensor contraction is implemented with index
permutation and dgemm operations. We replaced the dgemm
function with the Fortran wrapper and CUBLAS call, a library
function provided for dgemm in CUDA.
Baseline. The basic CUDA algorithm described in the pre-

vious section.
Combining. Baseline. version with index combination.
Flattening. Combining version with flattened index.
Pipelining. Flattening version with pipelining to overlap data

movement and kernel execution.
Among the 3 problem sizes, the first one has all dimensions set

as 16, which fits the thread block configuration perfectly; the
second problem size has the first dimensions as 17, resulting in
big difference between thread block configuration and matrix
index size; the third one is a random problem size picked from
the NWChem trace. From the table, we can see that the baseline
version is already doing better than the cublas version, because of
reduced permutation operations. Pipelining is playing an im-
portant role in improving performance. Index combining im-
proves performs further. Index flattening provides significant
improvement when the problem size does not fit in the thread
block configuration.
In the following paragraphs, we present our experiments on

the full Reg-CCSD(T) execution.We demonstrate the scalability
and performance improvements due to GPU execution using
three systems: the Spiro, uracil, and dodecane molecules.
We did a comparison between GPU and CPU versions by

running the two versions of code for the Spiro molecule. Since
each node has only two GPUs, we ran 2 processes on each node,
each driving a GPU. With 32 nodes, the time for CPU version is
42776 s, and the time of GPU version is 6950 s. So the GPU
version yields a speedup of more than 6. When using 7 processes
on each node, the GPU version has 2 processes using GPU and 5
processes using CPU only. This mixed version also has a speedup
of about 3 over the version of using 7 CPU processes on each
node. This demonstrates the speed-ups achieved by the GPU-
based approach as compared to the CPU-only implementation.
To provide a perspective on these times with respect to the
overall execution time, we measured the times involved in the
different modules executed. For the mixed version utilizing 2
GPUs and 5 CPUs on 32 nodes, for a total of 224 processes, the
Hartee-Fock routine consumed 170 s, the four-index tranforma-
tion procedure consumed 2061 s, and the iterative CCSD

Table 2. Comparison of the CC Energies As Functions of
ζ-Parameter for the Spiro Molecluea

geom. CCSD CCSD(T) Reg-CCSD(T) CR-CCSD(T)

ζ= 1.50 �611.36232 �611.46506 �611.45046 �611.40588

ζ= 1.40 �611.36396 �611.46675 �611.45214 �611.40755

ζ= 1.30 �611.36540 �611.46826 �611.45363 �611.40902

ζ= 1.20 �611.36666 �611.46959 �611.45494 �611.41030

ζ= 1.10 �611.36773 �611.47072 �611.45606 �611.41139

ζ= 1.00 �611.36861 �611.47167 �611.45699 �611.41228

ζ= 0.90 �611.36930 �611.47243 �611.45773 �611.41298

ζ= 0.80 �611.36980 �611.47300 �611.45829 �611.41351

ζ= 0.70 �611.37013 �611.47340 �611.45867 �611.41384

ζ= 0.60 �611.37026 �611.47361 �611.45885 �611.41398

ζ= 0.50 �611.37021 �611.47362 �611.45885 �611.41394

ζ= 0.40 �611.36997 �611.47346 �611.45866 �611.41371

ζ= 0.30 �611.36954 �611.47312 �611.45829 �611.41330

ζ= 0.20 �611.36921 �611.47289 �611.45803 �611.41298

ζ= 0.10 �611.36840 �611.47217 �611.45728 �611.41216

ζ= 0.05 �611.36793 �611.47175 �611.45684 �611.41168

ζ= 0.00 �611.36740 �611.47125 �611.45634 �611.41117
a In all calculations Sadlej’s TZ basis set was used, and core electrons
were not correlated.

Table 3. Performance of Different Algorithms
(In Milliseconds) on Microbenchmark

problem size cublasDgemm baseline combining flattening pipelining

(16,16,16,16,16,16,16) 464 109 101 105 50
(17,17,17,16,16,16,16) 336 233 216 131 59
(10,10,10,19,19,18,19) 114 65 60 44 21

Figure 6. CC 12A2 PESs obtained for the Spiro molecule described
using POL1 basis set.76 The lowest point of a given theory has been
shifted to zero.
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routines 167 s. In comparison, 5079 s were consumed by the
noniterative triples correction.
The scalability of the GPU implementation is evaluated on 32,

48, and 62 nodes of the T10-based cluster. The execution times
are shown in Figure 7 and scalability in Figure 8. The scalability
is plotted with a baseline scaling of 32 on 32 nodes. We observe
that the execution time scales almost linearly, achieving good
scalability in addition to its speed-up over the CPU-only
implementation.
The Spiro molecule represents systems characterized by

relatively high symmetry (all calculations were performed using
C2v symmetry). This fact results in tiles whichmay be too small to
provide optimum flop count for efficient use of GPU cores (tiles
correspond to the partitioning of the spinorbital domain, which
in turns implicates the block structure of all multidimensional
tensors used in CC calculations: cluster amplitudes, recursive

intermediates, and residual vectors; the length of tiles will be
commonly referred to as the tilesize).
In order to test the impact of tilesize on the GPU performance

we tested GPU speedup on the uracil molecule in 6-31G* basis set
where the spatial symmetry was not invoked. This situation
commonly occurs in calculations for large systems without sym-
metrywhere tilesize can be sufficiently large. Of special importance
is to understand the impact of tilesize on the GPU speedup.
The experiments are run on 30 nodes, with 2 processes on

each node. The speedup of GPU over CPU version is shown in
Figure 9. It can be seen that with larger tile size, which implies
more FLOPS per process (proportional to (tilesize)7), the
speedup of GPU is more obvious. While for small tilesizes
(tilesize = 10) the GPU speedup is rather modest (around 3),
for larger tiles (tilesize = 21) the speedup is much better (around
8.75). From data shown in Figure 9 we should expect that the
further increase in the tilesize should result in a further improve-
ment in the GPU speedup.
To verify the generality of these observation, we evaluated the

impact of tile sizes on the dodecane molecule. Shown in
Figure 10, we observe speedups improving with tile sizes, reach-
ing more than a factor of 8 with a tile size of 20.

5. CONCLUSIONS

We demonstrated that the Reg-CCSD(T) approach can
improve the accuracies of the CCSD(T)method in studies of
strongly correlated closed- and open-shell systems. We showed
that for the methylfluoride, the regularization procedure can to a
large extent eliminate the problems characteristic for the stan-
dard CCSD(T) approach. Our studies on the dodecane dissocia-
tion clearly indicate that the Reg-CCSD(T) approach provides
significant improvements of the CCSD(T) results for the
stretched geometries. We hope that this observation is generally
valid for processes involving single bond breaking. For dodecane
we showed that ω2 = 0.1 regularization is sufficient to obtain
reliable shape of potential energy surface. The Reg-CCSD(T)
results obtained for the methylfluoride suggest that the regular-
ization procedures for singly and doubly excited clusters may
require various ω2 values, especially for states with large T1. We
also demonstrated that the Reg-CCSD(T) energies for the Spiro
cation are free of the problems plaguing multireference ap-
proaches. We believe that for strong quasidegeneracy effects
the use of larger values of ω2 leads to more reliable results. It
should be also stressed that the cost of triples part of Reg-
CCSD(T) approach is exactly the same as its CCSD(T) analog.
This problem will be pursued in a separate paper. The new GPU

Figure 8. Scaling of the (T) correction for Spiro molecule.

Figure 9. Speedup of GPU for the uracil molecule.

Figure 10. Speedup of GPU for the dodecane molecule.
Figure 7. Running time for the (T) correction for Spiro molecule.
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implementation of the Reg-CCSD(T) codes showed a great
promise as far as the parallel performance of the most compu-
tationally N7 part is concerned. We hope that the further
advances in GPU-based technology will enable reliable CC
calculations for medium (large) molecular systems on desktop
(massively parallel) GPU computers.
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ABSTRACT: In this work, a new partitioning method is presented which allows one to calculate properties of radicals, in particular,
atomic spin populations. The method can be seen as an extension of the Hirshfeld-I method [Bultinck, P. et al. J. Chem. Phys. 2007,
126, 144111], in which the atomic weight functions, defining the atoms-in-molecules, are constructed by means of an iterative
scheme in which the charges of the atoms-in-molecules are altered but the spin remains fixed. The Hirshfeld-I method is therefore
not suitable for the calculation of atomic spin populations of open-shell systems. The new fractional occupation Hirshfeld-I (FOHI)
uses an iterative scheme in which both the atomic charge and spin are optimized, resulting in a self-consistent method for the
calculation of atomic spin populations. The results obtained with the FOHI method are compared with experimental results
obtained using polarized neutron diffraction, thus serving as a validation of the FOHI method as well as the Hirshfeld definition of
atoms-in-molecules in general.

1. INTRODUCTION

Atomic charges are one of the quantities most frequently
addressed by chemists when rationalizing structure and reactivity
of molecules. Organic chemists tend, for example, to use partial
charges when interpreting reactionmechanisms,1 where they can
be used to calculate interaction energies between molecules and
to construct potential energy surfaces. Since no unique definition
of the charge of an atom can be formulated, different methods
have been developed to calculate this property. These methods
can be divided into two categories. The first category uses LCAO
coefficients of the basis functions, which are used to represent
the wave function. The first method developed along these lines,
and until now the most widely used due to its simplicity, is the
Mulliken population analysis.2 The main drawback of the method
is its strong basis set dependence, which becomes particularly
problematic when diffuse functions are used, leading to results
which have no physical meaning.3 The natural population
analysis4,5 is at this moment the most elaborate population-
analysis-based method, being less sensitive to the choice of the
basis set but challenging for extensions to other properties than
charges.6 The other category is based on the electron density in
real space. In these methods, the electron density F(rB) is divided
into atomic densities FA(rB) by making use of atomic weight
functions wA(rB)

FAð rBÞ ¼ wAð rBÞFð rBÞ ð1Þ

Different approaches are possible to define the weight function.
In Bader’s quantum chemical topology,7 the weight function is
discrete and can only be equal to one or zero. At every point, the
molecular density is thus assigned to one single atom. This atom
is enclosed in a basin, separated from the rest of the atoms by a
surface constructed using the zero density flux condition. An-
other example is the method by Becke, which is an overlapping
atoms-in-molecules method,8 in which the atoms are separated
from each other by means of Voronoi polyhedra, and the

Voronoi deformation density (VDD),9 which also uses Voronoi
polyhedra, but in combination with the deformation density
rather than the full density. The Hirshfeld method10 also uses
diffuse boundaries where the weight function of an atomA can be
in principle nonequal to zero at any point rB of the space. The
“share” of each atom at point rB is relative to the share of the free
atom in the promolecular density.

wH
A ð rBÞ ¼ F0Að rBÞP

B
F0Bð rBÞ

ð2Þ

In economics terms, an atom can thus be seen as owning a
share of the molecule’s stock of electrons, wherefrom the original
name of this procedure, “stockholder method”, was derived. The
promolecular density is defined as the sum of the densities of the
isolated atoms, positioned at the same coordinates as the atomic
nuclei in the real molecule. Integration of the atomic density
leads to the population of every atom:

NA ¼
Z

FAð rBÞ d rB ¼
Z

wAð rBÞ Fð rBÞ d rB ð3Þ

In this first version of the Hirshfeld method, the isolated atoms
are usually chosen as neutral atoms. The arbitrary character of
the choice of the isolated atomic densities to build up the pro-
molecular density is one of the major criticisms on this method.11

One actually assumes that the atoms-in-molecules resemble best
the free spherically symmetric neutral atoms. This may be the case
for molecules consisting of covalently bonded atoms with no
significant electronegativity differences but questionable for
molecules such as LiF. For example, the atomic charges in the
molecule LiF will depend strongly on whether the promolecular
density is composed of Li0 and F0, Liþ and F�, or Li� and Fþ, the
second being evidently the more chemically reasonable choice.
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But since making a chemically sensible guess is not always as
straightforward in more extended systems, one would prefer a
method which does not require any prior knowledge about the
chemical properties of the substrate. Moreover, this scheme is
clearly problematic when partitioning charged systems, since in
that case the actual system and the promolecule contain a
different number of electrons.

These problems have recently been solved for the atomic
charges in the Hirshfeld-I method11 (HI), by making use of an
iterative scheme. In this method, the promolecule in each
iteration is constructed from atomic densities obtained in the
previous iteration, thus allowing the atomic populations of the
atoms-in-molecules to change. As a result, the resulting promo-
lecular density and atomic weight functions no longer depend on
the first guess: in the case of LiF, identical atomic charges are
obtained when the iterative procedure is started from any of the
three possibilities mentioned above. This procedure brings
the Hirshfeld method more in line with information theory, on
the basis of which expression 3 can be derived.12 The validity of
this improved definition of the Hirshfeld weight-function was
confirmed also for other quantities such as polarizabilities,13,14

electrostatic potentials,15 and dispersion interactions.16,17

In principle, atomic spin populations, which are useful in the
field of molecular magnetism, can be calculated with the parti-
tioning methods mentioned above.18,19 However, straightfor-
ward application of these methods to the spin density leads to
results which suffer from the same inconsistenties as the charges
in the classic Hirshfeld method, namely, the arbitrairiness of the
choice of spin. In the case of the Hirshfeld-I method, the total
number of electrons in each atom in the promolecule is allowed
to vary until convergence, but no constraints are laid upon the
spin of the atoms. As a result, the Hirshfeld-I method does not
seem suitable for open-shell systems when atomic spin popula-
tions need to be calculated. In this article, we propose a new
method (fractional occupation Hirshfeld-I, FOHI) which ex-
tends the Hirshfeld-I method so that the atomic spin populations
are also calculated in an iterative way.

The outline of this paper is as follows. Section 2 contains the
details of the new method, followed by computational details
in section 3. In section 4, the atomic spin populations of both
methods will be compared for a set of radicals using different
levels of theory. In order to validate the new method, experi-
mental results will be used to compare different partitioning
methods. Finally, section 5 contains a brief summary and the
conclusions of this paper.

2. METHOD

In order to solve the problem of the fixed isolated atomic
densities in the original Hirshfeld method,12 the HI method11

used the following interpolation formula:

FNA
A ðrÞ ¼ FlintðNAÞ

A ðrÞ½uintðNAÞ �NA�
þ FuintðNAÞ

A ðrÞ½NA � lintðNAÞ� ð4Þ
for the calculation of the atomic densities (NA) needed to
construct the promolecular density during the different iterations
of their procedure. In eq 4, lint(x) represents the integer part of
x (i.e., lower integer), while uint(x) = lint(x) þ 1 (i.e., upper
integer). This function interpolates the atomic density between
two atoms with an integer population to compute the atomic
density of an atom with an noninteger number of electrons. On

the basis of these atomic densities, a new promolecule is con-
structed, and a new weight function is calculated. The atomic
densities of every atom ranging from integer charges �2 up
to þ2 in their respective spectroscopic ground state are calcu-
lated and stored beforehand. Finally, integration leads to new
atomic populations, and this process is repeated until the atomic
populations are converged for all atoms.

For open-shell systems, atomic spin populations can be
obtained by integrating the molecular spin density with the
atomic weight functions.

Nspin
A ¼

Z
wAð rBÞðFRð rBÞ � Fβð rBÞÞ d rB ð5Þ

In the HI method, the weight function wA(rB) obtained after
convergence of the atomic charges is used to calculate the atomic
spin populations. However, during the iterations which deter-
mine the weight function, the molecular spin density is not used.

The weight function in the HImethod was shown to minimize
the loss of information entropy by equalizing the number of elec-
trons in the atoms building up the promolecule with the number
of electrons in the actual atoms-in-molecules.11,12 For example,
in a diatomic molecule AB, the loss of information due to the
partitioning of the density F(rB) into a sum of the approximate
atomic densities FA(rB) and FB(rB), instead of the “true” (but
unknown) atomic densities FA0(rB) and FB0(rB), is given by the
following function:

I ¼ IA þ IB ¼ NA

Z
σAð rBÞ ln

σAð rBÞ
σ0
Að rBÞ

 !
d rB

þNB

Z
σBð rBÞ ln

σBð rBÞ
σ0
Bð rBÞ

 !
d rB

þNA ln
NA

N0
A

� �
þNB ln

NB

N0
B

� �
ð6Þ

where NA and NB are the atomic populations of the atoms
constituting the promolecule, NA

0 and NB
0 are the “true” atomic

populations of the atoms in the molecule, and σ(rB) is the shape
function, defined as20

σAð rBÞ ¼ FAð rBÞ
NA

ð7Þ

One can see that eq 6 is minimized if the normalization
constraintsNA =NA

0 andNB =NB
0 are fullfilled, which is achieved

by means of the iterative procedure in the HI method.
In open shell molecules, where the electrons of opposite spin

are described by separate densities FR(rB) and F
β(rB), additional

constraintsmust be added, namely,Na
R=NA

0,R,NA
β =NA

0,β,NB
R=NB

0,R,
and NB

β = NB
0,β. The information loss is then described for each

atom as

Iopen-shellA ¼ NR
A

Z
σR
Að rBÞ ln

σR
Að rBÞ

σ0,R
A ð rBÞ

 !
d rB

þNβ
A

Z
σβ
Að rBÞ ln

σβ
Að rBÞ

σ0, β
A ð rBÞ

 !
d rB

þNR
A ln

NR
A

N0,R
A

 !
þNβ

A ln
Nβ
A

N0, β
A

 !
ð8Þ
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where the atomic shape function is now defined for R and β
densities separately

σR
Að rBÞ ¼ FRAð rBÞ

NR
A

ð9Þ

In the HI method, these constraints are not met, so there is no
guarantee that the atoms in the promolecule have the same spin as
the atoms in the molecule. In order to minimize the information
loss, theR and β densities must be iterated separately. An additional
complication is that a certain inconsistency is present in the
interpolation formula (eq 4), even for closed shell molec-
ules. The atomic densities are usually interpolated between atoms
of different charge, but calculated at the Hartree�Fock level and at
their spectroscopic ground-state, which is not necessarily a singlet.
This means that for closed-shell molecules, the atoms in the
promolecule do not have zero spin, as one assumes they should.

A solution for the problems outlined above is proposed by
extending the HI procedure in such a way that both charge and
spin are calculated every iteration. However, extending this
procedure by using the interpolation formula eq 4 requires a
2D interpolation scheme of both charge and spin in every
iteration, which in our view is not practical. Inspired by ref 6,
we propose to use another approach to build up the promolecule.
The orbitals for a spherically symmetric atom with a given charge
and multiplicity are calculated in the unrestricted approach using
fractional occupations for degenerate valence orbitals while all
other orbitals lower in energy are fully occupied. A calculation of
this type is performed for every atom in the molecular system at
the same level of theory (DFT functional and basisset) as the
molecular system in every step of the iterative procedure. For
example, in a given iteration, for a carbon atom with a charge of
�0.1 and a spin (R � β) of þ0.3, the occupation of the 1s, 2s,
2px, 2py, and 2pz orbitals would be 1, 1, 0.4, 0.4, and 0.4 for the R
electrons and 1, 1, 0.3, 0.3, and 0.3 for the β electrons,
respectively. In every iteration, the promolecular density is
constructed using the atomic densities calculated using the
description described above, for every atom in the system. The
weight function of the HI method based on eq 2 cannot be used,
because this weight function is only based on the total density
F(rB) = FR(rB) þ Fβ(rB). Two new weight functions are defined,
one based on the R density and one based on the β density. The
weight function for the R density is defined as:

wR
Að rBÞ ¼ FRAð rBÞP

B
FRBð rBÞ

ð10Þ

The molecular R density is converted to atomic R densities by
integration:

NR
A ¼

Z
FRAð rBÞ d rB ¼

Z
wR
Að rBÞ FRð rBÞ d rB ð11Þ

Equivalent formulas are used for the β density.
The new method can be summarized as follows:
• On the basis of the atomic charge and spin, atomic SCF
calculations are performed on the basis of fractional occupa-
tions to compute the corresponding densities for every atom
in the system. In the first step, both the charge and spin of
every atom are set equal to zero.

• Two promolecular densities are constructed: one based on
the atomicR density and one based on the atomic β density.

• A Hirshfeld partitioning of the R and βmolecular density is
performed using the respective promolecular densities con-
structed in the previous step.

• The atomic charge and spin of every atom is compared with
the corresponding values in the previous iteration. If con-
vergence is not reached, the previous steps are repeated.

Whether or not the level of theory (method/basisset) of the
atomic self-consistent field calculations is the same as that with
which the molecular density is calculated is not a prerequisite of
the partitioning procedure. In section 4, self-consistent atomic
densities obtained with the UB3LYP level of theory will be used
to partition molecular densities obtained at the same level of
theory, as well as densities obtained using the UMP2 and the
UCCSD levels of theory.

3. COMPUTATIONAL DETAILS

For the molecules used in this article, the geometry of every
structure was optimized using the Gaussian 03 program22 with
the UB3LYP functional23 using the 6-31þþG**24 basis set.
Additional single points were also performed at the UMP2 and
UCCSD levels using the aug-cc-pVTZ25 basis set and at the
DFT/UB3LYP level using the 6-31G,26 6-311þþG**,27 and
aug-cc-pVTZ basis sets. Mulliken partitioning of the spin density

Table 1. Atomic Charges for a Set of Closed-Shell Systems
Obtained Using the HI and FOHIMethods Obtained with the
RB3LYP Functional

HI FOHI

molecule atom 6-31G 6-31þþG** 6-31G 6-31þþG**

C2H2 C �0.211 �0.217 �0.215 �0.219

H 0.211 0.217 0.215 0.219

CH4 C �0.680 �0.597 �0.716 �0.571

H 0.170 0.149 0.179 0.142

CO2 C 0.838 0.950 0.832 0.942

O �0.419 �0.475 �0.416 �0.470

H2CO C 0.276 0.304 0.270 0.262

O �0.326 �0.380 �0.320 �0.365

H 0.025 0.038 0.025 0.052

H2O O �0.841 �0.920 �0.830 �0.900

H 0.421 0.459 0.415 0.450

H2S S �0.264 �0.276 �0.245 �0.255

O 0.132 0.138 0.123 0.128

HCN N �0.235 �0.283 �0.239 �0.289

C 0.023 0.066 0.022 0.067

H 0.212 0.217 0.217 0.223

HF F �0.472 �0.513 �0.464 �0.511

H 0.472 0.513 0.464 0.511

NH3 N �1.070 �1.065 �1.066 �1.001

H 0.357 0.355 0.356 0.334

N(1)N(2)O N(1) �0.259 �0.271 �0.254 �0.258

N(2) 0.567 0.595 0.552 0.567

O �0.308 �0.325 �0.298 �0.309

PH3 P �0.117 �0.062 �0.076 �0.009

H 0.039 0.021 0.025 0.003

SO2 S 1.015 1.072 0.995 1.079

O �0.507 �0.536 �0.497 �0.539
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was performed using the Gaussian 03 program.22 Bader analysis28

was performed using Gaussian cube files. For the fractional occupa-
tion Hirshfeld-I partitioning (FOHI), the atomic densities were
calculated at every iteration using the BRABO package29 with the
UB3LYPmethod and with the same basis set used for themolecule.
These SCF calculations were performed using fractional occupa-
tions as described above. Both HI and FOHI charge and spin
populations were evaluated by using the STOCK program.30 In the
HImethod, convergence is reached when abs(NA

i �NA
i�1) < 0.001.

Convergence in the FOHI method is reached when two conditions
are met: abs(NA

i � NA
i�1) < 0.001 and abs(SA

i � SA
i�1) < 0.001,

where S stands for the spin population of an atom.

4. RESULTS AND DISCUSSION

4.1. Charges of Closed-Shell Systems. It is possible to calculate
the atomic densities necessary to build up the promolecule using

two methods: the interpolation method (HI), where the atomic
density of an atom containing a noninteger number of electronsNA

is interpolated between two atomic densitieswith an integer number
of electrons according to eq 4, and the fractional occupationmethod
described above (FOHI), in which the density is obtained directly
through an SCF calculation using fractional occupation numbers.
For closed-shell systems, the spin density is zero in every point of the
space. Strictly speaking, this does not mean that the atomic spin
density of each atom at each point in space should be zero, but only
their sumat each point in space.However, sincewe areworkingwith
spherically symmetric promolecular atoms, this condition can only
be met by restricting the spin density of these atoms to zero. Both
methods were applied for a set of closed-shell molecules: C2H2,
CH4, CO2, H2CO, H2O, H2S, HCN, HF, NH3, N2O, PH3, and
SO2. Table 1 compares the atomic charges calculated with both
methods, using the 6-31G and 6-31þþG** basis sets. The very high
regression coefficients (R2 = 0.9996 and R2 = 0.9993 for the basis

Table 2. Atomic Spin Populations for a Set of Radicals Based on HI and FOHI Using the aug-cc-pVTZ Basis Seta

HI FOHI

molecule doublet atom UB3LYP UMP2 UCCSD UB3LYP UMP2 UCCSD

CN C 0.790 0.512 0.877 1.003 0.589 1.140

N 0.209 0.488 0.123 �0.003 0.411 �0.140

CF3 C 0.654 0.681 0.681 1.007 1.058 1.058

F 0.115 0.106 0.106 �0.002 �0.019 �0.019

COH C 0.562 0.509 0.589 0.655 0.567 0.704

O 0.288 0.344 0.264 0.187 0.266 0.151

H 0.150 0.147 0.146 0.159 0.167 0.145

H2NCO C 0.512 0.421 0.544 0.711 0.559 0.768

O 0.221 0.343 0.203 0.103 0.266 0.070

N 0.255 0.231 0.243 0.227 0.225 0.204

H 0.006 0.003 0.005 �0.020 �0.025 �0.021

C(1)H3C
(2)ONH C(1) 0.006 0.018 0.004 0.025 �0.074 0.026

H 0.004 0.010 0.001 0.005 0.026 0.002

C(2) �0.006 0.228 �0.015 �0.157 0.314 �0.176

O 0.277 �0.136 0.230 0.321 �0.210 0.272

N 0.702 0.841 0.762 0.872 0.962 0.950

H 0.019 0.028 0.020 �0.057 �0.053 �0.065

C3H5 C(1) 0.466 0.458 0.477 0.788 0.764 0.821

C(2) �0.032 �0.018 �0.052 �0.350 �0.315 �0.398

H(1) 0.024 0.026 0.023 �0.067 �0.060 �0.072

H(2) 0.028 0.030 0.027 0.026 0.011 0.029

triplet

HCN N 0.382 0.388 0.285 �0.004 0.009 �0.191

C 1.539 1.555 1.646 1.897 1.929 2.076

H 0.080 0.058 0.069 0.107 0.063 0.115

NF N 1.709 1.742 1.752 1.862 1.905 1.915

F 0.291 0.258 0.248 0.138 0.096 0.085

singlet

C6H4 C(1) 0.757 0.734 1.166 1.070

C(2) 0.010 0.107 �0.258 �0.036

C(3) �0.010 �0.107 0.258 0.036

C(4) �0.757 �0.734 �1.166 �1.070

C(5) �0.010 �0.107 0.258 0.036

C(6) 0.010 0.107 �0.258 �0.036
aThe UB3LYP functional is compared with the UMP2 and UCCSD level of theory.
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sets 6-31G and 6-31þþG**, respectively) clearly show that the
choice of method has, for closed shell systems, little influence on the
charge of the atom. Indeed, according to the information theory, the
constraint of charge is fullfilled equally well in theHImethod (eq 6)
as in the FOHImethod (eq 8), regardless of whether we are dealing
with closed-shell or open-shell systems. The main difference
between the two methods, when applied to charges, comes from
the manner of obtaining the atomic densities, namely, through
interpolation or through a fractional occupations calculation. This
high correlation between both methods is not surprising, since the
spectroscopic state of the atom has a negligible effect on the atomic
density.30 This finding serves as a validation of the fact that the
interpolation method is a good approximation for the calculation
of atomic charges of closed shell systems. This high correlation
between the results is also in agreement with a previous study by
Ayers,31 who has shown that the density of a system with an
irrational number of electrons is equivalentwith the density acquired
through interpolation (eq 4). Finally, one can also see that the basis
set dependence of bothmethods is small, as was to be expected from
a previous study.32

4.2. Spin Densities of Open-Shell Systems. In order to
further compare both methods, now for open-shell systems, the
spin populations of a set of small radicals were calculated using
both the HI and the FOHI methods. The list of radicals and their
corresponding spin populations can be found in Table 2 for a
number of doublets, triplets, and a singlet diradical. As men-
tioned above, the results for the charges are very similar for both
methods and are therefore not present in the table. The spin
populations were calculated using the UB3LYP, UMP2, and
UCCSD methods and the aug-cc-pVTZ25 basis set. The unrest-
ricted formalism is used throughout this work since it has been
shown that the restricted open-shell methods cannot reproduce
spin polarization effects, which are of importance for spin
densities.33 As mentioned above, it is known that the spin density
is influenced by two major effects: spin delocalization and spin
polarization.34 The first effect describes the spreading out of the
spin over the molecule, which is a direct consequence of the
delocalization of the SOMO (singly occupied molecular orbital).
Spin polarization is a consequence of the minimization of
electron�electron repulsion of two electrons of parallel spin
sharing the same space, according to the Pauli principle. Conse-
quently, one may expect induced negative spin density on the
nodal atoms of the SOMO if there is an underlying π orbital
which is localized on the same atoms as the SOMO.34 An
example is given for the allyl radical in Figure 1, which can also
be found in ref 6, where the upper part of the scheme represents
the SOMO orbital and the lower part of the scheme represents
theR and β π orbitals in the unrestricted case. One can see that if
the SOMOorbital has a node, as is the case for the second carbon
atom, the polarization of the π-orbital due to the presence of the
radical leads to a negative spin density on the nodal atom. In the

RODFT formalism, no polarization of the π orbital is possible,
and no negative spin densities are possible. Unlike negative
electronic populations, negative spin populations have in fact
physical meaning and can be observed experimentally.
The HI and FOHI methods are compared in Table 2 for the

three levels of theory. First, we will discuss the HI and FOHI
methods based on the DFT level of theory. For the CN and CF3
radicals, the FOHI method localizes the unpaired electron on the
carbon atom, whereas the HI method spreads the spin density
over several atoms. As we have mentioned for the allyl radical, a
negative spin density is expected to be found on the central
carbon atom. Both HI and FOHI indeed show a negative spin
density for this carbon atom, although this is more pronounced in
the FOHImethod. With the exception of the UMP2method, the
amide radical has a large negative spin density on the carbon
atom in the FOHI method, which is again very small in the HI
method. Also for the triplet molecules, one can see that the HI
method has more difficulties localizing the spin populations in
comparison with the FOHI method. For example, in the HCN
molecule in the triplet state, the HI method localizes one
unpaired electron on the C atom while the other is spread out
over the C and the N atoms, whereas in the FOHI method both
unpaired electrons are localized on the C atom. The singlet
diradical 1,4-didehydrobenzene has two unpaired electrons in
the para position from each other with opposite spin. The
position of the two unpaired electrons in the para position
having opposite spins is found in both methods, but the alterna-
tion of the spin density over the carbon atoms due to spin
polarization on the ortho- and meta-carbons is only showing in
the FOHImethod, while theHImethod divides themolecule in a
spin-positive and spin-negative part.
Both methods were further compared in partitioning molec-

ular densities obtained at the UMP2 and UCCSD level of theory.
For both methods, one can state that the DFT and UCCSD
levels are in agreement for the doublet radicals. The UMP2 level
shows significant differences for doublet radicals for both meth-
ods. The spin density on the CN radical is spread over both
atoms. For the H2NCO radical, the spin density on the oxygen
atom is much larger compared to DFT and UCCSD. Finally, for
the amide radical, the UMP2 level is the only one which localizes
a negative spin density on the oxygen atom. The results for the
molecules in the triplet state are alike between the different levels
of theory in the HI method. For the FOHI method, the UCCSD
level shows a significant negative spin density on the nitrogen
atom for the HCN triplet. For the singlet diradical, the spin
polarization is much more pronounced with the DFT level of
theory than with the UMP2 level of theory in the FOHI method.
4.3. Comparing Hirshfeld with Other AIM Methods and

Experimental Results.As could be concluded from the previous
section, the DFT level of theory gives satisfactory results when
compared to higher levels of theory. In this section, we will
compare FOHI with other AIM methods for a set of larger
systems for which we will use the UB3LYP functional and
6-311þþG** basis set. The first molecules we compared are
based on a phenalenyl system35 and are stable radicals with a
highly delocalized spin density. The structures of both molecules
can be found in Figure 2. The results for the different AIM
methods are summarized in Table 3. Although all three methods
seem to account for the spin polarization, the negative spin
density is more pronounced in the Mulliken and FOHI method,
while the Bader analysis shows rather small values of negative
spin density.

Figure 1. The second highest occupied orbitals and the SOMO for the
allyl radical.



1333 dx.doi.org/10.1021/ct100743h |J. Chem. Theory Comput. 2011, 7, 1328–1335

Journal of Chemical Theory and Computation ARTICLE

The spin populations obtained using different partitioning
methods were also compared with experimental results obtained
with polarized neutron diffraction. This technique is able to
quantify the spin density on every atom, which gives the unique
opportunity to compare values of atoms-in-molecules, which are
generally unobservable, with experimental data. Two molecules
were examined, the first one being tetracyanoethylene (TCNE).
The structure of this radical anion can be found in Figure 3. The

atomic spin populations based on the different partitioning
methods and the experimental results can be found in Table 3.
Experimental results18 show that the density is mostly localized
on the sp2 carbon atoms. However, due to spin delocalization and
spin polarization, there is a considerable amount of spin density
on the nitrogen atom and a negative spin density on the sp
carbon atoms. The unequal experimental values on the sp carbon
atoms and the nitrogen atoms are due to the reduced symmetry
of the monoclinic unit cell.18 The negative spin density is in
agreement with the theory, since the SOMO of TCNE clearly
shows nodes at the sp carbon atoms (Figure 4). The negative
values are also reproduced by the FOHI method and the Mulliken
method but not by the Bader method.
The second molecule examined is the nitronyl nitroxide

2-phenyl-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole-1-oxyl-
3-oxide (NitPh), the structure of which can be found in Figure 5.
Comparison of the values obtained by means of the partitioning
methods and the experimental results can be found in Table 3.
Experimental results36 show that most of the spin density is
concentrated on the NO groups, where it seems to be equally
shared between the nitrogen and oxygen atoms. A large negative
spin population is observed on the carbon atom connecting the
two NO groups. Also, here, these results are in agreement with
the theory, as can be seen from the visualization of the SOMO
orbital of NitPh in Figure 6. The spin density in the phenyl ring is
very low, although alternation of the spin on the carbon atoms is
observed. This has also been confirmed by 1H and 13C NMR

Figure 3. Lewis structure of TCNE.

Figure 4. Singly occupied molecular orbital (SOMO) of the radical
anion TCNE. The SOMO shows nodes on the sp carbon atoms.

Figure 5. Lewis structure of NitPh.

Figure 2. Lewis structures of phenalenyl systems.

Table 3. Comparison of Atomic Spin Populations of the
Phenalenyl Structures, TCNE and Nitph, Based on Different
AIM Methods Using the UB3LYP Functional and
6-311þþG** Basis Seta

molecule atom Mulliken Bader FOHI experiment

phenalenyl C(1) 0.312 0.224 0.338

C(2) �0.137 �0.070 �0.169

C(3) 0.312 0.225 0.338

C(4) �0.142 �0.060 �0.159

C(5) 0.062 0.032 0.085

C(6) �0.142 �0.060 �0.159

6-oxophenalenoxyl C(1) 0.213 0.176 0.213

C(2) �0.070 0.003 �0.086

C(3) 0.083 0.061 0.109

C(4) �0.089 �0.041 �0.118

C(5) 0.399 0.281 0.421

C(6) �0.186 �0.093 �0.211

C(7) 0.335 0.245 0.365

TCNE N(1) 0.165 0.117 0.168 0.12

C(2)(sp) �0.107 0.008 �0.081 �0.05

C(3)(sp2) 0.385 0.252 0.326 0.33

C(4)(sp) �0.107 0.008 �0.081 �0.03

N(5) 0.165 0.117 0.168 0.13

C(6)(sp2) 0.385 0.252 0.326 0.33

C(7)(sp) �0.107 0.008 �0.081 �0.04

N(8) 0.165 0.117 0.168 0.12

C(9)(sp) �0.107 0.008 �0.081 �0.08

N(10) 0.165 0.117 0.168 0.16

NitPh O(1) 0.357 0.327 0.320 0.277

N(2) 0.263 0.219 0.315 0.278

C(3) �0.169 �0.065 �0.245 �0.121

N(4) 0.263 0.219 0.314 0.278

O(5) 0.357 0.327 0.320 0.247

C(6) �0.009 �0.032 0.063 0.024

C(7) �0.025 0.013 �0.053 0.000

C(8) 0.022 0.000 0.029 0.025

C(9) �0.045 0.000 �0.050 �0.016

C(10) 0.022 0.000 0.028 0.011

C(11) �0.025 �0.032 �0.053 �0.037
a Experimental values are listed for the TCNE and NitPh radicals.



1334 dx.doi.org/10.1021/ct100743h |J. Chem. Theory Comput. 2011, 7, 1328–1335

Journal of Chemical Theory and Computation ARTICLE

experiments.37,38 The almost equal distribution of the spin
density between the nitrogen and oxygen atoms, observed in
the experimental results, is reproduced in the results obtained by
the FOHImethod and theMulliken method but not in the Bader
method, where the oxygen has higher spin populations. The
alternation of the spin on the phenyl group is only observed in
the FOHI method. Although the Bader method seems to under-
estimate the negative spin density on the carbon atom connect-
ing the two NO groups (C3), both of the other methods
overestimate this negative spin density.

5. CONCLUSION

Anew partitioningmethod, inspired by the iterative procedure
in Hirshfeld-I (HI),11 was introduced in order to calculate pro-
perties of open-shell systems, in particular, atomic spin popula-
tions. The iterative procedure has been expanded so that both the
spin and the charge of the atoms are altered during the iterations.
This is achieved by performing in each iteration an SCF calcula-
tion for each of the atoms using fractional occupation numbers.
Because the atomic SCF calculations have to be repeated every
iteration for every atom, this can become time-consuming for
larger systems. However, the execution time can be reduced
drastically, first, by using converged densities of a previous
iteration as an initial guess together with fully exploiting the
spherical symmetry of the atoms and eventually skipping
atoms for which the results are already converged, and second,
since the atomic calculations are completely independent, by
processing these calculations in parallel, the CPU time can be
drastically decreased.

The Hirshfeld-I method is compared with the new fractional
occupation Hirshfeld-I method (FOHI). It is found that for
properties where only the sum of the R and β density is of
importance, such as charges, both methods lead to similar results.
Whereas for properties where the difference between theR and β
density is of importance, such as spin populations, the FOHI
method appears superior. In particular, the ability to repro-
duce negative spin populations, observed in experimentation,
in a consistentmanner is a major advantage of the FOHImethod.
This is due to the fact that the HI method does not make use of
the molecular spin density during its iterations and the spin of the
atomic densities is arbitrary chosen.

The results obtained by different AIM methods are compared
with experimental results obtained with polarized neutron dif-
fraction. The Bader analysis seems to underestimate the spin
polarization effect. Therefore, certain atoms have a positive spin
density, although experimental results clearly show a negative
spin density due to spin polarization. The Mulliken method
accounts for the spin polarization, but the results are strongly
basis set dependent. The FOHI method is in agreement with the
experimental results, but the effect of spin polarization may be
overestimated.
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ABSTRACT: We present a new extrapolated fragment-based approach, termed molecules-in-molecules (MIM), for accurate
energy calculations on large molecules. In this method, we use a multilevel partitioning approach coupled with electronic structure
studies at multiple levels of theory to provide a hierarchical strategy for systematically improving the computed results. In particular,
we use a generalized hybrid energy expression, similar in spirit to that in the popular ONIOMmethodology, that can be combined
easily with any fragmentation procedure. In the current work, we explore a MIM scheme which first partitions a molecule into
nonoverlapping fragments and then recombines the interacting fragments to form overlapping subsystems. By including all
interactions with a cheaper level of theory, the MIM approach is shown to significantly reduce the errors arising from a single level
fragmentation procedure. We report the implementation of energies and gradients and the initial assessment of the MIM method
using both biological and materials systems as test cases.

I. INTRODUCTION

Although electronic structure theory can now routinely yield
chemically accurate results for small molecules,1�17 the steep
computational scaling of the most accurate methods precludes
their direct application to large molecular systems. For suffi-
ciently local chemical processes, hybrid-energy methods18�20

provide a strategy for using accurate (and expensive) computa-
tional methods on only those parts of the molecule that comprise
the chemically active region. Morokuma and co-workers have
developed a particularly useful hybrid energy method called
ONIOM (our own N-layer integrated molecular orbital molec-
ular mechanics),21�27 in which the hybrid energy for a system
divided into two regions (I and II) is given as

EONIOM ¼ EðIþ IIÞLow-Level þ EðIÞHigh-Level � EðIÞLow-Level
ð1Þ

Although hybrid methods such as QM/MM (quantum me-
chanics/molecular mechanics) and ONIOM have been incred-
ibly useful in a variety of situations, the necessity to identify a
chemically active region prevents them from being truly black-
box methods. Moreover, it is clearly important to develop
theoretical methods that call for a uniformly accurate treatment
of the entire molecule without any bias.

To develop a strategy for performing high level of theory
computations on large systems, one must also overcome the
O(N5)�O(N8) computational scaling of the most accurate
electronic structure methods. In this direction, several research-
ers have focused their efforts on developing linear scaling
methods which exploit the local nature of a molecule’s electronic
structure in a single calculation.28�52 In the alternative fragmen-
tation-based approach, significant scaling reductions can be
achieved by dividing a molecule into smaller fragments, per-
forming electronic structure calculations on each indepen-
dently and then summing up the results appropriately. An
additional, and possibly equally important, benefit of the

fragmentation approach is the inherent ease in constructing
a massively parallel implementation.

One of the earliest fragment-based techniques developed is
the fragment molecular orbital method (FMO) of Kitaura and
co-workers, in which the fragment subsystems are embedded in a
Coulomb bath.53�59 Gadre and co-workers have developed the
cardinality-guided molecular tailoring approach (CG-MTA) for
energies, gradients, and properties.60�66 Other fragmentation
methods include the molecular fractionation with conjugate caps
(MFCC) method of Zhang and co-workers,67,68 the systematic
molecular fragmentation (SMF) method of Collins and co-
workers,69�73 which was later coupled with the effective
fragment potential (EFP) of Gordon and co-workers,74�76

Truhlar et al.’s electrostatically embedded many-body (EE-
MB) method,77�82 the generalized energy-based fragmentation
(GEBF) method of Li and co-workers,83�85 the kernel energy
method (KEM) of Karle and co-workers,86,87 the hybrid many-
body interaction (HMBI) model of Beran and Nanda,88,89 and
the multilevel fragment-based approach (MFBA) of �Rez�a�c and
Salahub.90

The various existing fragment-based methods use a variety of
different approaches to implement and to perform the com-
putations. However, it is convenient to discuss them in terms
of three main components common to most fragmentation
methods: (1) partitioning, (2) subsystem formation, and (3)
energy summation.
A. Partitioning. First, the system (large molecule) is parti-

tioned into defined subunits or fragments, most often by cleaving
single bonds between adjacent non-hydrogen atoms. This would,
as an example, divide hexane into six fragments: 2(�CH3) and
4(�CH2�). Less general but possibly more useful fragmenta-
tion schemes may be employed if one is well versed in the
chemical composition of the target system. For example, as the
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MFCC and MFBA methods have been developed for modeling
polypeptide systems, the fragmentation scheme in these two
methods involves only the cleavage of specific bonds in the
peptide backbone. Since the fragments typically have dangling
bonds, direct electronic structure calculations on the fragments
are not possible without further manipulation in most cases. The
fragments are analogous to “atoms” and make up the funda-
mental building blocks of the system.
B. Subsystem Formation. After partitioning the molecule

into fragments, the interacting fragments are combined to form
subsystems that can be used in individual electronic structure
calculations. The subsystems must be constructed in a way which
provides the appropriate balance between accuracy and compu-
tational efficiency. A key step in subsystem formation involves
the capping of truncated bonds to form well-defined units (i.e.,
small molecules) on which direct electronic structure calcula-
tions can be performed. Most methods (i.e., MFCC, MFBA,
GEBF) use hydrogen atoms to cap the dangling bonds, whereas
the FMO methods use a more sophisticated potential to satisfy
valencies. For the formation of subsystems involving a systematic
inclusion of interfragment interactions, many methods (FMO,
EE-MB, MFCC, MFBA, SMF, KEM, HMBI) employ the many-
body expansion described by Xantheas.91 This provides a simple
way to systematically improve one’s results, albeit at greatly
increasing computational cost for high expansion orders. Linear
scaling can be recovered by including only the n-body interac-
tions which fall within a specified interfragment distance. Typi-
cally, however, most such calculations include only two-body
(and three-body, if possible) interactions.
In an alternative but equally powerful approach, one may form

overlapping subsystems comprised of a central fragment sur-
rounded by proximal fragments (either in connectivity or spatial
distance). The overlap denotes regions where the interfragment
interactions are overcounted and must be appropriately sub-
tracted out in accordance with the Inclusion�Exclusion Princi-
ple:

jA1 3 3 3 ∪ Anj ¼ ∑
i
jAij � ∑

i < j
jAi ∩ Ajj

þ ∑
i < j < k

jAi ∩ Aj ∩ Akj:::þ ð�1Þn � 1jAi ∩ ::: ∩ Anj

ð2Þ
This is the approach taken by the GEBF and CG-MTA

methods.
C. Energy Summation.The final part involves a summation of

the energies from the individual subsystems (small molecules) to
yield the total energy for the entire system (large molecule). The
overall energy expression is clearly dependent on the manner in
which the individual subsystems are formed. Methods which use
a many-body expansion are then summed according to the form
of the expansion. The energy of methods which use overlapping
subsystems must be assembled more carefully, as the energy for
each subsystem must be summed along with its appropriate
coefficient. This will be discussed in more detail in the Metho-
dology section.
In this contribution, we report the development and initial

assessment of a new hybrid energy method which we have
termed molecules-in-molecules (MIM). In this method, we use
multiple levels of theory to extrapolate the fragment-based
energy to obtain better convergence of the total energy of the
large molecule. Our method is similar in spirit to the popular

ONIOMmethodology (vide infra) and allows one to couple very
accurate electronic structure methods, performed at a modest
level of fragmentation (small subsystems), with cheaper methods
performed at more aggressive levels of fragmentation (larger
subsystems). We use features from many of the existing ap-
proaches and generalize other features.

II. METHODOLOGY

Most previous treatments consider a single level of partition-
ing to create the fragments and treat the resulting subsystems
(interacting fragments including capping) with one or more
levels of theory. The central point of theMIMmethod is that it is
a multilevel fragment/subsystem approach, in which cheaper ab
initio or semiempirical methods can be used to describe longer
range interactions. In the most straightforward approach, after
the initial partitioning, subsystems of different sizes can be
generated by using different cutoff distances to describe the
interactions between fragments. Alternatively, different partition-
ing schemes can be used to create fragments of different sizes. As
an example, in a three-level MIM scheme (MIM3), the entire
molecule can be treated at a low level of theory (e.g., HF),
medium subsystems can be treated at a medium level of theory
(e.g., MP2), and small subsystems can be treated at a high level of
theory (e.g., CCSD). For a biomolecule containing hundreds of
atoms, in a two-level MIM scheme (MIM2), B3LYP can be used
to treat the subsystems while the entire molecule can be treated
with PM6 to provide a correction for long-range interactions.
This is very similar in spirit to the popular ONIOM approach by
Morokuma, though the subsystems are not centered on the active
site (as in ONIOM) but are individually centered throughout the
large molecule (in MIM). Thus, the energy expressions can also
be written in a manner similar to that in the ONIOM approach.
However, unlike in ONIOMwe are approximating the high level
of theory on the whole molecule. Therefore, the error associated
with the fragmentation method is

Error ¼ ErHigh � EHigh ð3Þ
In our method, we extrapolate the fragmentation energy by

approximating the error of the fragmentation method with a
more efficient level of theory as shown here:

EHigh ¼ ErHigh � ðErHigh � EHighÞ

� ErHigh � ðErLow � ELowÞ ð4Þ
Use of the approximation shown in eq 4 sets up a general

hierarchy for an arbitrary number of extrapolations.

EMIM1 ¼ ErHigh ð5Þ

EMIM2 ¼ ErHigh � ðErLow � E¥LowÞ ð6Þ

EMIM3 ¼ ErHigh � ðErMed � Er
0
MedÞ � ðEr 0Low � E¥LowÞ ð7Þ

where the superscript r indicates the accuracy threshold para-
meter used in that fragmentation level (i.e., distance/number
cutoff or the order of a many-body expansion), and the Low,
Med, andHigh refer to the low level, medium level, and high level
of theory, respectively. It should be noted, however, that EHigh

r and
ELow
r each represent a composite energy for the entire system assembled

from a number of subsystem calculations at the fragmentation level
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denoted by the parameter r. Since the energy of the entire system
(large molecule) is assembled from the individual energies of the
subsystems (small molecules), we label our method as “molecules
in molecules” (MIM).

In eq 7, the MIM3 expression now has two defined para-
meters, both r and r0, where r > r0. The method can also be
generalized to more than three levels (multilevel MIM) in more
complex systems in an analogous manner. Although we have
used the full system calculation in the above equations, ELow

¥ , we
do not necessarily have to extrapolate to the full calculation,
which may be intractable for very large systems. We can alter-
natively decide to extrapolate only to a more accurate method of
fragmentation, such as in

EMIM2 ¼ ErHigh � ðErLow � Er
0
LowÞ ð8Þ

where r0 . r. However, in this paper, we will only be considering
the case in which r0 = ¥.

The energy expressions given in eqs 5�7 are generic, and
independent of the actual procedure used for generating the
subsystems. Therefore, it may be used with any fragmentation
procedure such as the GEBF or the FMOmethods, allowing one
to couple various fragmentationmethods together. Furthermore,
as the MIM approach uses an ONIOM framework, it exhibits
several attractive features: (1) When the two (or three) levels of
theory become identical, the exact energy (EHigh

¥ ) is recovered.
(2)When the distance parameter r becomes sufficiently large, the
exact energy (EHigh

¥ ) is recovered. (3) As all individual subcalcu-
lations are performed on well-defined molecular systems, any
electronic structure theory method may be used, which allows
this approach to take advantage of the most recent advances in
semiempirical methods or electron correlation methods. (4)
Finally, an efficient parallel implementation is easy since the
individual subsystem calculations can be carried out on differ-
ent processors. The basic methodology of the MIM method
is displayed in Figure 1 with a comparison to the ONIOM
methodology.

In the initial implementation of the MIM method reported in
this paper, we use a fragmentation scheme similar to the GEBF
method.85 In the GEBF approach, all important interactions
must be included in the subsystem calculations. However, since
we are using a multilevel approach, we should be able to relax our
conditions for assembling subsystems to permit smaller calcula-
tions, while picking up the additional long-range interactions
with the cheaper methods.

For a MIM calculation to be performed, each level of calcula-
tion is carried out in the following manner:
1 Defining Fragments. To form the initial fragments, a con-
nectivity table is processed, and all single bonds between
heavy atoms are cleaved. As noted earlier, fragments are the
most fundamental units considered and are never broken up
in the subcalculations. Therefore, a manual modification of
the connectivity table provides one with a simple mechan-
ism for controlling the composition of the subsystems
generated by the automated program. Customized fragment
lists may also be used for generating the subsystems in the
next step.

2 Primary Subsystem Formation. Subsystems which are centered
on a particular fragment with nearby fragments appended
are called primary subsystems.108 Primary subsystems may be
assembled either by appending all fragments which are

within some distance cutoff r (distance-based cutoff) or
by appending a given number of fragments η which are
closest to the central fragment (number-based cutoff).85We
assemble the primary subsystems according to the following
pseudocode:
1 Define r, for distance-based cutoff, or η, for number
based cutoff.

2 For each fragment (f)
a Initiate a new primary subsystem (p).
b If distance-based cutoff:
- Append all fragments to the primary subsystem
that are less than distance r away from the
central fragment (f)

c If number-based cutoff:
- Append η� 1 fragments to p which are nearest
to the central fragment (f). p now contains η
fragments.

- In case of systems with high symmetry, include
any additional fragments if they are at the same
distance as the farthest included fragment.

d Are there any atoms (a) not in p which are also
covalently connected to two or more atoms in p?
- If yes:
-- Append a to p.
-- Go to step d again.

3 Reduce list of primary subsystems to only unique primary
subsystems, which are not subsets of other primary sub-
systems.Here, step d is done to ensure that the same center
is not replaced twice by link atoms, as would be the case
when only five atoms of a six-membered ring are part of a
primary subsystem.

Figure 1. Schematic representation of the MIM methodology. The
faint orange areas represent regions computed with the low level of
theory. The strong orange areas represent regions computed with the
medium level of theory. The purple areas represent regions computed
with the high level of theory.



1339 dx.doi.org/10.1021/ct200033b |J. Chem. Theory Comput. 2011, 7, 1336–1343

Journal of Chemical Theory and Computation ARTICLE

3 Derivative Subsystem Formation. A consequence of using
overlapping primary subsystems is that much of the mole-
cule is overcounted. The primary subsystems overlap with
one another, and we must therefore construct subsystems
which cancel the overlapping regions of the primary sub-
systems. These are called derivative subsystems85 and are
generated in accordance with eq 2. This can become a time-
consuming process for large values of r, though our algo-
rithm as implemented above is sufficient to get quite
accurate results for reasonably large molecules (vide infra).
In the future, we plan to investigate other methods of
subsystem determination such as the algorithm put forth
by Bettens and Lee.92

While we have used a GEBF-like fragmentation procedure in
this initial MIM implementation, we have major differences. The
first key difference between the current fragmentation scheme
and the GEBFmethod is that we do not use the “extension rules”
employed in constructing the GEBF primary subsystems, as our
aim is to use a cheaper electronic structure method for the longer
range interactions. This permits us to get accurate results
employing significantly smaller high-level subsystem calculations
(vide infra). Since we are currently not including any high-level
electronic embedding in our calculations, our energy gradients
are exact.85 However, we are working on implementing electro-
nic embedding in a formalism similar to our earlier ONIOM-EE
work,93�95 in which all of the small subsystem calculations are
performed in the presence of the charge distribution obtained in
the ELow

¥ level in a MIM calculation. Electronic embedding done
this way will remove the necessity to iteratively obtain charge
distributions.

In essence, the MIM method provides a general hierarchy for
coupling different electronic structure methods to achieve accu-
rate energies and properties for large molecules. This is, to the
best of our knowledge, the first fully general, extrapolated
ONIOM-like methodology for a multilevel fragmentation energy
approach (vide infra). The method allows transparent coupling of
many different methods including semiempirical schemes, easy
implementation of analytical gradients for the exploration of
potential energy surfaces or dynamics, and efficient paralleliza-
tion across many platforms including massively parallel archi-
tectures. An additional advantage is that our energy extrapolation
procedure is generic and is easily coupled with many possible
fragmentation schemes. We have already implemented schemes
based on bond-space cutoff, real space (distance-based) cutoff,
and number-based cutoff treatments. Moreover, the seamless
inclusion of link atoms (when needed) makes it possible to treat
bonded systems (such as peptides) or nonbonded systems (such
as water clusters) on an equal footing. Another major advantage
of our methodology is that multilevel MIM calculations do
include all interactions, albeit, at the low-level of theory. Finally,
unlike most previous schemes, our use of the ONIOM-like
extrapolation scheme results in our method having the formal
property that it yields exact energies when the different levels of
theory become identical.

Of the many previous fragment-based approaches developed
by other groups, several share some of the advantageous details
featured here. The ability to obtain system�system interactions
by using overlapping subsystems has been demonstrated pre-
viously by Li et al. (GEBF83�85) and Gadre et al. (CG-MTA60�66).
However, both of these methods have thus far used only a single
level of fragmentation that attempts to incorporate all significant

interactions into the fragmented energy calculations, e.g., via
electrostatic embedding of the subsystems. As an alternative, the
MIM approach uses a lower level of theory to compute the
energy of the full molecule (or simply a less fragmented system)
which does include all interactions. Several previous methods
(MC-QM:QM,96�100 HMBI,88,89 EE-MB-CE,78 MFBA,90)
make use of multiple levels of theory, as we do in this work.
Typically, many-body energy expansions are used in these
approaches, where the lower levels of theory are employed for
evaluations of the higher order many-body terms. However, the
MIM method is defined in a general and flexible manner, and
thus it can couple both overlapping subsystem approaches and
many-body expansion approaches (though the latter has not yet
been fully implemented in our code). The more recent XO
method101 not only uses overlapping subsystems for describing
fragment-fragment interactions but also couples multiple levels
of theory, as we do in our current approach. However, the XO
method has not yet included a systematic and programmable
algorithm for the fragmentation/subsystem assembly procedure
as we have done in this contribution. Overall, while MIM is
clearly related to many previous fragment-based methods, its
broad definition and generality make it an accurate and applicable
approach for investigating a wide range of problems for both
bonded and nonbonded systems.

In our implementation, Gaussian 09 is used for both the
electronic structure calculations and the geometry optimizer.102

III. ASSESSMENT OF MIM

A. Absolute Energies—DNA. For the MIM method to
provide accurate results, the low level of theory must be capable
of recovering the long-range interactions lost in the high-level
subsystem calculations. In this section, we couple a semiempirical
method (PM6) with an ab initio method (HF/6-31G) to
compute the MIM energy of a large molecular system to test
the energy convergence with increasing r both with and without
the PM6 level. This allows us to gauge the ability to capture long-
range effects with only a low-level of theory. As a test molecule,
we have chosen the DNA poly(dA 3 dT) decamer taken from the
nucleic acid database,103 a system considered previously with the
GEBFmethod.85 However, as we are currently not including any
solvation effects, the presence of 18 excess electrons may make
the results difficult to interpret. We therefore cap each of the
phosphate groups with a sodium ion to neutralize the highly
anionic systems as we have done in a previous study.104 Although
electron correlation effects are known to be important in the
description ofπ�π interactions, we have used the HFmethod to
permit comparison to previously reported results on a similar
system.85 The modified system is shown in Figure 2a.
Figure 2b illustrates the deviations in absolute energy between

the unfragmented HF/6-31G results and two fragmented
schemes: HF/6-31G(r) (black columns) and HF/6-31G:PM6-
(r) (green columns). The benefits of including the PM6 correc-
tion for long-range interactions are immediately seen. The PM6
correction greatly reduces the deviations at all levels of
fragmentation.
B. Relative Energies—2NPV.While reproducing the absolute

energies of the full unfragmented method is clearly a sufficient
condition for accuracy, it is not necessary, as quantum chemistry
is largely concerned with energy differences. Therefore, while
systematic errors in a fragmentation method may prevent rapid
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convergence of the absolute energies, these errors may cancel
when computing relative energies.
Here, we assess the ability of the MIM method to reproduce

the relative conformer energies of a cyclic lipopeptide surfactin
(PDB entry 2NPV).105 We have chosen 2NPV as a test molecule
based both on its small size (which allows full, unfragmented
calculations to be performed) and on the wide range of con-
formations sampled by the fatty acid group (as shown in
Figure 3a). This molecule has a well-defined, saddle-shaped
polypeptide backbone with a long alkyl chain extension. In this
example, we use the first 10 conformers given in the PDB file.
Using both distance-based cutoffs (r) and number-based

cutoffs (η) for the primary subsystem assembly, we calculated
the energy of the 10 conformers with both 1-level [MP2/6-
31G*(r or η)] and 2-level [MP2/6-31G*:B3LYP/6-31G*(r or
η)] fragmented methods and compared the results to the full,
unfragmented MP2/6-31G* (1262 basis functions) relative

energies. This allows us to examine the effect of the low-level
correction on relative energies. For the distance-based cutoff, we
use an r value of 3.0 Å,109 and for the number-based cutoff, we use
a value of η = 9. As can be seen in Figure 3c, the low-level
(B3LYP/6-31G*) correction greatly improves the results by
closely reproducing the unfragmented MP2/6-31G* relative
energies. In fact, for all but conformer 4, there is essentially no
discernible difference between the MP2:B3LYP(η = 9) results
(dashed line) and the MP2 results (solid line), despite significant
deviations for the single level fragmented MP2(η = 9) results
(dotted line).
The results, summarized in Table 1, show that while the low-

level correction does indeed decrease both the RMS and max-
imum absolute errors, the relative energies are improved more
dramatically. A careful analysis of the distance- and number-
based cutoff results illustrates the differences in using the
different procedures of subsystem assembly. We can make a
preliminary observation from this study that the η = 9 results
appear to be more accurate and have smaller individual MP2
calculations while the r = 3.0 results require fewer subsystem
calculations. These results are clearly impressive and underscore
the extent of error cancellation in the fragmented methods.
While the errors in absolute energies are still rather large (RMS =
3.27: max = 3.9 kcal/mol for MP2:B3LYP(r = 3.0) and RMS =
2.44: max = 2.94 kcal/mol for MP2:B3LYP(η = 9)), the errors in
relative energies are much smaller; both the RMS and maximum
errors (for both r and η) are less than 1 kcal/mol. Our best results
are obtained for the number-based cutoff method where the
RMS deviation in relative energies falls from 1.18 kcal/mol to an
impressive 0.25 kcal/mol on going from MIM1 to MIM2.
C. Geometry Optimizations—Si(100)-2�1. The theoretical

study of semiconductor surface chemistry has benefited greatly
from the development of efficient and accurate cluster models.106

However, the computational demands for studying processes
such as a chemical line growth across a surface are greatly
increased due to the large cluster models required to capture
the lateral movement of the adsorbed molecules. Here, we
demonstrate the ability to use the MIM method to optimize
the geometry of a large silicon cluster with an adsorbed allylic
mercaptan molecule.107 The structure is shown in Figure 4.

Figure 3. 2NPV: (a) Superposition of the first 10 conformers. (b) Structure of conformer 9 given in the PDB file. (c) Relative energies for the first 10
conformers of 2NPV centered at zero. Dotted line: MP2(η = 9) results. Dashed line: MP2:B3LYP(η = 9) results. Solid line: unfragmented MP2 results.
All calculations use the 6-31G* basis set. Relative energies for each method are shown centered at zero.

Figure 2. DNA: (a) DNA decamer used in this study. Naþ ions are
shown as black centers. (b) Convergence of absolute energy with r.
Deviations between unfragmented and fragmented calculations re-
ported as HF(r)�HF or HF:PM6(r)�HF.
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As the MIM gradient expressions look just like the energy
expressions, we can easily obtain MIM gradients from gradient
evaluations of the individual subcalculations. Link atom force
projections are performed as outlined for the ONIOM metho-
dology. In Figure 4, we show the convergence of the optimized
geometries with increasing r. The columns represent RMS
deviations (in Å) between the B3LYP/6-31G*:AM1(r) opti-
mized geometry and the unfragmented B3LYP/6-31G* opti-
mized geometry. Using a value of r = 3.0, the RMS is nearly
halved with respect to the pure AM1 results (r = 0.0). Further
improvements to the geometry can be made by increasing r, with
r = 4.0 giving nearly exact results.

IV. CONCLUSIONS

In this paper, we present a new hybrid energy fragmentation
method called molecules-in-molecules (MIM), which treats
individual fragmentation calculations as levels in an ONIOM-
like hybrid energy framework.

As an initial assessment of the approach, we have studied
the convergence of the total energy for a large DNA molecule.
By comparing to the single-level fragmentation approach, we
observe significant improvements to the total energies upon
inclusion of a low-level correction.

By calculating the relative conformer energies of a surfactin
molecule, we report improvements to the reproduction of MP2
relative energies, with an RMS deviation from the unfragmented
MP2 calculations of only 0.25 kcal/mol.

We have also demonstrated the use of the MIM method for
the optimization of molecular geometries for a silicon cluster

model system, and our results indicate that accurate molecular
geometries can be obtained using the MIM methodology.

Overall, our work suggests that ourmultilevelMIM approach can
be employed for a wide range of large systems with high accuracy.

Finally, a cautionary note on the applicability of MIM is
warranted. Central to our method is the assumption that the
electronic characteristics are relatively local or near-sighted.
Therefore, classes of molecular systems, such as metallic or
highly conjugated systems, which are characterized by long-range
electron delocalization are not expected to be treatable with the
MIM methodology. Further, as we are currently using only
hydrogen atoms for capping truncated bonds, our current
implementation is only expected to be successful for those
systems which are dominated by covalent bonds. Fragmentation
of dative or ionic bonds is not recommended. However, we are
currently investigating alternative bond-capping approaches
(such as the use of pseudoatoms) for various bonding scenarios.
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Modeling Fast Electron Dynamics with Real-Time Time-Dependent
Density Functional Theory: Application to Small Molecules and
Chromophores
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William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory

ABSTRACT: The response of matter to external fields forms the basis for a vast wealth of fundamental physical processes ranging
from light harvesting to nanoscale electron transport. Accurately modeling ultrafast electron dynamics in excited systems thus offers
unparalleled insight but requires an inherently nonlinear time-resolved approach. To this end, an efficient andmassively parallel real-
time real-space time-dependent density functional theory (RT-TDDFT) implementation in NWChem is presented. The
implementation is first validated against linear-response TDDFT and experimental results for a series of molecules subjected to
small electric field perturbations. Second, nonlinear excitation of green fluorescent protein is studied, which shows a blue-shift in the
spectrum with increasing perturbation, as well as a saturation in absorption. Next, the charge dynamics of optically excited zinc
porphyrin is presented in real time and real space, with relevance to charge injection in photovoltaic devices. Finally, intermolecular
excitation in an adenine-thymine base pair is studied using the BNL range separated functional [Baer, R.; Neuhauser, D. Phys. Rev.
Lett. 2005, 94, No. 043002], demonstrating the utility of a real-time approach in capturing charge transfer processes.

1. INTRODUCTION

The time-dependent response of molecules under external
fields forms the basis of a host of fundamental physical processes
including light harvesting, photodissociation, electron transport,
and higher harmonic emission. Broadly, radiation�molecule
interactions can be classified as either weak or strong. When
the interaction with the field is much smaller than the intramo-
lecular interactions, the excitation is weak and the field induces
only a small perturbation from the ground state. Perturbation
theories such as linear-response time-dependent density func-
tional theory (LR-TDDFT)1�3 are excellent at modeling weak
excitations and can accurately predict properties such as the
absorption spectra of molecules and materials.4 In the general
case, however, matter�radiation interactions require going be-
yond linear response.

A fundamental understanding of nonlinear excited state
dynamics at the femto- and subfemtosecond time regimes offers
unparalleled insight into unsolved problems such as nonlinear
spectra of single molecules, the nature of photoabsorption and
exciton dynamics in photovoltaic devices, transport through
molecules, and many others. Modeling nonlinear dynamics at
molecular length scales, however, is a challenge requiring a
combination of careful theoretical formulation and considerable
computational effort. Unlike the weak excitation limit, where
frequency domain perturbative approaches suffice, the strong
excitation regime involves a complex interplay of electronic and
nuclear dynamics and is best captured with a real-time, real-space
approach. Here, the electron density, and in some cases nuclear
motion, is monitored in time and space, which sheds light directly
on the fundamental mechanisms of the excitation. Moreover,
fully nonlinear (beyond perturbation theory) spectral informa-
tion is readily obtainable from a real-time simulation via Fourier
transform of time-dependent expectation values, such as the
dipole moment.

All this comes at a cost, and studying real-time dynamics in
molecules and materials is a daunting task. In particular, evolving
a system in time requires calculating these potentials at every
time step, which is extremely time-consuming. Additionally, care
must be taken in evolving the system in time, and propagators
must strike a balance between accuracy, stability, and speed.
Finally, since excited states tend to be quite delocalized, dy-
namics simulations typically require the use of larger basis sets
compared to traditional ground state calculations.

Despite the challenges, many successful approaches have been
developed to study real-time electron dynamics in realistic
systems. Within the Born�Oppenheimer approximation, these
include: direct integration of the Schr€odinger equation for very
small systems (e.g., H2);

5 real-time configuration interaction
singles (CIS);6,7 real-time orbital-free/Thomas-Fermi;8,9 real-
time, time-dependent density functional theory (RT-TDDFT)
(discussed below); real-time Hartree�Fock (RT-TDHF);10,11

and time-dependent semiempirical methods (e.g, TD-PM3).12

DFT in particular offers a good trade-off between accuracy and
efficiency for both ground and excited states, which has moti-
vated extensive interest in TDDFT for real-time modeling, of
which we present a representative sampling below.

Real-space (grid-based), time-dependent local density approx-
imation RT-TDDFT, which was first developed by Theilhaber,13

and pioneered by Yabana and Bertsch,14 has been applied to
systems ranging from aluminum dimers15 to quantum dots in
magnetic fields.16 The Octopus17 real-time TDDFT package
derives from this lineage. Real-time TD-LDA using a planewave
basis has similarly been applied to aluminum dimers,18 modeling
enhanced absorption of a nanoshell,19 and conduction through a
molecular junction.20 RT-TDDFT has also been performed with
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numerical orbitals using Siesta,21 applied to atomic clusters22 and
higher harmonic generation in chromophores,23 and extended to
include ionic motion.24 Another approach is to use a tight
binding Hamiltonian for RT-TDDFT,25 for which linear scaling
implementations have been used to study absorption spectra.26

Finally, RT-TDDFT with an atom-centered Gaussian basis has
been used to study molecular conductance,27,28 excited states at
metal surfaces,29 absorption properties of silicon clusters,30 and
double excitations31 and singlet�triplet transitions.32

There has also been extensive work in developing schemes
which go beyond the Born�Oppenheimer approximation to
explicitly treat nuclear motion such as Ehrenfest dynamics,33�35

Liouville�von Neumann molecular dynamics with real-time
tight binding,36 using surface hopping37 to emulate nonadiabatic
switching between adiabatic states,38�40 and correlated electron�
ion dynamics.41

In this paper, we present a massively parallel RT-TDDFT
implementation in NWChem42 geared towards simulating large
systems while still maintaining generality and flexibility (e.g,
various basis sets and functionals) and use it to explore the linear
and nonlinear response properties of a series of molecules. The
remainder of the paper takes the following form: The overall
methodology is outlined in section 2.1. The structure of the time-
dependent complex Fock matrix in discussed in section 2.2. The
propagation scheme is detailed in section 2.3, and section 2.4
highlights some of the computation considerations. Next, the
scheme is validated against LR-TDDFT for a few small molecules
in section 3.1. The nonlinear absorption properties of the green
fluorescent protein (GFP) are explored in section 3.2. Real-time,
real-space visualization of resonant excitation in zinc porphyrin is
presented in section 3.3, and finally, intramolecular charge
transfer excitation in the adenine�thymine base pair is studied
in section 3.4 using the BNL range-separated functional.43,44

2. METHODOLOGY

2.1.Overviewof Real-TimeTDDFT.Time-dependent density
functional theory casts the time-dependent Schr€odinger equa-
tion into a fictitious system of noninteracting electrons that
satisfy the effective single particle time-dependent Kohn�Sham
(TDKS) equations with an effective potential vKS(r,t) uniquely
described by the time-dependent charge density F(r,t),1 which in
atomic units is

i
∂ψiðr, tÞ

∂t
¼ � 1

2
r2 þ vKS½F�ðr, tÞ

� �
ψiðtÞ

¼ � 1
2
r2 þ vextðr, tÞ þ vHðr, tÞ þ vXC½F�ðr, tÞ

� �
ψiðtÞ

ð1Þ
Here, the charge density is the sum over all orbitals

Fðr, tÞ ¼ ∑
occ

i
jψiðr, tÞj2 ð2Þ

and vext(r,t) contains the nuclear�electron and applied field
potentials and vH(r,t) is the Hartree (electron�electron) mean-
field potential. Note that all potentials are explicit functions of time.
Moreover, the exchange-correlation potential vXC[F](r,t) is non-
local in both space and time and is formally a functional of the
initial wave functions and the entire history of the charge density
F(r,t). However, all practical implementations use the adiabatic

approximation, which assumes locality in time (see discussion by
Baer45). Real-time TDDFT involves explicitly propagating the
coupled one-particle KS wave functions via eq 1. This is in
contrast to the traditional linear-response approach, which is not
actually a time-resolved method but instead solves eq 1 in the
frequency domain for the excitation energies of a system subject
to a small perturbation;3 there are also real-time linear-response
TDDFT approaches.46,47

In practical applications, the KS molecular orbitals are either
solved in real space (e.g., finite element approaches) or expanded
in a set of basis functions. In the case of an orthogonal basis (e.g.,
plane waves), time evolution consists of propagating the time-
dependent coefficients of each of the mutually orthogonal basis
functions. Localized basis functions, on the other hand, offer a
good compromise between speed and flexibility, and in the case
of a Gaussian basis set, they offer the added ability to use hybrid
nonlocal exchange-correlation functionals in a seamless manner.
In a Gaussian basis, it is most natural to use the single particle
reduced density matrix

P
0
μν ¼ ∑

NMO

i
C
�
μiðtÞ CiνðtÞ ð3Þ

where we have introduced the time-dependent molecular orbital
coefficient matrix C(t), which describes the occupations of the
molecular orbitals:

ψiðr, tÞ ¼ ∑
NAO

μ¼ 1
CμiðtÞ φμðrÞ ð4Þ

where {φ(r)} are the atomic orbitals, NAO is the number of
atomic orbitals, and NMO is the number of molecular orbitals.
From here on, we use primes to denote matrices in the molecular
orbital (MO) basis and no primes to denote matrices in the
atomic orbital (AO) basis. In the MO (orthonormal) basis, the
time evolution of the density matrix is governed by the von
Neumann equation

i
∂P0

∂t
¼ ½F0ðtÞ,P0ðtÞ� ð5Þ

where F0(t) is the time-dependent Fock matrix in the MO basis,
which depends on the density matrix at that time. Evolving the
system in time reduces to computing the Fock matrix and
stepping P0(t) forward using eq 5. For large systems with diffuse
basis sets, linear dependencies in the basis become unavoidable;
see Appendix A for a detailed discussion on AOTMO transfor-
mations and how to deal with linear dependencies in RT-
TDDFT.
Unlike ground state DFT calculations where the density matrix

and Fock matrix are purely real (at least in the case of a real basis
set like Gaussians), both become complex quantities in real time
due to the i in eq 5. Moreover, whereas they are symmetric in the
ground state, they must remain Hermitian under time propaga-
tion, with the additional constraint that the density matrix remains
idempotent and trace invariant (P0P0 = P0,Tr[P0] =Ne), whereNe

is the total number of electrons in the system.
This approach for evolving the density matrix in time is

intuitive and easy to implement with a variety of time propagators
(see section 2.3). Moreover, it can be readily extended to use
matrix and current functionals, and phenomenological damping
can be introduced via the off-diagonal elements of P0(t) or
through friction functionals.48 The dominant computational
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burden is in computing the Fock matrix F0(t) at every time step,
which is outlined in the following section.
2.2. Time-Dependent Fock Matrix. The proper choice of

exchange-correlation functional is critical, as the inclusion of
nonlocal exchange has been shown to be essential in a broad
range of cases.49�51 LR-TDDFT with global hybrid functionals
(e.g, B3LYP, PBE0, and others) has been highly successful in
predicting excitation energies for a range of systems.4,52 More
recently, range-separated functionals have been shown to capture
charge transfer states successfully.44,53�56 As such, we consider a
composite time-dependent complex Fock matrix, which in gen-
eral contains a blend of DFT exchange-correlation andHartree�
Fock exchange. This can be written in a general way as follows:

Fμν½PðtÞ� ¼ Hcore
μν þGJ

μν½PðtÞ� þ RGK
μv½PðtÞ� þ βGX-DFT

μv ½Fðr, tÞ�
þ γGC-DFT

μν ½Fðr, tÞ� þ VappðtÞ ð6Þ
where μ and ν index the atomic orbitals. Here, Hμν

core is the time-
independent one-electron part, Gμν

J (t) is two-electron Coulomb
interaction between the electrons, Gμν

K (t) is the two-electron
exact exchange,Gμν

X-DFT(t) is the DFT exchange part, andGμν
C-DFT

is the DFT correlation. The R, β, and γ coefficients quantify the
mixing of DFT andHF (exact exchange), e.g.,R = 1, β = γ = 0 for
pureHF;R = 0, β =γ = 1 yields for DFT; and intermediate values
for global hybrid functionals. Vapp(t) includes any external
perturbation to the system, such as an applied electric field.
The Coulomb and DFT exchange-correlation contributions

are all purely real symmetric matrices that depend only on the
real part of the density matrix. The exact exchange matrixGμν

K (t),
however, is complex Hermitian and depends on both the real and
imaginary parts of P(t); see Appendix B for a derivation and
discussion of these symmetries. As a consequence, the imaginary
part of P(t) only enters into the Fock matrix if there is exact
exchange (i.e., either pure Hartree�Fock or hybrid functionals),
and despite the complex phase introduced into the density matrix
via eq 5, the Fock matrix remains purely real in pure DFT
calculations.
2.3. Magnus Propagator. The final component of the real-

time scheme involves integrating eq 5 to get the time-dependent
density matrix. Nonsymplectic integrators, such as Euler or
Runge�Kutta methods, are unsuitable for large scale simulations
as they become increasingly unstable with increased simulation
size and require a very small time step to maintain the idempo-
tency constraint of the density matrix. A better choice for von
Neumann dynamics is the Magnus expansion, which steps P0
forward in time using a unitary propagator which conserves the
indempotency.We briefly summarize themethod below, without
derivation. For a general overview of time propagation schemes,
see the review by Kosloff.57 For additional details concerning
propagators for the time-dependent Kohn�Sham equations, see
refs 58 and 36 and also the excellent discussion by Castro and co-
workers.59

The exact unitary propagator for eq 5 is given by

Uðt þΔt, tÞ ¼ T expf�i
Z t þ Δt

t
F0ðτÞ dτg ð7Þ

such that

P0ðt þΔtÞ ¼ Uðt þΔt, tÞ P0ðtÞ U†ðt þΔt, tÞ ð8Þ
where T is the time-ordering operator which orders operators
from those associated with later times to earlier times. The

explicit time dependence of F0(t) makes it impossible to evaluate
this propagator directly. Instead, a convenient solution to eq 7 is
given by a Magnus expansion60

T expf�i
Z t þ Δt

t
F0ðτÞ dτg ¼ eΩ1 þ Ω2 þ ::: ð9Þ

where the {Ωi} are a series of nested commutator integrals:

Ω1ðt þΔt, tÞ ¼ � i
Z t þ Δt

t
F0ðτÞ dτ ð10Þ

Ω2ðt þΔt, tÞ ¼ � i
Z t þ Δt

t
dτ1

Z τ1

t
½F0ðτ2Þ, F0ðτ2Þ� ð11Þ

l ð12Þ
The resulting approximation is valid to order Δt2M, where M is
the number of Magnus terms. The integrals in eq 10 can be
evaluated using quadrature. For example, for M = 1, we have

Uðt þΔt, tÞ = eΩ1 ð13Þ

Ω1 = � iF0ðt þΔt=2Þ ð14Þ
The results presented here all used a M = 1 Magnus expansion;
increasing to M = 2 would allow larger time steps, at the cost of
more Fock builds per time step.
The main difficulty in using a Magnus scheme arises from the

fact that the propagation (e.g., eq 14) requires knowledge of the
Fock matrix at a future time, which is unknown. In the case of a
second order (M = 1) Magnus propagator, the obvious solution
is to form a guess for F0(tþΔt/2) from a linear extrapolation of F0
at previous times. Unfortunately, crude predictors such as this
inevitably fail for larger time steps. The most accurate method is
to extrapolate F0, propagate P0 forward, interpolate to find a
better F0, and repeat until converged. This approach is costly,
however, as you must rebuild the Fock matrix every convergence
step. Instead, we adopted a two step predictor�corrector scheme
proposed by Van Voorhis and co-workers,27 whereby you predict
F0(tþΔt/4) by linear extrapolation from previous values and use
this to step P0 forward by Δt/2 using eq 7. Overall, the
predictor�corrector scheme was found to be sufficiently accu-
rate and stable for a wide variety of systems. Predictor schemes
such as this, however, fail to conserve the time-reversibility of
eq 5. One alternate approach is the modified midpoint unitary
transformation (MMUT) method developed by Li and co-
workers;11 the MMUT approach will be implemented in the
future.
Finally, the exponentiation of the Ω matrices can be per-

formed using a range of methods such as diagonalization, power
series, Lanczos, etc. Note, however, that U† = U�1 (unitary), so
eq 7 is of the form

P0ðt þΔtÞ ¼ eWP0ðtÞ e�W ð15Þ
where W(tþΔt,t) = Ω1(tþΔt,t) þ Ω2(tþΔt,t) þ ... Thus, we
can apply the Baker�Campbell�Hausdorff (BCH) formula

P0ðt þΔtÞ ¼ P0 þ 1
1!
½W, P0ðtÞ� þ 1

2!
½W, ½W, P0ðtÞ��

þ 1
3!
½W, ½W, ½W, P0ðtÞ��� þ ::: ð16Þ
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For clarity, we have dropped the explicit time dependence of the
W(tþΔt,t) matrix. The BCH expansion converges much better
than a simple power series expansion, and the primary advantage
of the BCH expansion over diagonalization is that eq 16 consists
entirely of matrix multiplications, which are operations that
parallelize extremely well. Although diagonalization formally
scales as O(N3) and is thus more efficient than a series of matrix
multiplications (each of which takes exactly N3 effort in the
absence of sparsity), in practical applications, diagonalization is
hard to parallelize well. Due to inefficiencies, diagonalization
becomes a serious bottleneck in quantum chemistry simulations
run on more than a few hundred processors, and thus for large-
scale simulations, diagonalization-free approaches are better
suited (see ref 61 and references therein). In practice, it usually
took on the order of tens of terms to converge the BCH expan-
sion to 10�8 accuracy.
2.4. Computational Considerations. Accurate electron dy-

namics simulations of realistic systems can easily involve thou-
sands of electrons and basis functions, propagated for long times.
Clearly, an efficient implementation is necessary to make such
simulations feasible. Since the vast majority of the computational
work comes from building the Fock matrix at each time step,
effort should be taken to either increaseΔt or speed up construc-
tion of the Fock matrix.
Higher order Magnus propagators allow for larger time steps,

for example, but require added Fock builds at each step; in
practice, however, this is a system-specific trade-off. On the other
hand, the Fock matrix construction can be sped up by using
smaller basis sets or pure DFT functionals (e.g., ALDA), in
conjunction with approaches such as charge density fitting.62

Semiempirical Hamiltonians are also an alternative12 but need to
be properly parametrized and carefully validated.
The von Neumann dynamics approach as formulated is

straightforward to implement in any quantum chemistry suite,
as it can be built on fundamental routines. Constructing the time-
dependent Fock matrix (eq 6) is akin to the building the ground
state F in standard SCF (self-consistent field) schemes, save for
the imaginary part due to exact exchange. Provided paralleliza-
tion bottlenecks like diagonalization are avoided (as in the BCH
exponentiation approach), RT-TDDFT will scale as well as
standard Gaussian orbital-based SCF DFT with no loss of
generality. We have implemented this approach, in NWChem
which allows us to take advantage of the efficient parallelization
capabilities offered by the code. This in turn allows us to tackle
large systems with a high level of accuracy.

3. RESULTS

In this section, we first validate the real-time TDDFT ap-
proach against linear response TDDFT for series of small
molecules, then move on to study the response of two chromo-
phores to weak and strong perturbations, and finally study charge
transfer across a DNA base pair using a long-range corrected, or
range-separated, functional. Throughout, we mostly use atomic
units (au), but for convenience we also present values in more
customary units: 1 au length = 0.5292 Å; 1 au energy = 27.21 eV;
1 au time = 0.02419 fs; 1 au dipole moment = 2.542 D; 1 au
electric field = 514.2 V/nm. Unless noted otherwise, all basis sets
used in this study were obtained from the EMSL Basis Set
Exchange.63

3.1. Validation on Small Molecules.To validate that the RT-
TDDFT approach correctly reduces to linear response in the

small perturbation limit, we studied the lowest excitation en-
ergies of various molecules and compared the results to standard
LR-TDDFT and experimental results. An optical absorption
spectrum can be obtained from a real-time simulation via Fourier
transform of the time-dependent dipole moment resulting from a
small δ-function-like electric field “kick”. Starting from the
ground state, we perturb the system with a narrow, transient,
linearly polarized uniform Gaussian electric field:

EðtÞ ¼ k exp½�ðt � t0Þ2=2w2�d̂ ð17Þ
where t0 is the center of pulse,w is the pulse width (typically a few
time steps), which has dimensions of time, d̂ = x̂, ŷ, ẑ is the
polarization of the pulse, and κ is the maximum field strength
(dimensions of electric field). Note that the total energy added is
therefore dependent on the time step Δt and the pulse width w;
alternatively a normalized pulse can be used. The applied field
excites the system through a dipole coupling term added to the
Fock matrix (in the AO basis)

Vapp
μv ðtÞ ¼ �Dμv 3EðtÞ ð18Þ

where D is the transition dipole tensor of the system, e.g,

Dx
μv ¼

Z
φ
�
μðrÞ xφνðrÞ dr ð19Þ

A Gaussian-type electric field was chosen instead of a δ-function
to avoid introducing nonphysical artifacts or instabilities due to a
sudden change in potential. Despite the finite width, the pulse
essentially excites all electronic frequencies simultaneously, save
perhaps very high frequencies. The system is allowed to evolve in
time, and the dipole moment is computed in the AO basis
according to

μðtÞ ¼ Tr½DPðtÞ� ð20Þ
Likewise, the time-dependent occupation of the kth molecular
orbital is computed by projecting the density matrix onto the
ground state orbitals

nkðtÞ ¼ C
0†
k P0ðtÞ C0

k0 ð21Þ
where Ck

0 is the kth eigenvector of the ground state Fock matrix.
To get the absorption spectrum from RT-TDDFT, a simulation
is performed for each polarization of kick (symmetries in the
system may alleviate this need), and the complex polarizability
tensor is constructed from the Fourier transforms of the dipole
signals

Rd, jðωÞ ¼ 1
k
~μd, jðωÞ ð22Þ

where d is the index for the kick direction and j is the index for the
measurement direction. The absorption cross-section tensor is
obtained from R(ω) via

σðωÞ ¼ 4πω
c

Im½RðωÞ� ð23Þ

and finally the dipole strength function (absorption spectrum) is

SðωÞ ¼ 1
3
Tr½σðωÞ� ð24Þ

Figure 1 shows real-time data for benzene described using the
6-31G* basis set, subjected to a small x kickwith κ= 2� 10�5 au =
10 mV/nm, w = 0.2 au = 4.8 � 10�3 fs, and t0 = 3 au = 0.07 fs.
Before perturbing the system, the nuclear geometry was optimized
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using the same basis and functional, and the ground state density
converged via standard DFT. The narrow electric field pulse
simultaneously excites all electronic modes, and the full dipole
response (left panel) shows essentially dipolar oscillations com-
posed of multiple frequencies.
A time step ofΔt = 0.5 au = 0.012 fs was used, and the systemwas

evolved for 1000 au = 24 fs. Two functionals were used, LDA and
B3LYP, which yielded qualitatively similar results. For speed, in the
LDA case, the Coulomb part of the Fock matrix was evaluated using
charge density fitting instead of the explicit two-electron integrals;62

this significantly reduced the computational cost. We checked that
the charge density fitting approach yielded very similar results to
explicit calculation of the Coulomb integrals. As an additional check,
we confirmed that after the pulse had passed, the total system energy
remained constant over time. The resulting absorption spectra are
shown in the right panel, where the peaks have been broadened by
artificially damping the time signal by e�t/τ, τ = 250 au = 6 fs before
taking the Fourier transform.
To validate these results, the corresponding linear response

TDDFT spectra were compared with those obtained using the
linear response TDDFT module in NWChem. The dashed lines
show the LR spectrum, artificially broadened with Lorenzians of
width 0.01 au = 0.3 eV. Additionally, both RT and LR spectra
were normalized for clarity. The two spectra are essentially
identical. For each of the finite LR signals (100 total roots
computed for each simulation yielding six signals with appreci-
able oscillator strength), the RT signal agrees perfectly. Since the
RT result effectively samples all excitations, rather than a finite
number of roots as in LR, the RT spectra contain higher
frequency signals beyond those computed in the LR simulation.
As an aside, the spectral resolution of the RT approach is

limited by the time step; i.e., if a molecule has a spectral
bandwidth of ωmax, the maximum time step is Δtmax = π/ωmax.
As an extreme example, to resolve the spectrum of a molecule
with a maximum excitation frequency of 2 au (54 eV), one
requires a time step of Δt = 1.57 au = 0.034 fs, or smaller. In

practice, however, the time step is limited by the stability of the
propagator (e.g, Magnus) rather than the bandwidth.
As further validation, a similar analysis was conducted for a

range of small molecules, basis sets, and functionals, using the
same kick parameters as described above. As before, geometry
optimizations and convergence of the ground state densities were
performed using the same basis and functionals as each of the
real-time simulations. Table 1 shows a comparison between the
linear-response, real-time, and gas-phase experimental lowest
excitation energies for dihydrogen, methane, carbon monoxide,
and benzene. Overall, there is excellent agreement between the
linear-response (LR) and real-time (RT) values, as well as with
experimental results. At worst, the RT energy deviated from the
LR result by∼1% and from the experimental one by∼10%, with
agreement generally improving with size of the basis set.
We note that a RT-TDDFT kick-type simulation yields the full

electronic spectrum, up to the cutoff energy due to the finite time
step. Thus, unlike a LR-TDDFT approach which requires a large
number of roots or a windowed solver to compute higher energy
transitions, a kick approach yields all roots in one single simula-
tion, or at most three simulations (x, y, z kicks) in the absence of
symmetries. Indeed, if one is interested in computing many
excitation energies for a very large system, the RT approach is
actually more efficient than a LR approach, which requires
= O(N4) effort for each root.64 The one caveat is that, as
formulated, a RT-TDDFT simulation can only probe excitations
with a nonzero oscillator strength and thus cannot be effectively
used to study “dark” excitations, which are typically measured
experimentally via emission.
3.2. Linear and Nonlinear Excitation of Green Fluorescent

Protein. Green fluorescent protein (GFP), which is responsible
for the bioluminescence of some species of jellyfish, is nearly
ubiquitous in biotechnology, with technological applications
ranging from visualizing tagged proteins using fluorescence
microscopy to developing transgenic fluorescent organisms.65

Depending on the variant, GFP absorbs light in the blue or

Figure 1. Real-time (RT) results for benzene in the perturbation limit, described using the 6-31G* basis and LDA (top) and B3LYP (bottom)
functionals. The left panel shows the x dipole moment after a narrowGaussian electric field kick. The resulting absorption spectra are shown on the right
(solid lines), with the corresponding linear-response (LR) spectra shown for comparison (fine dashed lines). The peaks were artificially broadened and
normalized (see text).
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ultraviolet and fluoresces in the green. The actual GFP chromo-
phore, which is a small molecule embedded in the larger overall
protein, has a strong absorption due to a single excitation, which
makes it an ideal candidate for TDDFT studies. The particular
chromophore variant we studied (see Figure 2) has an intense
experimental absorption at 3.51 eV, which corresponds to
354 nm light.66 In the weak-field regime, linear response TDDFT
calculations (3.32 eV B3LYP/POL1) agree well with both
coupled cluster (3.60 eV CR-EOMCCSD(T)/POL1) and the ex-
perimental values for the absorption (see ref 67). Modeling the
full response of GFP to strong fields beyond the weak perturba-
tion limit, however, requires a real-time approach, and in this
section, we use RT-TDDFT to study the nonlinear excitation of
GFP subject to a range of perturbations.
To explore the nonlinear absorption properties, we subjected

the GFP chromophore to a series of kicks (as in section 3.1) with
field maximum κ ranging from 8� 10�4 au = 0.41 V/nm (weak
perturbation) to 0.24 au = 123 V/nm (strong perturbation).
These narrow pulses (w = 4.8 � 10�3 fs) are nonphysical fields
that simultaneously excite all electronic modes; this results in a
nonphysical dipole moment which is a convolution of all excita-
tions. Correspondingly, these simulations describe the immedi-
ate absorption properties of the molecule (i.e., how the light is
absorbed and excites the density), and although the larger values
of κ correspond to extremely strong electric fields, these simula-
tions do not capture photoionization, which is difficult to
describe using TDDFT in an atom-centered basis. Estimating
ionization probabilities over a range of frequencies from a single
kick-type nonphysical excitation is not straightforward, as the
energy is distributed among all electrons in the system (i.e., core
to valence); this will be quantified in future studies.
To ensure that there were sufficient basis functions to capture

the diffuse excited states for the highly excited cases, we used the
POL1 basis set.68 In total, there were 114 electrons and 492 basis
functions. To rule out unphysical confinement of the charge
density due to the finite basis, we also tried using the smaller

6-31G* basis set; the results were essentially identical. We used
the B3LYP exchange-correlation functional for this study. To
ensure we start at an energy minimum, we used the same basis set
and functional for geometry optimization and ground state
density convergence before starting the time-dependent simula-
tion. The densitymatrix was propagated for 1300 au = 31 fs with a
time step of Δt = 0.1 au = 0.0024 fs.
Figure 3 shows the dipole moment and absorption spectrum

(artificially broadened via damping by e�t/τ; τ = 400 au = 9.7 fs)
for this range of perturbations. For illustrative purposes, relative
values are presented—the dipole moment is scaled by the kick
height such that any results in the weak excitation regime will be
identical. Alternatively, in the linear response regime, if you
double the kick, the dipole moment will double; this does not
hold true in the strong excitation regime, which provides a simple
graphical indicator of nonlinearity.
Once the perturbation is strong enough (i.e., κ J 40 V/nm

in Figure 3), two interesting effects emerge. First, the scaled
responses (heights of the dipole moment and absorption
peaks) decrease in magnitude; this is a saturation effect.
Physically, once one goes beyond linear response, the highly
excited molecule cannot absorb subsequent radiation, and the
absorption, which is due to a single excitation, saturates.
Nonlinear saturation effects like this, which are neglected by
linear response, are critical for realistic modeling of spectros-
copy under intense fields and transport in nanosystems where
LR transport calculations tend to drastically overestimate
certain effects.
Second, in the nonlinear regime, higher frequency signals begin

to dominate. The inset in the left panel of Figure 3 showshow in the
strong perturbation regime the time signal is no longer dominated
by the main slow (low frequency) excitation, but instead by higher
frequency modes. The corresponding spectrum shows how the
absorption is likewise spread out over a wider range of frequencies.
Moreover, in the nonlinear regime, the secondary absorption
around 6.8 eV is increasingly blue-shifted with stronger fields.

Table 1. Comparison of Real-Time (RT) TDDFT, Linear Response (LR) TDDFT, and Experimental Lowest Excitation Energies
(in eV) for a Selection of Molecules, Basis Sets, and Exchange-Correlation Functionals

6-311G/LDA 6-311G/B3LYP cc-pVTZ/LDA cc-pVTZ/B3LYP

LR RT LR RT LR RT LR RT expt

H2 12.52 12.49 13.09 13.12 12.32 12.31 12.88 12.90 11.19

CH4 10.67 10.67 11.10 11.13 10.29 10.29 10.72 10.75 9.70

CO 8.00 8.03 8.16 8.22 8.29 8.28 8.52 8.55 8.55

C6H6 7.31 7.35 7.35 7.36 7.09 7.10 7.15 7.18 6.90

Figure 2. Structures of the molecules studied.
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A simple physical interpretation is that the highly displaced charge
density experiences a nonlinear restoring force which is stronger
than in the linear regime, just like a highly displaced spring.
3.3. Resonant Excitation of Zinc Porphyrin. Porphyrin

forms the structural basis for the various chlorophyll molecules
and has been exploited as the functional unit in light harvesting
systems.69,70 The absorption properties of zinc and free-base
porphyrin have been studied extensively using LR-TDDFT
and coupled cluster theory,54,67,71 but from a photovoltaic
device point of view, the mechanism of charge injection (i.e.,
from the light harvesting porphyrin into a nearby substrate)
has many unanswered questions. RT-TDDFT is an excellent
tool to probe these charge dynamics in real time and real space.

As a first step in this direction, we model the response of zinc
porphyrin (Figure 2) to a transient laser pulse tuned to its
strongest absorption. We used B3LYP for the exchange correla-
tion; for the basis set, we used 6-31G* for the hydrogen, carbon,
and nitrogen atoms and the Stuttgart RSC 1997 effective core
potential (ECP) for the zinc center, which replaces 10 of the Zn
electrons. Since optical absorption does not typically involve core
electrons, ECPs offer a simple way to boost the speed of real-time
calculations without a loss of accuracy; we confirmed that the use
of an ECP in this case did not alter the results. The total
propagation time was 1500 au = 36 fs with a time step of Δt =
0.1 au = 0.0024 fs, which was chosen to ensure a smooth density
animation rather than being limited by the propagator.

Figure 3. The dipole moment (left) and spectrum (right) of the green fluorescent protein chromophore subjected to a series of kicks ranging from the
weak to the highly nonlinear regimes. For comparison, the values are scaled by the kick strength and the spectrum plot also shows the corresponding
linear response TDDFT roots. In the nonlinear regime (κJ 40 V/nm), the molecule’s excitation is saturated, and higher frequency signal modes begin
to dominate the time-resolved dipole moment. The strength of the main absorption in the spectrum decreases with nonlinearity, and the secondary
higher energy absorption is increasingly blue-shifted.

Figure 4. Isosurface snapshots of the difference between the excited and ground state charge densities, F(r,t) � F(r,0) = 7 � 10�7 Å�3, for zinc
porphyrin described using B3LYP and 6-31G* for H, C, and N and the Stuttgart RSC 1997 effective core potential for Zn. The system was excited at its
resonance of 3.53 eV (see bottom inset spectrum) with a transient x-polarized laser pulse (top inset), resulting in charge oscillation back and forth along
the molecule’s conjugated π backbone, with each complete oscillation taking ∼1.2 fs. The charge density was plotted using Blender.75
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The enveloped monochromatic laser pulse took the form

ExðtÞ ¼ k exp½�ðt � t0Þ2=2w2� cosðω0tÞ,
Ey ¼ Ez ¼ 0

ð25Þ

The frequency of the pulse was taken to beω0 = 0.1296 au = 3.53
eV, and the Gaussian had a half-width of w = 50 au = 1.2 fs. The
maximum field strength was κ = 8.0 � 10�5 au = 41 mV/nm,
which is within the linear response regime. The ZnP resonance
frequency was determined from a kick-type simulation (see eq 17
in section 3.1) and artificially broadened. The resulting spectrum
is shown in the bottom inset of Figure 4, with an arrow denoting
the laser pulse frequency. The top inset shows the profile for the
homogeneous x-polarized monochromatic electric field pulse
used in this resonant excitation (overall the pulse lasts approxi-
mately 7 fs). The middle plot shows the resulting dipole moment
which is essentially monochromatic, and as there is no damping
in the system, the oscillation continues indefinitely.
The six panels in Figure 4 show snapshots of the deviation of

the charge density from the ground state, F(r,t)� F(r,0) during
and after resonant illumination. The snapshots show the positive
7� 10�7 Å�3 isosurface, i.e., the smooth surface where F(r,t)�
F(r,0) = 7� 10�7 Å�3; the corresponding negative deviation was
omitted for clarity. The top three slices depict the response of the
charge density while being driven by the laser pulse. F(r,t) starts
essentially in the ground state (first slice). The second slice
occurs just at the first significant peak in the dipole moment,
which occurs just after the peak in the driving field, as it takes time
for the density to respond. Here, the extra charge density is
beginning to populate the space above and below the carbon
backbone on the þx (right) side of the molecule, which
corresponds to a πfπ* transition. The third slice, which is the
first significant trough in the total dipole moment, demonstrates
that the charge density now populates the π* orbitals on the �x
(left) side of the molecule. The bottom three slices show how the
charge density of the excited ZnP molecule evolves after the
driving field has passed. The charge density sloshes along the
delocalized π* orbitals from the right to the left, which takes∼24
au = 0.6 fs, which is in agreement with the time-resolved dipole
moment (middle inset).
Using RT-TDDFT to directly visualize the electron dynamics

offers insight into the fundamental nature of the excitation, not
just concerning which molecular orbitals are at play but also how
they are being populated in time, and where in space the charge is
concentrated. In Figure 4, not only is the πfπ* transition
obviously visible, but additionally, as expected, there is a clear
buildup of charge at the x end of the molecule during the
oscillations. It is easy to see that bonding a porphyrin to a

substrate will then allow the excited charge density, which has
high momentum, to hop from the end of the molecule to the
surface in an ultrafast injection process; future RT-TDDFT
studies will explore this effect further.
3.4. Long-RangeChargeTransfer inDNABase-PairFragments.

As a final example, we demonstrate how long-range corrected func-
tionals can be used in a RT-TDDFT framework to correctly capture
charge transfer excitations. The charge transfer between adenine (A)
and thymine (T) is a classic example where local exchange-correlation
functionals (LDA) and even global hybrids (e.g, B3LYP) under-
estimate the energy of the AπfTπ* intermolecular transition, to the
point that they incorrectly predict it will be the lowest excitation.50,55

The source of this error is the incorrect asymptotic behavior of the
exchange term, which should go as r12

�1 but goes as 0.2r12
�1

in B3LYP, for example. Recently developed long-range corrected
functionals have shown great promise in addressing this
shortcoming.44,53�56,72 These functionals split the exchange into a
short-range part and a long-range piece which converges to the
correct Hartree�Fock asymptote:

1
r12

¼ 1� erfðμr12Þ
r12

þ erfðμr12Þ
r12

ð26Þ

Here, μ is a tuning parameter for partitioning the exchange, where
μf0 tends to the pure DFT limit and μf¥ tends to the pure
HF limit.
The real-time response of the A�T pair (see Figure 2) was

modeling using the 6-31G* basis set and the BNL range
separated functional43 with μ = 0.3. The Coulomb part of the
Fock matrix was computed using charge density fitting with the
Ahlrichs Coulomb fitting basis set.62 The systemwas excited with
a transient laser pulse tuned to the charge transfer excitation in
the linear response regime:ω0 = 0.234 au = 6.36 eV, w = 30 au =
0.7 fs, and κ = 1.2 � 10�4 au = 62 mV/nm (see eq 25). The
resonant frequency was found via kick-type simulation as de-
scribed previously; it compares well with the value of 6.25 eV
from ref 55 computed using LR-TDDFTwith BNL (μ = 0.3) and
the aug-cc-pVTZ basis set.
Figure 5 shows three snapshots of the F(r,t) � F(r,0) = 10�7

Å�3 density deviation isosurface long after the exciting laser pulse
has passed. In the first frame (t = 14.2 fs), both molecules are
polarized in theþx direction, and there is shared electron density
in the central N 3 3 3H bridge. In the second frame (0.1 fs later),
excess charge passes from the thymine molecule through the
NH2 3 3 3OdC bridge, finally resulting in a charge buildup on
adenine another 0.1 fs later and a net �x polarization for both
molecules. These simulations show that the complete ArT
charge transfer process occurs in approximately 0.3 fs. Note that

Figure 5. Snapshots of F(r,t) � F(r,0) = 10�7 Å�3 for the adenine (A, left molecule)/thymine (T, right molecule) base pair excited at the 6.36 eV
resonance, corresponding to an intermolecular charge transfer state. The snapshots correspond to times long after the transient laser pulse has passed,
leaving the system in an excited state. Initially, both molecules are polarized in the þx direction, and there is an excess of charge on T. Next, charge is
transferred ArT via the NH2 3 3 3OdC bridge, resulting in a net�x overall polarization and excess charge on A. The overall charge transfer happens in
approximately 0.3 fs. The charge density was plotted using Blender.75
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these dynamics are much faster than the experimentally observed
100 fs decay time for this excitation (likely due to internal
conversion to nπ*).73

4. CONCLUSIONS

We have presented Gaussian basis set-based real-time, time-
dependent density functional theory simulations using
NWChem and have shown that the calculated spectra for a
range of small molecules correctly reduce to the linear response
TDDFT spectra in the small perturbation limit. Going beyond
linear response, we studied the optical response of the green
fluorescent chromophore to a series of perturbations of increas-
ing strength. In the strong perturbation regime, the main
absorption saturates and the higher energy absorption becomes
blue-shifted with increasing field strengths; this has implications
for strong field studies of molecules and electron transport in
nanosystems. Next, we studied the resonant excitation of the
light-harvesting molecule zinc porphyrin. Direct visualization of
the charge density in time and space shows that the excitation,
which corresponds to a πfπ* transition, induces delocalized
charge oscillations across the carbon backbone, with a buildup of
charge near the ends of the molecule. Real-time, real-space
studies of this kind offer powerful insight into electron dynamics
and are uniquely well-suited to modeling fast electron processes
in a variety of devices, such as photovoltaics. Finally, we
visualized the adenine πfthymine π* transition, which shows
that the charge transfer happens through the oxygen�amine
bridge on the order of 0.3 fs. From a computational point of
view, the implementation is massively parallel and is scalable
with system size; as there is no diagonalization, the main burden
is construction of the Fock matrix, which is easily distributed
across many processors. Further improvements to the imple-
mentation are planned, which will be presented in future
publications.

’APPENDIX A: CANONICAL ORTHOGONALIZATION
TRANSFORMS

The real-time TDDFT scheme requires working in both the
atomic orbital (AO) and molecular orbital (MO) representa-
tions. The propagation is done entirely in the MO basis via the
von Neumann equation, eq 5, whereas the Fock matrix is built in
the AO basis, eq 6. The time-dependent dipole moment is
computed in the AO basis, eq 20, and the time-dependent orbital
occupations are computed in the MO basis, eq 21. It is therefore
useful to outline how to perform AOTMO transformations.

For a given overlap matrix Sμν = Æφν|φνæ, there may be linear
dependencies in the eigenvectors which necessitates truncating
the number of molecular orbitals using canonical orthogonaliza-
tion. Although not typically a problem in smaller systems, as the
system size increases or many diffuse atomic orbitals are used
(which is necessary to capture diffuse excited states), linear
dependencies become unavoidable. The well-known transforma-
tion matrix for converting from the AO to a truncated MO
basis is74

X ¼ Us�1=2 ð27Þ
where U is the matrix with eigenvectors of S as columns, and s is
the diagonal matrix of eigenvalues of S. If we have N atomic
orbitals and d linear dependencies, X becomes a rectangular
matrix of dimensionsN�M, whereM =N� d is the number of

molecular orbitals. Converting the Fock matrix from the AO
basis to the MO basis is then straightforward:

F0 ¼ X†FX ð28Þ
Note that F (AO basis) is an N � N matrix, whereas F0 (MO
basis) is a smallerM �M matrix. Converting the density matrix
from the MO to the AO basis is likewise very simple:

P ¼ XP0X† ð29Þ
where, as before, P is N� N and P0 isM�M. It is slightly more
complicated to convert PfP0, which is necessary when convert-
ing the ground state density matrix, which is computed in the AO
basis in an SCF approach, to the MO basis for subsequent von
Neumann propagation. Simple inversion of eq 29 is complicated
by the fact that X is not square and cannot be easily inverted.

The simplest solution is to use left and right inverses. The left
inverse of X is given by

X�1
L ¼ ðX†XÞ�1X† ð30Þ

while the right inverse of X† is given by

ðX†Þ�1
R ¼ XðX†XÞ�1 ð31Þ

We know these inverses exist because all zero (or near zero)
eigenvectors have been removed. From eq 29, we get

X�1
L PðX†Þ�1

R ¼ P0 ð32Þ
which means

P0 ¼ ðX†XÞ�1X†PXðX†XÞ�1 ð33Þ
From eq 27, we know

X† ¼ s�1=2U† ð34Þ
Although U is not strictly unitary (as it is not square), we know
that U†U = Im, and thus (X

†X)�1 = s. The transformation from
the density matrix in the AO basis to the MO basis then becomes

P0 ¼ sX†PXs ð35Þ
which in a more compact form is simply

P0 ¼ Y†PY ð36Þ
where Y � Xs = Us1/2 is an N � M transformation matrix.

’APPENDIX B: SYMMETRIES IN THE COMPLEX FOCK
MATRIX

In this section, we prove that, for a basis set of purely real
functions, in pure RT-TDDFT (without Hartree�Fock ex-
change), the Fock matrix is purely real and symmetric and
depends only on the real part of the complex density matrix. In
the case of hybrid RT-TDDFT, however, the HF exchange term
of the Fock matrix is complex Hermitian and depends on the full
complex density matrix. The derivation presented is similar to
that given in ref 36. For simplicity, we assume a closed shell
system, but the results are identical for an open shell system.

Recall that in hybrid DFT-HF, the elements of the Fockmatrix
take the general form

Fμν½PðtÞ� ¼ Hcore
μν þGJ

μνðtÞ þ RGK
μνðtÞ þ βGX-DFT

μν ðtÞ
þ γGC-DFT

μν ðtÞ þ VappðtÞ ð37Þ
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where μ and ν are indexes for the atomic orbitals,Hcore is the time-
independent one-electron part, GJ(t) and GK(t) are the time-
dependent Coulomb and exchange terms, GX-DFT and GC-DFT

are the DFT exchange and correlation terms, and Vapp(t) is the
potential due to an external perturbation (e.g, electric field). In
RT-TDDFT, the Fockmatrix F(t) and the density matrixP are in
general complex and Hermitian. We will discuss the symmetries
in eq 37 term by term.

First, we note that the applied potential Vapp(t) is independent of
the densitymatrix, and for all physical potentials, it is purely real. This
is not true in the case of nonphysical potentials such as complex
absorbing boundary conditions, but in such situations, the Fock
matrix ceases to be Hermitian and the total system charge is not
conserved in time,which requires a careful reformulationofTDDFT.

The time-independent one-electron part Hcore includes
kinetic and electron�nuclear terms

Hcore
μν ¼ Tμν þ VeN

μν ð38Þ

¼
Z

dr1 φμðr1Þ �1
2
r2

1

� �
φνðr1Þ

þ
Z

dr1 φνðr1Þ �∑
A

ZA

jr1 � RAj

" #
φνðr1Þ ð39Þ

where {φ(r)} are the atomic orbitals which we henceforth assume
are real. Since this expression is independent of the density matrix,
and the integrals in eq 39 are symmetricwith respect to the exchange
of μ and ν, the core term is pure real and symmetric.

Next, in adiabatic RT-TDDFT, the DFT exchange and
correlation terms are all functionals uniquely determined by
the instantaneous charge density (and possibly its gradients):

GX-DFT
μν ¼ GX-DFT

μν ½Fðr, tÞ� ð40Þ

GC-DFT
μν ðtÞ ¼ GC-DFT

μν ½Fðr, tÞ� ð41Þ
The charge density F(r,t) is dependent only on the real part of
the density matrix

Fðr, tÞ ¼ ∑
μ
∑
ν
Re½PμνðtÞ�φμðtÞφνðrÞ ð42Þ

and therefore the DFT XC terms are both real and symmetric and
depend only on the real part of Pμν(t).

The Coulomb term takes the form

GJ
μνðtÞ ¼ ∑

λσ

PλσðtÞðμνjσλÞ ð43Þ

where (μν|σλ) are the standard two-electron integrals

ðμνjσλÞ �
Z

φμðr1Þ φνðr1Þ
1
r12

φσðr2Þ φλðr2Þ dr1 dr2 ð44Þ

Note that since the basis functions are real, these two-electron
integrals are symmetric to permutation of λ and σ:

ðμνjσλÞ ¼ ðμνjλσÞ ¼ ðνμjλσÞ ¼ ðνμjσλÞ ð45Þ
The double sum in eq 43 can be split into three parts

GJ
μνðtÞ ¼ ∑

λ
∑
σ < λ

PλσðtÞðμνjσλÞ þ ∑
λ

PλλðtÞðμνjλλÞ

þ ∑
λ
∑
σ > λ

PλσðtÞðμνjσλÞ ð46Þ

Swapping the indices of summation for the third term gives

GJ
μνðtÞ ¼ ∑

λ
∑
σ < λ

PλσðtÞðμνjσλÞ þ ∑
λ

PλλðtÞðμνjλλÞ

þ ∑
σ
∑
σ > λ

PσλðtÞðμνjλσÞ ð47Þ

and using the symmetry of the two-electron integrals (eq 45), the
Coulomb matrix elements become

GJ
μνðtÞ ¼ ∑

σ < λ

½PλσðtÞ þ PσλðtÞ�ðμνjσλÞ þ ∑
λ

PλλðtÞðμνjλλÞ

ð48Þ
The real part is

Re½GJ
μνðtÞ� ¼ ∑

σ < λ

fRe½PλσðtÞ� þ Re½PσλðtÞ�gðμνjσλÞ

þ ∑
λ

Re½PλλðtÞ�ðμνjλλÞ ð49Þ

but since P is Hermitian, the real part is symmetric, which gives

Re½GJ
μνðtÞ� ¼ 2 ∑

σ < λ

Re½PλσðtÞ�ðμνjσλÞ þ ∑
λ

Re½PλλðtÞ�ðμνjλλÞ

ð50Þ
Equation 50 is symmetric to the exchange of μ and ν; thus
Re[Gμν

J (t)] = Re[Gνμ
J (t)], and the real part of the Coulomb term

is symmetric. The imaginary part is

Im½GJ
μνðtÞ� ¼ ∑

σ < λ

ImfPλσðtÞ þ Im½PσλðtÞ�gðμνjσλÞ

þ ∑
λ

Im½PλλðtÞ�ðμνjλλÞ ð51Þ

but here due to Hermicity the imaginary part of the density
matrix is antisymmetric with on-diagonal elements of zero;
thus

Im½PλσðtÞ� þ Im½PσλðtÞ� ¼ 0 ð52Þ

Im½PλλðtÞ� ¼ 0 ð53Þ
and the imaginary part of the Coulomb matrix vanishes

Im½GJ
μνðtÞ� ¼ 0 ð54Þ

Thus, the Coulomb term is a real-valued symmetric matrix which
only depends on the real part of the complex density matrix.

A similar analysis can be done for the exchange matrix,

GK
μνðtÞ ¼ ∑

λσ

PλσðtÞðμλjσνÞ ð55Þ

(note the different two electron integrals from Coulomb part),
which after expanding into three terms and swapping summation
in the third term gives

GK
μνðtÞ ¼ ∑

λ
∑
σ < λ

PλσðtÞðμλjσνÞ þ ∑
λ

PλλðtÞðμλjσνÞ

þ ∑
σ
∑
σ < λ

PσλðtÞðμλjσνÞ ð56Þ
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The real part is

Re½GK
μνðtÞ�¼ ∑

σ < λ

Re½PλσðtÞ�ðμλjσνÞ þ ∑
λ

Re½PλλðtÞ�ðμλjλνÞ

þ ∑
σ < λ

Re½PσλðtÞ�ðμσjλνÞ ð57Þ

¼ ∑
σ < λ

Re½PλσðtÞ�ðμλjσνÞ þ ðμσjλνÞ

þ ∑
λ

Re½PλλðtÞ�ðμλjλνÞ ð58Þ

To check the symmetry, we switch the μ and ν indices

Re½GK
νμðtÞ�¼ ∑

σ < λ

Re½PλσðtÞ�ðνλjσμÞ þ ðνσjλμÞ þ ∑
λ

Re½PλλðtÞ�ðνλjλμÞ

ð59Þ
Permuting the two electron integrals (eq 45) gives

Re½GK
νμðtÞ�¼ ∑

σ < λ

Re½PλσðtÞ�ðμσjλνÞ þ ðμλjσνÞ þ ∑
λ

Re½PλλðtÞ�ðμλjλνÞ

ð60Þ

¼ Re½GK
νμðtÞ� ð61Þ

thus the real part of the exchange term is symmetric. The
imaginary part is (c.f. eq 57)

Im½GK
μνðtÞ� ¼ ∑

σ < λ

Im½PλσðtÞ�ðμλjσνÞ þ ∑
λ

Im½PλλðtÞ�ðμλjλνÞ

þ ∑
σ < λ

Im½PσλðtÞ�ðμσjλνÞ ð62Þ

and since P(t) is Hermitian, the imaginary part is antisymmetric
and has zeros on the on-diagonal. Therefore

Im½GK
μνðtÞ� ¼ ∑

σ < λ

Im½PλσðtÞ�½ðμλjσνÞ � ðμσjλνÞ� ð63Þ

As before, we examine the symmetry by swapping μ and ν

Im½GK
νμðtÞ�¼ ∑

σ < λ

Im½PλσðtÞ�½ðνλjσμÞ � ðνσjλμÞ� ð64Þ

¼ ∑
σ < λ

Im½PλσðtÞ�½ðμσjλνÞ � ðμλjσνÞ� ð65Þ

¼ � Im½GK
μνðtÞ� ð66Þ

where again we used the permutation of the two-electron
integrals. Therefore, the exchange term is complex, Hermitian,
and depends on the full complex density matrix.
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ABSTRACT: The pyridoxal-50-phosphate-dependent enzymes (PLP enzymes) catalyze a myriad of biochemical reactions, being
actively involved in the biosynthesis of amino acids and amino acid-derived metabolites as well as in the biosynthetic pathways of
amino sugars and in the synthesis or catabolism of neurotransmitters. Although the scope of PLP-catalyzed reactions initially appears
to be bewilderingly diverse, there is a simple unifying principle: In the resting state, the cofactor (PLP) is covalently bonded to the
amino group of an active site lysine, forming an internal aldimine. Once the amino substrate interacts with the active site, a new Schiff
base is generated, commonly referred to as the external aldimine. Only after this step, the mechanistic pathway for each PLP-
catalyzed reaction diverges. In this paper, density functional methods have been applied to investigate this common step present in
all PLP-dependent enzymes—the transimination reaction. The results indicate that the reaction involves three sequential steps: (i)
formation of a tetrahedral intermediate with the active site lysine and the amino substrate bonded to the PLP cofactor; (ii) nondirect
proton transfer between the amino substrate and the lysine residue; and (iii) formation of the external aldimine after the dissociation
of the lysine residue. The overall reaction is exothermic (�12.0 kcal/mol), and the rate-limiting step is the second one with 12.6
kcal/mol for the activation energy.

1. INTRODUCTION

Pyridoxal 50-phosphate (PLP) is a derivative of vitamin B6 and
acts as a cofactor in a myriad of chemical reactions involving
amino acids.1 The enzyme commission (EC) has already cata-
logued more than 150 distinct enzymatic activities of this type of
enzyme, which includes decarboxylations, racemisations, transi-
minations, retro�aldo cleavages, and β or γ eliminations.

The study of PLP enzymes is one of the most fascinating
frontiers in enzymology, not only because of their unrivaled
versatility as catalysts but also because they are involved in many
cellular processes.2 Their importance is further underscored by the
number of receptors that have been identified as drug targets. For
example, inhibitors of γ-aminobutyric acid aminotransferase
(GABA ATase) are used in the treatment of epilepsy,3 serine
hydroxyl methyl transferase (SHMT) has been identified as a
target for cancer therapy,4 and inhibitors of ornithine decarbox-
ylase (ODC) are employed in the treatment of African sleeping
sickness.5 Functional defects in PLP enzymes have also been
implicated in several pathologies, such as homocystinuria.6 Under-
standing the function of this important group of enzymes has thus
become an important milestone in medicine and biorelated
research areas to develop new molecules capable of impairing
enzymatic activity and especially to design improved protein-based
catalysts.

A comprehensive understanding of PLP-related enzymes or
even their classification in different families is not a straightfor-
ward task, because beyond the wide variety of reactions that they
can catalyze, these enzymes have diverse quaternary structures.
Some enzymes can be found active asmonomers, others as dimers,
and some of them as tetramers or even hexamers.7,8 Although the
scope of the PLP-catalyzed reactions initially appears to be bewil-
deringly diverse, there is a simple unifying principle: In the resting
state the cofactor is covalently attached to the ε-amino group of an

active site lysine, forming an internal aldimine. Once the R-amino
substrate interacts with the active site, the lysine residue dissociates
from PLP, and the substrate becomes covalently bonded to it,
generating a new Schiff base with PLP. This intermediate is
commonly called the external aldimine. Only after this step, the
mechanistic pathway for each PLP-catalyzed reaction diverges as it is
depicted in Scheme 1.

The conversion between the internal (lysine PLP-imine) and
external aldimine (substrate PLP-imine) has therefore a pre-
ponderant role in all PLP-related enzymes, and it is a crucial step
in their activation. Moreover, as the inverse reaction is required
for the enzymatic turnover, this reaction is critical toward the
overall activity of these enzymes.

Experimental studies have provided some clues regarding this
step. All PLP intermediates (internal and external aldimines) have
distinct absorption bands and change only by a few nanometers
from system to system, which makes their identification and
characterization straightforward.9,10

The postulated mechanism proposes that at physiological
conditions, the imine linkage of the internal aldimine is proto-
nated in order to form a more electrophilic and reactive iminium
ion (Scheme 1). Upon amino substrate binding, it is suggested
that the nitrogen N10 of the substrate attacks carbon C8 of the
internal aldimine. Subsequently, the lysine residue dissociates
from the PLP endorsing the formation of the external aldimine.
During this process, it is proposed that the dissociation of the
lysine residues and the attachment of the amino acid substrate is
not accomplished in a single step. Instead, it might involve the
formation of a transient but stable geminal diamine intermediate.

Received: April 26, 2010
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The presence of a geminal diamine intermediate is assumed to
be common in most PLP-dependent enzymes. However, there is
some controversy about the mechanism by which the transimi-
nation reaction occurs. Snell and Jenkins were the first ones to
propose the formation of a geminal diamine intermediate.11 This
mechanism was supported by further experimental work.12,13

Other studies suggest the involvement of a two-fold addi-
tion�elimination type of mechanism instead14,15 or even the
possible involvement of the phosphate group of PLP in the proton
shuttle mechanism.14,7 However, the involvement of the 50-phos-
phate of PLP in the transimination process was later on discarded,
because this group is buried in the protein and cannot interact
directly with the region where the transimination reaction occurs.
Several studies proposed that the main function of this group is to
act as an anchor to hold the PLP group in the active site.16 This is
rather important after the formation of the external aldimine, in
which the PLP group becomes disconnected from the enzyme
(it was earlier bonded through Lys69), and therefore it requires
some sort of interaction that maintains it bonded to the active site
and aligned in a proper orientation for effective catalysis. Yet, there
are some PLP-dependent enzymes in which the 50-phosphate
group is indeed involved in the catalysis, as it is the case of the
enzyme glucogen phosphorylase17 and GDP-4-keto-deoxyman-
nose-3-dehydratase (CoID).18 However, in those cases the sub-
strates are not amino acid-related molecules, and therefore the
transimination reaction does not occur.

All the other mechanisms remain as open possibilities, and
several studies were conducted aiming to elucidate the most
favorable pathway for the transimination reaction present in the
PLP-dependent enzymes.

The high rate complexity of the enzymatic transimination has
made it very difficult to study the transimination reaction by
experimental means. Even so several works have supported the
presence of the geminal diamine intermediate in the transimina-
tion reaction.19�22 However, the correct mechanism that could
elucidate its formation and involvement in the transimination
reaction is still poorly understood. During the past decade,
several computational studies have emerged that have tried to
explain the transimination reaction at the atomic level detail. The

studies performed by Mu~noz et al.23 were pioneers in this field
and revealed that the conversion between the internal aldimine
into the external aldmine requires the direct participation of at
least one water molecule. In this proposal, it is suggested that the
phenolate oxygen of the PLP should receive a proton from the
amino substrate (through the water molecule) to favor the
formation of the geminal diamine intermediate.

Another study, performed by Zhao et al., proposes that the
transimination reaction occurs through the direct proton transfer
between both amino groups that are bonded to the PLP.
However, prior to the formation of the geminal diamine inter-
mediate, it is required the direct participation of the 50-phosphate
group of PLP.24 Despite the enormous interest that this reaction
has received, none of these studies have explored the participa-
tion of key active site amino acids in the transimination reaction.

In fact, analyzing several X-ray structures, we found that near
the PLP cofactor there are two conserved residues that are
capable of catalyzing this reaction, i.e., Cys360 and Tyr389
(considering the PDB code 2OO0). Both residues are pointing
to the place in which the transimination reaction should occur. In
addition, there is one water molecule that is pointing to the same
reaction spot and can favor the transimination reaction without
the direct involvement of the phenolic oxygen of the PLP, as it
has been proposed by Mu~noz et al.25 In this paper, we explore all
these possibilities using quantummechanics calculations in order
to enhance the knowledge about the transimination reaction and
highlight the most favorable mechanism involved in this process.

2. METHODOLOGY

1. Model. The model system used in this work was based on
the X-ray structure 2OO0 determined by Dufe et al.,26 which
contains the human ornithine decarboxylase. This structure has a
good resolution (1.9 Å) but lacks the substrate inside the active
site. To acquire this information, we superimposed the X-ray
structure 1F3T, which contains the ornithine descarboxylase
from Trypanosoma brucei complexed with the putrescine (the
ODC’s reaction product) in the binding pocket.27 Near the active
site region, the two structures can be almost superimposed,

Scheme 1. Currently Accepted Mechanism for the Transimination Reaction: A Common Step in the Catalytic Mechanism of All
PLP-Dependent Enzymesa

a P represents the phosphate group and A an R-amino substrate.
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allowing us to model the correct position of the substrate inside
the active site of the X-ray structure 2OO0. The reactant of the
reaction was subsequently modeled substituting the hydrogen
atom, which is attached to the carbon atom that is closer to the
PLP ring, by a carboxyl group.
This model was subsequently simplified, eliminating all the

amino acids that do not interact directly with the PLP-imine. The
final model contained the PLP, the substrate, Lys69, Cys360, and
Tyr389 (Figure 1).
The selected amino acids were initially truncated at the

R carbon. However, in order to maintain the net of hydrogen
bonds within the residues of the model, we decided to keep the
main chain of each residue and protonate the carboxylate and the
amino groups. The calculations that we have performed have
shown that this latter approach turned out to bemore satisfactory
than the reverse, because it improved the robustness of themodel
and, in some cases, resulted in the reduction of the activation
energy by 3 kcal/mol and the reaction barrier by 1 kcal/mol.
In order to simplify the model, we decided to substitute the

phosphate group of PLP by a methyl group. We have chosen the
methyl group instead of a hydroxyl group because the first one
ensures and maintains the stability of the active site, without
requiring the inclusion of additional residues. Nevertheless, the
differences between the barriers obtained for the first step of the
studied mechanism were very similar in both cases [Ea = 5.3 and
Er = 2.5 kcal/mol vs Ea = 4.5 and Er = 1.9 kcal/mol (values
obtained with DFT6-31G(d))].
In spite of all simplifications the model had in total 108 atoms

(Figure 1). This model was then subjected to geometry optimi-
zations. To keep the optimized structures close to the X-ray
structure, some atoms were kept frozen as depicted in Figure 1.
2. Methods. Density functional theory (DFT) calculations

were performed with the Gaussian09 software package.28 All
structures were fully optimized and characterized both at the
B3LYP level29�32 and using the new hybrid exchange correlation
functional proposed by Zhao and Truhlar, M0633,34 together
with the 6-31G(d) basis set. The 6-31þG(d,p) basis set was also

used to optimize all geometries of the rate-limiting step and
analyze the effect of polarization and diffusion functions in the
hydrogen atoms. In all geometry optimizations, we first searched
for the transition state starting from the reactants. This was
obtained with a scan in which the reaction coordinate that we
were interested in was shortened or stretched. The transition
states were subsequently fully geometry optimized, starting from
the structure of the higher energy point of the scans. The
reactants and the products, associated with it, were determined
through internal reaction coordinate (IRC) calculations. In all
cases, the geometry optimizations and the stationary points were
obtained with standard Gaussian convergence criteria. The
transition-state structures were all verified by vibrational fre-
quency calculations, having exactly one imaginary frequency with
the correct transition vector, even using frozen atoms, which
shows that the frozen atoms were almost free from steric strain.
The final electronic energies were calculated using the all-

electron 6-311þþG(3df,2pd) basis set, using the functionals
B3LYP, M06, and M06-2X. These structures were the optimized
geometries obtained with the M06/6-31G(d) level of theory.
Zero-point corrections, thermal, and entropic effects (T = 310.15 K,
P = 1 bar) were added to all calculated energies, with the 6-31G(d)
basis set. To estimate the solvation effects of the rest of the enzyme,
single point calculations on the optimized geometries were per-
formed with IEF-PCM, as implemented in Gaussian 09,28 with the
6-311þþG(3df,2pd) basis set. This feature is of particular impor-
tance to the study of enzymatic catalysis because the use of a
continuum model is normally taken as an approximation to the
effect of the global enzyme environment in a reaction. A dielectric
constant of ε= 4was chosen to describe the protein environment of
the active site in agreement with previous suggestions.35�38 The
atomic spin density distributions were calculated at the M06 level
employing a Mulliken population analysis, using the 6-31G(d)
basis set.

3. RESULTS AND DISCUSSION

This section will be divided in twomain parts. In the first part, we
will discuss the most favorable pathway for the transimination
process at the M06-2X/6-311þþG(3df,2pd)//M06/6-31G(d)
level. In the second part, we will discuss a small benchmarking
study that was performed to compare the results that were obtained
with the very popular B3LYP and two hybrid meta exchange�
correlation functionals of Zhao and Truhlar, M06 and M06-2X.
3.1. Transimination Mechanism. Our first task in this study

was to review all the available experimental data concerning this
subject. In this analysis, we found three interesting X-ray
structures of the enzyme ornithine decarboxylase (enzyme that
catalyzes the decarboxylation of ornithine to putrescine). Each
PDB reveals the PLP in three different states that correspond to
snapshots of the active site during the initial steps of the catalytic
process (Figure 2). The first PDB structure (PDB code:
7ODC)31 clearly shows a lysine residue bonded to the PLP
cofactor. This should correspond to the initial state of the
enzyme (internal aldimine) and is a common characteristic of
all PLP-dependent enzymes. The PDB structure 1F3T20 shows
the lysine residue dissociated from the PLP cofactor. This
structure resembles what should be found in the external
aldimine but with the putrescine in place of the ornithine.
The active site region of the mutant PDB structure 1SZR13

shows a structure where the PLP cofactor is bound simulta-
neously to the lysine residue and to the amino substrate. This

Figure 1. Active site model taken from the PDB structure 2OO0 used.
All the residues that were used in this study are shown in ball and sticks.
The substrate was built based on the X-ray structure 1F3T that contains
the product of the reaction. The atoms marked with F* were kept frozen
during the geometry optimizations, and the symbol T* highlights the
place where the truncation of the residues took place.
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structure suggests that the transimination reaction might not
occur in a single step but rather in three subsequent steps, i.e.,: (i)
formation of the tetrahedral intermediate with the lysine and the
ornithine bonded to the PLP cofactor; (ii) proton transfer
between both amino substrates; and (iii) subsequent dissociation
of the lysine residue with the concomitant formation of the
external aldimine.
The enzyme ornithine descarboxylase (ODC) was used in the

subsequent sections as a model of all PLP-dependent enzymes.
Since the transimination reaction is a common feature in all PLP-
dependent enzymes, the mechanism described in the following
sections can be transferred unequivocally to any PLP-dependent
enzyme.
Step 1: Formation of the Tetrahedral Geminal�Diamine

Intermediate. Taking into account the mutant X-ray structure
1SZR we have tested in this step whether the formation of the
geminal�diamine intermediate occurs, and if such an intermedi-
ate is a stable compound (Scheme 2).
The computational results have shown that once the ornithine

enters the active site (the amino substrate), it interacts with the
PLP nearby carbon C8 and oxygen O1 (2.60 Å).
The optimized structure of the reactant indicates that in the initial

state, Lys69 remains tightly bonded to carbon C8 of the PLP
through the NH group (1.33 Å). The bond length between atoms
C8 and N9 is characteristic of secondary amines (1.31 Å), which
means that the lysine residue is attached to PLP by a single bond

(bond lengthCdN ∼ 1.28 Å). This is also emphasized by the
covalent nature of the double bond between atoms carbon C2
(0.40 au) and oxygen O1 (�0.75 au), characteristic of the carbonyl
group (1.25 vs 1.23 Å). All these results allow us to conclude that
resonance structure b from scheme 2 is the one that describes better
what must be found in the reactants of this reaction.
The positive charge of the system is mainly distributed along

the extended π systems of the PLP ring (0.86 au). It is interesting
to note that the charge of carbon C8 is slightly more positive
(0.36 au) than the other atoms of the PLP ring (on average ∼
0.28 au). This effect turns carbon C8 more prone to accept the
nucleophilic attack of the amino substrate, therefore, favoring the
reaction. This result is in agreement with previous suggestions11

that point to the fact that atomC8 of PLP becomes bonded to the
R-amino group of the substrate.
The transition-state structure (Figure 3) of this reaction is

characterized by an imaginary frequency of 165i cm�1. The
optimized structure indicates that the ε-amino group of Lys69
remains tightly bonded to carbon C8 of the PLP (1.35 Å). The
R-amino group of ornithine comes closer to the same center
(1.92 Å), and carbon C8 changes its hybridization from sp2 to
sp3, remaining slightly positively charged (0.39 au). The forma-
tion of such a tetrahedral intermediate is favored by the pyridine
ring that acts as an electron sink, thus allowing to concentrate the
excess of negative charge around oxygen O1 (�0.64 au) and to
maintain the electropositive nature of carbon C8 (0.40 au).

Figure 2. Active site topology of three PDB files of ornithine decarboxylase available in the protein databank (* mutant PDB structure of ODC).

Scheme 2. First Step of the Transimination Reaction of PLP-Dependent Enzymesa

a P stands for a phosphate group.
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In the optimized geometry of the products, both amino groups
become covalently bound to carbon C8 of the PLP, generating a
stable geminal�diamine intermediate, as it was observed in the
mutant protein 1SZR14. The bond length between the nitrogen
N9 of Lys69 and PLP slightly elongates to 1.41 Å (1.33 Å before),
while the distance between the nitrogen N10 from the substrate
and PLP gets shortened to 1.56 Å. Due to the formation of the
tetrahedral intermediate, the bond length between carbons C7
and C8 becomes slightly elongated to 1.53 Å (1.44 Å before), and
the same is also true for the bond length between carbon C2 and
oxygen O1 (1.25 Å vs 1.23 Å in the reactants). Oxygen atom O1
starts to interact very closely with the proton of the R-amino
group of ornithine through a hydrogen bond (1.59 Å), and this
creates a pseudoring as depicted in Scheme 2. This rearrange-
ment stabilizes this region, allowing the positive charge of the R-
amino group of the substrate and the negative charge of oxygen
O1 to spread along the pseudoring (0.14 au).
This reaction is characterized by an activation energy of 10.8

kcal/mol and is exothermic by �5.7 kcal/mol.
An overall evaluation of the reaction allows us to conclude that

the PLP group has a central role in this reaction by delocalizing
the negative charge through its π system. The charge becomes
mainly concentrated at the carbonyl group that simultaneously
allows guiding and aligning the amino substrate with carbon C8.

These two effects have an important role in the reaction: (i) The
first favors the ammoniumcation nature of the carbon located at
position 8 (Scheme 2); and (ii) the second enhances the
formation of a strong hydrogen bond between oxygen O1 and
the amino group of ornithine that helps to align the substrate
inside the active site. In the product of this reaction, this strong
hydrogen bond is preserved, and it favors the creation of a
pseudoring between PLP and the amino substrate that stabilizes
the formation of the geminal�diamine intermediate.
It may be interesting to note that the same type of interaction

between the lysine residue and PLP was never observed in our
calculations. This occurs because at the beginning of the reaction,
the lysine is located in a perpendicular plane to that of the PLP and
in the opposite direction of the carbonyl group. This behavior is in
agreementwith the available X-ray structures as depicted in Figure 4.
Comparing the optimized structure of the tetrahedral geminal

diamine obtained by computational means and the one obtained
experimentally (X-ray structure 1SZR), we can find many
similarities (Figure 4). Both amino groups of Lys69 and ornithine
become covalently attached to carbon C8 of the PLP at similar
distances (1.41 and 1.56 Å vs 1.31 and 1.50 Å). The same is also
true across all the bond lengths from the PLP ring, which
emphasizes the equivalence between the theoretical model and
the X-ray structure.
It must be said that there is a very good match between both

structures presented in Figure 4. The only difference lies on the
conformations adopted by Lys69 and ornithine for this study. The
model contains all the residues that are directly involved in the
reaction (in total they account to 108 atoms) but lacks all the others
(much less important) that sometimes help to keep the conforma-
tion and orientation observed in the active site of the PDB structure
1SZR. However, this is not a crucial aspect for this reaction, because
no active site residue is involved in it. Therefore taking into account
the similarity observed between all the bond lengths between carbon
C8 of PLP and Lys69 and ornithine, we can conclude that the
structures presented in Figure 4 are very similar.
Step 2: Proton Transfer between the Amino Groups of the

Tetrahedral Geminal�Diamine Intermediate. To complete the
transimination process, Lys69 must dissociate from the PLP
cofactor. Because of the formation of the tetrahedral intermedi-
ate, this reaction is not straightforward, and a protonmust be first
transferred from the R-amino group of the substrate to the
ε-amino group of Lys69 (Scheme 3).

Scheme 3. Possible Proton-Transfer Pathways (a and b) between the Amino Acid Substrate and the Lysine Residuea

a Pathway a consists of one step. Pathway b consists of two steps (dashed line): b1 and b2 with X = Tyr, Cys, or H2O.

Figure 3. Optimized structure of the transition state of step 1.
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Multiple pathways can be drawn for this step, as is depicted in
Scheme 3. The easiest one involves the direct proton transfer
from the R-amino group of ornithine (N10) to the ε-amino
group of Lys69 (N9). This reaction corresponds to pathway a of
Scheme 3. Pathway b of the same scheme, involves the presence
of a neighbor and proton donor/acceptor active site residue
(residue X in Scheme 3) capable of catalyzing the proton transfer.
Two residues can play such role in the mechanism, considering
the PDB structures 1SZR and 1F3T of ornithine descarboxylase,
and they are Cys360 and Tyr389 (Figure 5). The first residue is at
3.01 Å from carbon C8 of PLP. Tyr389 is not so close to this
center (3.58 Å), but the flexibility of the side chain still allows it to
interact with both amino groups (figure 5).
Another hypothesis is the involvement of one water molecule

in the reaction (Figure 5), similar to what was proposed byMu~noz
et al.23 A closer inspection of the crystal structure 1SZRb reveals
the presence of the water molecule 1477 (1SZR numbering) that
is very close to the sitewhere the reaction happens (but different to
what was modeled by Mu~noz et al.). Moreover, this molecule is
stabilized by several residues, such as Asp361, Asp332, and Tyr
389, suggesting that it might be conserved in the active site.
In order to model these reactions and understand which is,

from a kinetic and thermodynamic point of view, the most
favorable pathway, we have created four scenarios of the active

site. Each scenario contains the residues/water molecule capable
of catalyzing the proton transfer. The conformation of each
residue was carefully chosen beforehand using a set of rotamer
libraries and considering the protein surroundings.
Scenario 1 corresponds to pathway a of Scheme 3 and does not

contain any residues between the two amino groups (direct
pathway). Scenarios 2�4 contain a tyrosine (X =OH), a cysteine
(X = SH), and a water molecule (X = H2O), respectively. These
three scenarios will be used to study pathway b of Scheme 3, and
the acquired information will allow us to understand which
residue is more likely to catalyze the proton transfer.
The optimized structures of the reactants are very similar between

each scenario. Both amino groups remain covalently bonded to
carbonC8of thePLP, butwhile the ε-amino groupof Lys69 (�0.25
au) is at 1.40 Å from carbon C8, the R-amino group of ornithine
(0.15 au) is at 1.61Å from the same atom.Thediscrepancies that are
observed in the bond lengths are a consequence of the protonation
state of each amino group. The R-amino group from ornithine has
two protons, and when it is bonded to carbon C8, it becomes more
electropositive (0.12 au), a situation that results in aweaker chemical
bond. The ε-amino group of Lys69 has only one proton, and
therefore the nitrogen is more electronegative (�0.54 au), a
situation that results in a stronger chemical bond between the
nitrogen atom and carbon C8 stronger.

Figure 5. Active site topology of the X-ray structure 1SZR (1SZRa:PLP from chain D; 1SZRb:PLP from chain C) and 1F3T (PLP from chain A).

Figure 4. Left: X-ray structure of the PDB entry 1SZR. Right: Optimized structure of the products of the first step (the geminal�diamine intermediate).
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The distance between carbon C7 and carbon C8 of PLP
remains stabilized around 1.52 Å, and the positive charge
delocalized around the PLP ring (0.85 au), as before. The
interaction between oxygen O1 and the R-amino group of
ornithine is maintained similarly to what is observed in the
products of the first step of the mechanism.
In all scenarios, hydrogen HN (Scheme 3) of the R-amino group

of ornithine is on average 2.25 Å away from the nitrogen atomof the
ε-amino group of Lys69. In scenarios 2�4, this hydrogen atom
makes an additional hydrogen bond with the sulfur atom of Cys360
(2.69 Å), with the oxygen atom of Tyr389 (2.15 Å), and with the
oxygen atom of water molecule 1477 (1.88 Å), respectively.
Hydrogen HX of the cysteine and tyrosine residues do not

establish a hydrogen bondwith the nitrogen atom fromLys69, as it
would be expected. Such types of interaction only occur when the
water molecule is placed between the two amino groups (3.3 Å).
The transition state of scenario 1 (Figure 6) is characterized by an
imaginary frequency of 1609i cm�1. In this scenario, proton HN is
found halfway between both amino groups (∼1.35 Å), and the

charge distribution kept the same trend that was observed
beforehand.
In scenarios 2 and 3 (Figure 6), the transition states are character-

ized by imaginary frequencies of �1350 and �1114 cm�1, respec-
tively. ProtonHX gets closer to the nitrogen atomof Lys69 (1.28 Å
at scenario 2 and 1.08 Å at scenario 3), whereas hydrogen HN is
halfway between the nitrogen atom of ornithine and the oxygen
atom of tyrosine (1.28 and 1.22 Å, respectively) in scenario 2 and
the sulfur atom of cysteine (1.29 and 1.70 Å, respectively) in
scenario 3. Accordingly, the sulfur atom of Cys360 (scenario 3)
becomesmore electronegative (�0.27 vs 0.04 au in the reactants),
while the oxygen atom of Tyr389 (scenario 2) becomes more
electropositive (0.16 vs �0.27 au in the reactants). The charge
distribution around the PLP cofactor and the pseudoring remains
unchanged in both cases.
The transition state of scenario 4 (Figure 6) is characterized by

an imaginary frequency of 1476i cm�1. Both protons, HN (0.64
au) and HX (0.60 au) are equally shared between both amino
groups and the oxygen atom of the water molecule (1.25 Å on

Figure 6. Optimized transition-state structures of step 2 of the transimination reaction of scenario 1 (direct pathway), 2 (catalyzed by Tyr389), 3
(catalyzed by Cys360), and 4 (catalyzed by water1477).
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average), forming a tightly bound complex. This means that in
the transition state of scenario 4, we have a H3O

þ ion (0.55 au)
within both amino groups (�0.70 au). Similarly to what happens
in scenarios 2 and 3, the charge distribution around the PLP
group and the pseudoring remains unchanged (þ0.86 au),
In the product of each reaction, the proton that was previously

bound to the R-amino group of ornithine (N10) transfers to the
ε-amino group of Lys69 (N9) (HX in scenarios 2�4 and HN in
scenario 1) (on average 1.03 Å bond length). Both amino groups
remain bound to carbon C8 of PLP, but the bond length between
the R-amino group of ornithine and carbon C8 of PLP is now
shorter (1.42 vs 1.56 Å), whereas the bond length between the
ε-amino group of Lys69 and carbonC8 of PLP elongated to 1.6 Å
(1.41 Å beforehand). In scenarios 2�4, HN becomes covalently
bonded to the oxygen atom of Tyr389 (0.98 Å), to the sulfur
atom of Cys360 (1.35 Å), and to the hydroxyl group of the water
molecule (1.00 Å).
Similar to what happens in the reactants and in the transition

state, the charge distribution around the PLP ring remains
practically unchanged in all scenarios (0.85 au). The charge of
the pseudoring in the products of the reaction becomes more
electronegative (�0.22 au) than was observed in the reactant and
the transition state of this reaction (�0.19 au).
The graphic shown in Figure 7 resumes the energetic profile

obtained from all the studied reactions for step 2 of the
transimination reaction. The results show that under physiolo-
gical conditions, all of the studied pathways can occur and
efficiently catalyze the proton transfer between both amino
groups of the tetrahedral geminal�diamine intermediate.
All the studied pathways have one characteristic in common:

The reactions are almost thermoneutral, which indicates the
feasibility of the reaction in both directions, as it is predicted
experimentally.12 However, some reactions are more favorable
than others. Accordingly, the involvement of Tyr389 (scenario 2)

or of the water molecule (scenario 4) in the proton transfer tends
to decrease considerably the activation energy. The direct proton
transfer of pathway a (scenario 1) or the involvement of Cys360
(scenario 3) in the reaction is less favorable, accounting to
activations energies higher than 20 kcal/mol.
The energies involved in scenarios 2 and 4 are comparable

(Eascenario2 = 14.9 vs Eascenario4 = 12.6 kcal/mol and Erscenario2 =
4.4 vs Erscenario4 = �2.0 kcal/mol), but it is evident that the
reaction is more favored when the water molecule is directly
involved in the reaction. This can be explained considering the
volume and the flexibility of the water molecule that, when
compared to Tyr398, promote a better and closer interaction of
both amino groups (∼1.2 Å). As a consequence, the difference
between the energies of the reactants and the transition state
tends to decrease, favoring the reaction. However, the differences
observed in these energies are not sufficient to disclose which one
should be preferred. Therefore, both of them should be equally
capable of catalyzing the proton transfer. This means that if water
is available in the active site, then it can catalyze the reaction.
Otherwise, Tyr389 catalyzes the reaction without requiring a
significant energetic cost.
Looking at the pKa values of the residues involved in the

proton transfer, we can understand why Tyr389 and the water
molecule are better proton shuttles than Cys360. Under physio-
logical conditions, the pKa values of a cysteine, a tyrosine, and the
water molecule are respectively 8.09, 10.07, and 15.74. This
means that Cys360 has a greater tendency to be found in the
dissociated form, rather than Tyr389 or the water molecule. This
behavior makes Cys360 a good proton donor but not a good
proton acceptor. Accordingly, Cys360 is a worst proton shuttle
than Tyrs389 and the water molecule.
Looking at the charge distribution and the bond lengths in the

optimized models of the transition-state structures, we can
conclude basically the same.

Figure 7. Energies involved in all of the four scenarios used to study the second step of the transimination reaction. Scenario 1: direct proton shuttle
between Lys69 and the amino substrate. Scenarios 2�4: model reactions in which Tyr360, Cys360, or Water1477 are involved in the proton transfer
between the amino substrate and Lys69, respectively (activation energies are colored in black and the reaction energies in light gray).



1364 dx.doi.org/10.1021/ct1002219 |J. Chem. Theory Comput. 2011, 7, 1356–1368

Journal of Chemical Theory and Computation ARTICLE

From Scheme 4, we can see that when the water molecule is
used for the proton transfer, the bonds that are created/cleaved
are placed within a pseudoring in which the charge is well
delocalized (a similar behavior is observed with Typr389). The
same does not occur with Cys360. The ring is largely deformed,
and the charge is mainly located on the sulfur atom (�0.27 au),
while the ε-amino of Lys69 remains slightly positively charged.
These results show that the proton shuttle seems to be only

favored when the atom that is involved in the proton transfer can fit
between both amino groups and that it can behave as a donor and
acceptor of electrons. Only when these conditions are ensured, it is
observed the formation of a pseudoring that enhances the deloca-
lization of electrons in order to enhance the proton transfer.
Step 3: Formation of the External Aldimine. The third step of

the transimination reaction involves the formation of the external
aldimine. This reaction is the reverse of the first step and involves
the dissociation of Lys69 from PLP (Scheme 5).
In the reactants, both amino groups remain covalently bonded

to carbon C8 of PLP. However, due to the differences in the
protonation state of both nitrogen atoms, the bond length
between carbon C8 of PLP and the ε-amino group of Lys69 is
more stretched (1.60 Å) than the bond length between carbon
C8 and the amino group of ornithine (1.42 Å). The full complex

retains the tetrahedral geometry around carbon C8 of PLP, and
oxygen O1 continues to interact very closely with the proton of
the R-amino group through a hydrogen bond (1.92 Å). This
rearrangement continues to stabilize this region, allowing the
positive charge of the amino group and the negative charge of
oxygen O1 to spread along with the atoms of the ring, which in
total accounts for ∼0.03 au
The transition state of this reaction is characterized by an

imaginary frequency of 1618i cm-1 (Figure 8). In this structure
the bond length between the R-amino group of ornithine (N10)
and carbon C8 of PLP decreases to 1.35 Å, whereas the bond
length between the ε-amino group of Lys69 (N9) and carbon C8
elongates to 1.98 Å. The tetrahedral geometry around carbon C8
of PLP breaks up, and ornithine adopts a conformation parallel to
the PLP ring and interacts with oxygen atom O1 (1.84 vs 1.91 Å
in the reactants). Consequently, the nitrogen atom N9 becomes
more electronegative (�0.01 au) than in the reactants (0.19 au).
The charge around the pyridine ring and the pseudoring remains
unchanged.
In the products of this step, the external aldimine is obtained. The

tridimensional structure resembles what is observed in the PDB
structure 1F3T that contains a similar intermediate but with putres-
cine instead of ornithine (Figure 5). Lys69 is now disconnected

Scheme 4. Charge Distribution and Bond Lengths in the Transition State of Scenarios 4 and 3

Scheme 5. Third Step of the Transimination Reactiona

a P stands for phosphate group.
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from the PLP cofactor (4.40 Å), while ornithine becomes tightly
bound to carbon C8 of PLP (1.31 Å). The hydrogen bond between
oxygen atom O1 and the R-amino group is still present (1.74 Å).
This rearrangement continues to stabilize this region, allowing the
positive charge of the amino group and the negative charge of
oxygen O1 to spread along the atoms that compose the pseudoring
(∼0.03 au). This means that the resonance structure b of Scheme 5
is the one that describes better the product of this reaction.
The formation of the external diamine requires a very small

activation energy (2.2 kcal/mol), and the reaction is exothermic
in �4.3 kcal/mol.
Comparing this step with the first step of the mechanism, this

reaction is very similar but has a lower activation barrier of about
8.6 kcal/mol. Such behavior can be explained taking into account
the type of bond that is cleaved/formed in each reaction.While in
the first step, the bond that is formed/cleaved involves the
ornithine residue (the substrate), in the last step the chemical
bond that is cleaved/formed involves a lysine residue (which is
part of the enzyme). Although these two residues are very similar
(ornithine lacks only one CH2 group in the side chain, when
compared to lysine), the way they bind to the PLP group is quite
different. Lysine binds to PLP through the NH2 group located in
the side chain (ε-amino group), whereas ornithine binds to PLP
with the amino group located in the main chain (R-amino
group). This means that the binding of ornithine to PLP is from
a steric point of view less favorable, as the neighboring carboxylic
group hinders the approach of the amino group to PLP. This
explains why the activation energy of the first step is higher than
that of the last step.
Looking at the reaction energies, we also see that both

reactions are exothermic. In the first step, this means that in
spite of the steric effect that results from the binding of ornithine
to PLP, the formation of the geminal diamine intermediate is very
favorable. In the last step, we have the opposite situation, i.e., the
formation of the external aldimine is more stable than the
geminal diamine intermediate. This happens because once
ornithine binds to PLP, its amino groupmakes a strong hydrogen
bond with the carbonyl group of PLP, and this interaction
overcomes the steric penalty arising from the approach of
ornithine. In the products, the same type of interaction exists,
which stabilizes the formation of the external aldimine and favors
the dissociation of the lysine residue. The stabilization of the

ornithine�PLP complex arises from the formation of a pseudor-
ing that seems to favor the delocalization of the charge around it.
It must be noted that the same type of interaction between the

lysine residue and PLP was never observed. This occurs because
at the beginning of the reaction, the lysine is located in a
perpendicular plane to that of the PLP and in the opposite
direction of the carbonyl group. This is in agreement with the
available X-ray structures and the model used in this study kept
the same orientation, which underscores its robustness.
3.2. Functional Benchmarking: B3LYP vs M06 Family. In

order to understand if the energetic profile that was obtained in
this study could be influenced by the functional that was used, we
performed a small benchmarking exercise comprising B3LYP and
the two hybrid meta exchange�correlation functionals M06 and
M06-2X. The latter have shown to be very accurate for thermo-
dynamics and kinetics. In addition, we have also compared the
influence of the functional and the basis set in the geometries.
To evaluate the influence of the functional in the optimized

geometries in this process, all the transition states were recalcu-
lated, and the products and reactants of each reaction were
obtained through IRC calculations. The obtained results have
shown that the differences between the optimized structures
obtained with M06/6-31G(d) and with B3LYP/6-31G(d)
amount to less than 0.7 Å.
In addition, a visual inspection of each minimum revealed that

the atoms that are involved in the formation or cleavage of
chemical bonds have a very small root-mean-square deviation
(rmsd, below 0.12 Å). These results show, that in this type of
system and when studying this type of chemistry, the optimized
geometries that are obtained with B3LYP are similar to those that
are obtained with the M06 functionals.
We have also tested the effect of the basis set in the geometry

optimizations. For this purpose, we have reoptimized all the
species of the second step of the mechanism (rate limiting step)
with the functionalM06 and the 6-31þG(d,p) basis set (a double-
ζ basis set augmented with polarized functions for heavy atoms
and hydrogens). The results revealed that there is not a significant
difference in the optimized geometries. When compared with
those obtained with the 6-31G(d) basis set, the rmsd of the
reactants (rmsd = 0.15 Å), TS (rmsd = 0.08 Å) and products
(rmsd = 0.07 Å) are indeed very small and on average below 0.1 Å.
In order to evaluate if the energetic profile of the transimina-

tion reaction did differ from the functional that was used, the very
popular B3LYP functional was used instead of the hybrid meta
exchange�correlation M06 functional to recalculate the final
energies of the optimized models. The M06-2X functional was
also used to check for the effect of doubling the HF exchange,
which is known to affect the barriers. For this purpose we used
the M06 geometries and recalculated the energy using B3LYP
andM06-2X, with the 6-311þþG(3df,2pd) basis set. The results
are presented in Figure 9.
From all the employed functionals, the barriers obtained with

M06-2X functional were always within the values obtained with
B3LYP and M06. In general there are no significant differences
between them. Exceptions are limited to the activation energy of
the second step, scenario 2, and the reaction energy of the third
step. Comparing the values obtained with M06-2X and M06, we
observe that M06 tends to result in higher barriers. Comparing
the values obtained with theM06-2X and the B3LYP functionals,
we observe that B3LYP underestimates the barriers. As the
experimental values for the barriers are unknown, we cannot
pinpoint exactly which functional is giving us the most exact result.

Figure 8. Optimized transition state of the third step of the transimina-
tion reaction.
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However, these results show that B3LYP tends to give lower values
for the chemical barrier, when compared to the values obtained
with the M06 family. This is in agreement with other previous
studies, and therefore we may conclude that the barriers obtained
with M06 and M06-2X should be more exact than those that are
obtained with B3LYP. As the M06-2X functional includes twice
the amount of exchange compared with M06 functional (which
usually is favorable to describe activation energies) and resulted in
energy values that were between the B3LYP and M06 extremes,
we choose to use these values in the description of the reaction
steps on the previous sections. The most important aspect of this
study is that the chosen pathway (kinetically most favorable) is
always the same, independently of the functional. The functionals
affect the accuracy of the activation and the reaction energies but

do not affect the discrimination between different hypotheses for
the catalytic mechanism.

4. CONCLUSIONS

The external aldimine is the common central intermediate for
all enzymatic and nonenzymatic reactions that are catalyzed by
the PLP cofactor. Divergence in reaction specificity occurs from
this point, which means that the formation of external aldimines
from the internal PLP-aldimines represent the first level of
catalysis in all PLP-dependent reactions.

The results obtained in this work show that the transimination
reaction is very favorable, but it is not accomplished by a single
step as it is generally accepted involving instead three subsequent

Figure 9. Energetic profile for the transimination reaction calculate with the B3LYP, M06, and M06-2X functionals with the 6-311þþG(3df,2pd)
basis set.

Figure 10. Most favorable pathway for the transimination reaction (P stands for phosphate group). The results were obtained withy the M06-2X/6-
311þþ(3df,p2d) level of theory.
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steps, as depicted in Figure 10. This is in agreement with previous
NMR studies performed by Chan-Huot.22

Multiple pathways are possible for the conversion of the
geminal�diamine intermediate into the external aldimine. In this
article, we explored all reasonable pathways including the direct
migration of the proton between both amino groups, the involve-
ment of several active site residues, or even the participation of a
water molecule. The results have shown that the rate of the
reaction is lower if a water molecule or Tyr389 are involved in this
process. The direct proton transfer or the involvement of the
catalytic active site residueCys360were shown to be less favorable.

The most favorable pathway occurs when the water molecule
is directly involved in the reaction. The overall reaction accounts
for �10.8 kcal/mol and is exothermic by 12.0 kcal/mol. The
second step of the reaction is the rate-limiting one amounting to
12.6 kcal/mol. In Figure 10, it is displayed the most favorable
pathway obtained for the transimination reaction (only scenario
4 of step 2 is displayed).

These results also point out the importance of the PLP in the
course of the reaction. It allows the interchange of carbon C8
between sp2 and sp3 hybridizations, without requiring a signifi-
cant energetic cost. This key feature favors the formation of the
tetrahedral intermediate that is the key driving force behind the
conversion between the internal and external aldimines. During
this process, the excess of charge in the system becomes lodged at
oxygen O1 of the PLP ring. This effect is very important during
the transimination reaction because it not only allows the attrac-
tion of the substrates to PLP but it also serves as a guide during the
binding/dissociation of the amino substrate/lys69 residue to
carbon C8 of the PLP cofactor. Moreover, this atom makes a
strong hydrogen bond with the amino group of the amino
substrates, favoring the alignment of both parts of the molecule
on the same plane. This rearrangement, improves the stereoelec-
tronic effect of the system, ensuring the maximum overlap of the
extendedπ system and the stabilization of the full system. This is in
agreement with Dunathan’s hypothesis39 postulated almost 50

years ago in which he predicted that the most active form of the
external aldimine had a cisoide conformation underneath the same
plane in order to favor the occurrence of the subsequent reactions
(Figure 11, Structure a). Furthermore, Dunathan’s proposed that
the bonds that are formed/broken in the PLP system should adopt
a perpendicular plane to that of the pyridoxal imine system. All the
transition-state structures presented in this article show exactly the
same sort of conclusion, which confirms once again the accuracy of
the early proposals made by Dunathan (Figure 11, Structure b).

In the last 10 years, two different proposals for the transimina-
tion reaction have been suggested. One of those proposals was
suggested by Salv�a et al.,23 in which he suggested that the
transimination process occurs in seven steps, requiring the
participation of one/two water molecules. That mechanism
differs substantially from the one presented in this work since
it required the direct participation of oxygen O1 as the key
intermediate that shuttles the proton transfer between the Lys69
and the substrate. The mechanism presented here is accom-
plished in fewer steps (only three instead of seven) and is from an
energetic point of viewmore favorable (Ea∼ 10 vs Ea∼ 20 kcal/
mol). In addition, it shows that in the absence of water molecules,
nearby the active site, Tyr389 can catalyze this reaction.

Another study was performed by Zhao et al.,24 in which he
proposed that the transimination reaction requires the direct
participation of the phosphate group of PLP, adopting a similar
role that is played by oxygen O1 in the mechanism proposed by
Salv�a. The energies involved in that process are comparable to
those presented in this paper, but they do not involve the
formation of the geminal�diamine intermediate that is observed
experimentally.

From all the analyzed data, we can conclude that the mechan-
ism presented here is, both from thermodynamic and kinetic
points of view, more favorable than the previous suggestions and
includes the formation of all intermediates that are observed
experimentally. We believe therefore that this mechanism should
be general for all PLP-dependent enzymes, corresponding to the

Figure 11. Conformational rearrangements adopted by the amino substrate (ornithine) and Lys69 around the PLP ring. Left: Conformational
rearrangement observed in the external and internal aldimines. Right: Conformational rearrangement adopted in all the transition-state structures
studied in this paper.
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first chemical transformation that is catalyzed by all PLP requir-
ing enzymes that have amino acids as substrates.
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ABSTRACT: A classical nonpolarizable force field is presented for the simulation of aqueous alkali halide solutions (MX), where
M= Liþ, Naþ, Kþ, Rbþ, and Csþ and X = F�, Cl�, Br�, and I�, and their interactions with biomolecules. Themodels are specifically
designed to reproduce the experimental Kirkwood-Buff integrals, and thereby the solution salt activities, as a function of salt
concentration. Additionally, we demonstrate that these models reasonably reproduce other experimental properties including ion
diffusion constants, dielectric decrements, and the excess heats of mixing. The parameters are developed by considering the
properties of aqueous NaX and MCl solutions using a previously established model for NaCl. Transferability of the parameters to
other salts is then established by the successful simulation of additional aqueous salt solutions, KI and CsBr, not originally included
in the parametrization procedure.

’ INTRODUCTION

Aqueous solutions of alkali metal halides are not only the
simplest models for the aqueous electrolyte solutions but also
play an important role in many biological systems. They can help
to stabilize biomolecules, such as proteins, nucleic acids, and
lipids, and are often involved in biological catalysis.1�3 Because of
their importance in biological phenomena, and the desire to
study these more complicated ternary systems using computer
simulation, many force fields for alkali metal cations and halide
anions have been reported in the literature.4�11 A recent com-
prehensive survey has also been provided by Joung and Cheatham.4

The wide range of parameter sets available for salt systems is, in
our opinion, a direct result of the fact that there is relatively little
experimental data available that is both sensitive to changes in the
ion parameters and also easily amenable to simulation. Further-
more, as our ability to access longer simulation time scales has
improved, a number of problems with many of the existing ion
force fields have recently come to light.12,13 One approach to
solving these problems is the use of models which explicitly
include polarization effects.14�16 However, as this significantly
increases the computational demand, the vast majority of bio-
molecular simulations still do not include explicit polarization
effects. Therefore, there remains a need for simple but reliable
ion force fields, especially for systems displaying slow relaxation
times.

Recently, there have been three major attempts to develop
force fields for all alkali metals and halide ions. Jensen and
Jorgensen have developed TIP4P water compatible alkali halide
parameters using the ion hydration free energies and ion�water
contact distances as target data.11 Joung and Cheatham4 have
also used the free energy of hydration for individual ions, as well
as the lattice energies and the lattice constants of alkali metal
halides and gas phase ion�water interaction energies, in order to

produce force fields for all of the alkali metal and halide ions
which are compatible with three commonly used nonpolarizable
water models, namely, SPC/E, TIP3P, and TIP4PEW. Horinek
et al.17 have used both the free energy and the entropy of
hydration of the individual ions in order to parametrize their
force fields and focused on the nonpolarizable SPC/E water
model. Horinek et al. argued that their force field would be more
applicable for biomolecular simulations where the salt concen-
trations are low, while the Joung and Cheatham force fields
would be more applicable when the salt concentrations are
moderate. All three force fields attempt to reproduce a series
of initial properties, including the free energies (and entropies) of
hydration, the first peak of the ion�water radial distribution
function (rdf), gas phase ion�water binding energies, and crystal
lattice parameters. However, they were essentially developed
using properties that that do not directly probe ion�ion inter-
actions in solution. A subsequent study has since evaluated the
solute activity for two salts using the Joung and Cheatham force
fields obtained using thermodynamic integration.18 This does
probe ion�ion interactions. However, the study provided only
moderate success—good results were obtained for KCl, but
significant deviations from experimental results were observed
for NaCl solutions above 0.5 m.18 The comparison of simulated
and experimental diffusion constants and solubilities also pro-
vided mixed results.

We have taken a very different approach in an attempt to
develop accurate force fields for solution mixtures. Our approach
is based on the thermodynamics of solution mixtures as de-
scribed by Kirkwood-Buff (KB) theory.19�26 Here, the central
properties of interest are the Kirkwood-Buff integrals (KBIs)

Received: September 11, 2010
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defined by

Gij ¼ 4π
Z ¥

0
½gμVTij ðrÞ � 1�r2 dr ð1Þ

where Gij is the KBI between species i and j, gij
μVT(r) is the

corresponding radial distribution function (rdf) in the grand
canonical ensemble at the composition of interest, and r is the
center of mass distance between the two species. An excess
coordination number can be defined byNij = FjGij, where Fj=Nj/
V is the number density of j particles. The physical meaning of the
excess coordination number is the difference in the number of
j species in the vicinity of a central i species on the addition of the
i species from that found in an equivalent volume of bulk sol-
ution. Hence, a value of Nij significantly greater than zero in-
dicates an excess of species j in the vicinity of species i (over the
random bulk distribution), while a significant negative value
corresponds to a depletion of species j surrounding i. Combina-
tions of KBIs provide expressions for a variety of thermodynamic
properties of the solution of interest.27,28

Kirkwood-Buff theory can then be used to relate solution
structure, in terms of the KBIs, to the thermodynamic behavior of
the solution.29�31 The expressions provided by KB theory are
exact, and the theory involves no approximations beyond the
usual statistical mechanical assumptions (larger number of mol-
ecules, thermodynamic limit, etc). The expressions can be applied
to study any stable solution mixture involving any number of
components of any type (small molecules through to proteins) at
any composition and any temperature and pressure. The analysis
of experimental data for solutionmixtures using KB theory is well
established and provides quantitative information concerning
species distributions in solutions and how they vary with com-
position.28,29,32 The resulting KBIs can also be obtained from
computer simulations and thereby provide a rigorous test of the
accuracy of current force fields.31,33

Our parameters were developed to reproduce the properties
of solution mixtures and are therefore collectively known as
Kirkwood-Buff derived force fields (KBFF).19�25 The para-
meters for the KBFFmodels are determined using a combination
of molecular dynamics simulation, the Kirkwood-Buff (KB)
theory of solutions, and available experimental data concerning
activity coefficients and solution densities. This approach has
several advantages. First, KB theory is exact and includes no
approximations. Second, KB theory can be applied to any stable
solution mixture. Third, the KB integrals are easily obtained from
the radial distribution functions (rdf) provided by MD simula-
tions and are quite sensitive to the force field parameters. Fourth,
the KB integrals help quantify the distributions arising from the
relative strengths of the solute�solute and solute�solvent in-
teractions.25,34 Hence, the general philosophy of the Kirkwood-
Buff derived force field approach is to use the KBIs obtained from
an analysis of the experimental data as target values for the de-
velopment of accurate force fields for a variety of solutes. The
target data are composition-dependent, and this dependence is
also used during the parametrization process. We have argued
that reasonable agreement with experimental results is also
obtained for other properties not included in the original pa-
rametrization.19,20,22�25 In doing so, we favor the use of data for
solution mixtures, primarily the KBIs, and are less influenced by
gas phase data or infinite dilution data such as free energies of
hydration. A model for aqueous NaCl solutions has already been

developed using this type of approach,25 and here we simply
generalize this initial model to include other alkali halide salts.

Recently, two research groups also produced KB derived force
fields for some of the alkali metal halides. Hess and van der Vegt
used the SPC/E water model to develop KB-derived force fields
for Liþ and Kþ in order to explain the differential binding affinity
of alkali metal ions to carboxylate ions.35 Klasczyk and Knecht
used the SPC water model and the KBFF force field for the
chloride ion to develop force fields for Liþ, Kþ, Rbþ, and Csþ,
but not for halide ions.36 Therefore, the more extensive Klasczyk
and Knecht force field is incomplete and, in principle, incompa-
tible with our models because we use the SPC/E water model. In
this paper, we present a KB derived force field for a wide variety of
alkali metal and halide ions. The models are intended to be
applicable over the whole concentration range and are consistent
with our previous models for a variety of solutes in both aqueous
and nonaqueous solutions.

’METHODS

Kirkwood-Buff Analysis of Alkali Halide Solutions. The
complete details concerning the extraction of the KBIs from the
experimental data, the so-called Kirkwood-Buff inversion proce-
dure, have been provided elsewhere.27,28,37 For a binary solution
consisting of water (w) and a salt cosolvent (c), a variety of
thermodynamic quantities can be defined in terms of the KB
integrals Gww, Gcc, and Gcw = Gwc and the number densities (or
molar concentrations) Fw and Fc.25 By use of the KB inversion
procedure, one can also extract the composition-dependent KBIs
from the corresponding experimental thermodynamic
properties.28 Specifically, the KB inversion approach uses com-
position-dependent experimental binary solution data for the
isothermal compressibility, partial molar volumes, and cosolvent
activity in order to extract the corresponding three KBIs using
the expressions provided by KB theory. Hence, KB theory
provides a link between measurable experimental data and the
species distributions in solution, which are then quantified in
terms of the KBIs. The relationships used for the present work
are27

1þNcc ¼ FcRTkT þ F2w
Vw

2

μcc

1þNww ¼ FwRTkT þ FwFc
Vc

2

μcc

Nwc ¼ FcRTkT � FwFc
VwVc

μcc
ð2Þ

where κT is the isothermal compressibility, Vi are partial molar
volumes, and μcc represents a chemical potential (or activity)
derivative given by

μcc ¼ β
∂μc

∂ ln mc

� �
T, P

¼ 1þ ∂ ln γc
∂ ln mc

� �
T, P

ð3Þ

where γc =γ( is themolal activity coefficient of the salt andmi is
the molality of i. Hence, the three KBIs can be obtained from a
knowledge of the compressibility, partial molar volumes (or
density), and activity as a function of the composition (three
equations in three unknowns).
Experimental activity coefficient data at 298.15 K and 1 atm

were taken from the literature,38 and fitted to the following
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functional form,38,39

ln γ( ¼ � 1:18
ffiffiffiffiffi
ms

p
1þ a1

ffiffiffiffiffi
ms

p � lnð1� a2msÞ þ a3ms þ a4m
2
s ð4Þ

where ms is the salt molality and the a’s represent fitting pa-
rameters with no particular physical meaning. The first term on
the right-hand side of eq 4 is a Debye�Hueckel term for 1:1 salts
which is required to fully capture the correct behavior of salts at
low salt concentrations. Issues associated with the quality of fit
for the experimental activity coefficient data provide the main
source of error in the KB analysis. The final fitting parameters are
provided in the Supporting Information. Previously established
polynomial fitting expressions for the experimental density data
of salts40 were used to determine partial molar volumes using
standard approaches.41 The solution compressibility has a neg-
ligible effect on the resulting KBI values for solutions at moderate
temperatures and pressure.32 Hence, the compressibility was
assumed to follow the simple relationship, κT = jwκTw� þ jcκTc� ,
where ji is the volume fraction and κTi� is the compressibility of
the pure substance (water or salt). The compressibility of pure
water was taken to be 4.6 � 10�10 m2/N,42 while the compres-
sibilities of the salt crystals were taken to be zero. The experi-
mental compressibility (approximated), partial molar volumes,
and activity provided by eq 4 were then used with the expressions
provided in eq 2 to isolate the experimental KBIs as a function of
the composition. The results of the KB inversion analysis are
presented in Figure 1.
Kirkwood-Buff Theory of Salt Solutions. Some complica-

tions arise when applying KB theory to salt solutions.25,43 First,
the salt can dissociate into free cations and anions (we will assume
complete dissociation for the salts examined here). Second,
electroneutrality constraints for regions of the solution surround-
ing each species provide additional relationships between the
KBIs.43 Let us consider a salt containing a total of n ions which
will fully dissociate to provide nþ cations and n� anions. If one
chooses the salt as the relevant thermodynamic species, then
dμs = nRTd ln(msγ() and the activity derivatives provide a set of
KBIs (Gss andGsw) involving the salt “molecules”when using the
KB inversion approach. However, this choice is rather awkward
from the simulation point of view as we typically observe free ions
for strong electrolytes, and therefore the rdf’s between salt
“molecules” are difficult, if not impossible, to determine. Con-
sequently, in this work, the salt solution is treated as a binary
system of indistinguishable ions (c) and water (w), and we will
distinguish between the cosolvent (total ion) concentration, mc

or Fc, and the classic salt concentration, ms or Fs. Consequently,
for a nþ:n� salt, one has nms =mc, nFs = Fc,V s = nV c, andγc =γ(.
In addition, the following relationships are also obeyed: dμs =
ndμc, Fsdμs = Fcdμc, d ln ms = d ln mc, FsV s þ FwVw = FcV c þ
FwVw = 1, and Fcd ln ac = Fwd ln aw = Fsd ln asþ Fwd ln aw = 0, at
constant p and T—the latter being the Gibbs�Duhem equation.
Hence, the experimental data can then be analyzed in terms of

either salt molecules or a collection of indistinguishable ions. The
resulting KBIs obtained from the two formalisms are related by

Gss ¼ 1� n
Fc

þ Gcc Gsw ¼ Gcw ð5Þ

The KBIs obtained from the indistinguishable ion approach (Gcc

and Gcw) involve rdf’s between the ions (and water molecules),
which ignore the ion identity (cation or anion). The relationships
between the KBIs using the cosolvent label and those involving

the anion/cation label are provided by

Gcc ¼ nþ
n

� �2

Gþþ þ n�
n

� �2

G�� þ nþn�
n2

ðGþ� þ G�þÞ

Gcw ¼ Gwc ¼ nþ
n
Gþw þ n�

n
G�w ð6Þ

and were obtained in a similar manner as done previously.25

Here, the KBI denoted as Gþþ refers to the integral over the
cation�cation rdf in solution. We note that the above relation-
ships merely reflect a change in indices and do not invoke the
electroneutrality conditions.
If one then assumes that electroneutrality must be obeyed in

the local regions surrounding each molecule or ion,22,25,43 then
one can show that the following relationships must also hold:

Gcc ¼ � 1
Fc

þGþ� Gcw ¼ Gþw ¼ G�w

Gþ� ¼ 1
Fþ

þ Gþþ

1
Fþ

þGþþ ¼ 1
F�

þ G��

ð7Þ

where Fþ is the number density of cations etc. Hence, all of the
ion�ion KBIs are related, and there is only one independent KBI
for a binary solution. We choose this to be Gcc for the present
analysis.
Molecular Dynamics Simulations. All molecular dynamics

simulations of alkali halide solutions were performed using the
SPC/Ewater model44 in the isothermal isobaric (NpT) ensemble
at 300 K and 1 atm as implemented in the GROMACS program
(v3.3.1).45,46 A time step of 2 fs was used, and the geometry of the
water molecules was constrained using SETTLE.47 The weak
coupling technique was used to modulate the temperature and
pressure with relaxation times of 0.1 and 0.5 ps, respectively.48

Figure 1. Experimentally derived excess coordination numbers for
aqueous alkali halide solutions as a function of salt molality at 298.15
K and 1 atm.
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The particle mesh Ewald technique (PME) was used to evaluate
electrostatic interactions using a cubic interpolation and a grid
spacing of 0.1 nm for the reciprocal space sum, coupled with
tinfoil boundary conditions.49 The initial cubic boxes for each
solution at the required concentration were generated by ran-
domly placing water molecules with ions starting from pure
solvent boxes of length varying between 4 and 6 nm. During the
simulations, configurations were saved every 0.1 ps for analysis.
Diffusion constants were determined using the mean square fluc-
tuation approach,50,51 and relative permittivities were obtained
from the dipole moment fluctuations.52,53 The excess enthalpy of
mixing (ΔHmix) was determined using an established procedure
which uses the average potential energies54 and the configura-
tional energies from the pure SPC/E water and the alkali halide
lattice.
Kirkwood-Buff Analysis of the Simulation Data. Radial

distribution functions were obtained for each system and com-
position. The pair rdf’s thereby correspond to the ion�ion,
ion�water, and water�water distributions after averaging over
all other ions and water molecules at that particular composition.
The indistinguishable ion treatment for salts involves the deter-
mination of ion�ion and ion�water rdf’s, which ignore the
identity of the ions involved. For example, in NaCl solutions, the
ion�water rdf is determined after averaging over the ion�water
distributions using both types of ion, sodium and chloride, at the
origin. The Kirkwood-Buff integrals (KBIs) are defined for systems
open to all the solution components. However, most simulations
are performed in closed systems. Hence, one has to approximate
the KBIs by truncating the integral after a certain distance

Gij � 4π
Z R

0
½gNpTij ðrÞ � 1�r2 dr ð8Þ

where R represents a correlation distance within which the
solution composition differs from the bulk composition. This
approximation has been shown to be very reasonable as long as
the systems are not too small (L > 4 nm) and sufficient sampling
(>5 ns) is achieved.26,29,55 The values of Gij used here were de-
termined by averaging the integral over a short-range of distances
(1.2�1.5 nm), taken as approximately one water�water solva-
tion shell. The final values were relatively insensitive to the exact
distance and range used, but this approach helps to reduce statistical
fluctuations associated with the integrals. Once the three simu-
lated KBIs have been obtained from the trajectory at a particular
bulk composition, one can then use these values in a series of
expressions which provide thermodynamic properties of the
solution mixture. The partial molar volumes of the components
(Vi) are given by41

Vw ¼ 1þ FcðGcc � GcwÞ
η

, Vc ¼ 1þ FcðGww � GcwÞ
η

η ¼ Fw þ Fc þ FwFcðGww þ Gcc � 2GcwÞ ð9Þ
Using the simulated KBIs, one can determine a variety of derivatives
of the chemical potential, depending on the concentration scale
used. Here, we choose derivatives of the activity with respect to
molarity.25 Of primary interest is the following activity derivative:

acc ¼ ∂ ln ac
∂ ln Fc

 !
p,T

¼ 1þ ∂ ln yc
∂ ln Fc

 !
p,T

¼ 1
1þ FcðGcc � GcwÞ

ð10Þ

where ac and yc are the cosolvent (average ion) molar activity and
molar activity coefficient, respectively. Hence, changes in the
cosolvent activity can be determined directly from the simula-
tions. Furthermore, accurate activity derivatives ensure reason-
able activities are thereby obtained. The partial molar volumes
and activities obtained in this manner have been shown to be in
agreement with the results obtained using alternative computa-
tional approaches.21,56

Parameter Development. The KBFF models used in this
study involve a simple classical nonpolarizable description for
each molecule. The intermolecular interactions are described by
the Coulomb and Lennard-Jones (LJ) 6�12 potentials, which
contain just two adjustable parameters for ions, namely, the
Lennard-Jones diameter (σ) and the interaction strength (ε). In
this scheme, each pair of atoms i and j interact with an interaction
energy given by

Vij ¼
qiqj

4πε0rij
þ 4εij

σij

rij

 !12

� σij

rij

 !6
2
4

3
5 ð11Þ

Here, all of the symbols have their usual meaning.1 This model
was chosen so as to be computationally efficient, while main-
taining compatibility with existing force fields and programs used
for the simulation of biomolecules. The ion parameters are
combined with the SPC/E model for water.44 Geometric com-
bination rules were used for both σ and ε. In order to obtain
parameters for the LJ term, we have employed the same method
described previously for NaCl.25 This approach requires three
pieces of experimental data: ionic radii of alkali and halide ions
that are consistent with the crystal lattice dimensions, crystal
lattice unit cell dimensions, and the ion to water oxygen contact
distances (see Table 1). These data were chosen in an effort to be
both consistent with our previous force fields and to help restrict
the range of possible σ and ε values to be studied. However,
satisfactory agreement with the experimental data was not possible
for all ions using this simple approach (see below).
The first step was to parametrize the anions (F�, Br�, I�) by

studying the crystal structures and several aqueous solutions of
NaF, NaBr, and NaI, using the same Naþ parameters from our
previous NaCl study.25 The values of σ�� were determined by
scaling the ionic radii of each ion with the same scaling factor as
used previously (2.43).25 The values of ε�� were then varied in
an effort to reproduce the experimental lattice dimensions of the
sodium halide crystals, and the anion�water contact distances, in
the simulations. The final values determined for each ion were
then used to provide the simulated KBIs for a variety of aqueous
solutions. Unfortunately, in the case of the F� anion, a reasonable

Table 1. Experimental Data Used during the Initial Para-
meter Developmenta

MCl NaX

Liþ Naþ Kþ Rbþ Csþ F� Cl� Br� I�

r (nm) 0.115 0.101 0.138 0.149 0.170 0.133 0.181 0.196 0.220

a (nm) 0.257 0.282 0.319 0.332 0.412 0.239 0.282 0.299 0.324

d (nm) 0.213 0.240 0.280 0.289 0.314 0.263 0.319 0.338 0.365

ref 60, 62 25 60, 62 60, 62 60, 62 60, 62 25 60, 62 60, 62
a r, the ionic radii of alkali halide ions which are consistent with the
crystal lattice dimensions; a, the crystal lattice unit cell dimension; and d,
the ion to water oxygen contact distance.
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value for σFF which reproduced the crystal lattice dimensions
could not be obtained by a simple scaling approach. Hence, we
decided to develop specific values of σFF (and εFF), which at-
tempted to reproduce both the crystal lattice dimensions and
solution KBIs.
Second, the initial cation parameters for Liþ, Kþ, Rbþ, and Csþ

were developed by reference to the crystal dimensions of LiCl,
KCl, RbCl, and CsCl and the relevant cation�water contact
distances. After the values of σþþwere determined by scaling the
ionic radii of each ion, the values of εþþwere varied to reproduce
the crystal unit cell dimensions and the cation�water contact
distances. Unfortunately, and in agreement with our earlier study
of NaCl,25 we could not reproduce the experimental KBIs in
aqueous solution by using standard combination rules for εþþ in
aqueous solutions. Hence, modified ε parameters were devel-
oped specifically for the cation�water oxygen interactions. This
interaction was subsequently modified by introducing a simple
scale factor (s) for the interaction between metal ions and water
oxygens such that εMO = s(εMM εOO)

0.5. This parameter scales
the repulsive part of the LJ potential controlling the contact
distance between an ion and first shell water molecules. The scale
factor was set to unity for all other interactions. The final scaling
factors for the metal ion�water interactions are provided in
Table 2. Unfortunately, this simple approach did not work for
LiCl. Hence, unique (not scaled) LJ values were determined for
this salt by reference to the LiCl crystal dimensions and
solution KBIs.

’RESULTS

Themain goal for the force fields developed here is to reproduce,
as far as possible, the experimental KBIs for aqueous salt solutions
as a function of salt concentration. Hence, we present this com-
parison first. This is followed by a comparison of a series of
additional properties of solution mixtures, not included in the
original parametrization, which is presented in an effort to both
fully characterize the models and to establish the range of ap-
plicability of the models. As the solutions involve a variety of
highly polarizing ions, the inherent many body interactions would
be expected to vary substantially between different salts and also

with concentration. Therefore, it should be obvious that it is
essentially impossible to reproduce all the available experimental
data using such a simple LJ 6�12 plus Coulomb model. Wherever
possible, we have attempted to highlight any disagreement with
experimental results and possible causes for these errors.

The experimental excess coordination numbers for sodium
halides and alkali chlorides are displayed in Figure 1. The results
presented in Figure 1 have been extracted from the experimental
thermodynamic data on aqueous salt solutions and represent the
primary target data for the current parametrization approach.
The data display systematic trends between the different salts,
which provide information concerning the underlying molecular
distributions. At low concentrations (<0.1 m), the distributions
are dominated by the Debye�Hueckel behavior leading to positive
values for the ion�ion excess coordination numbers (Ncc). This
behavior reverses at higher salt concentrations and indicates, with
the exception of NaF, an increase in ion solvation by water.
Similar results have been observed in other studies.57,58

Table 2 shows the final Lennard-Jones parameters used in our
simulations. The LJ parameters for Naþ andCl�were taken from
Weerasinghe and Smith.25 As the size of the cation increased, the
value of σ increased and that of ε essentially decreased. A similar
trend is observed for the anions. Peng et al. have argued in favor
of such trends in the LJ parameters, although the trend in ε
parameters is the opposite of that expected (decreasing with
atomic number, not increasing).6 Their work used a LJ 9�12
potential, and hence the argument might not be so clear for the
LJ 6�12 plus Coulomb models, or for systems with large polariza-
tion effects, where the ε parameter is linked to a scaling of the
repulsive wall which resists the electrostatic attraction, rather
than the usual relationship to dispersion interactions. The trend
in the values of σ was also observed by both Joung and Cheatham4

and Horinek et al.17 However, any trend in the values of ε was
absent from both these previous works.

Table 3 indicates the potential energy, density, and lattice
constants obtained for the salt crystals studied in this work. The
simulated crystal dimensions exhibit an average error of 3% with
a maximum error of 10%. In the Supporting Information, the
lattice energies of the Kirkwood-Buffmodels are compared to the
experimental data and the force fields developed by Peng et al.6

The KBFF models consistently overestimate the lattice energies.
While reproducing the crystal lattice energies of salts was not a
goal of the present parametrization, the results suggest that the

Table 2. Final Force Field Parameters Describing the KBFF
Models for Alkali Halidesa

model atom σii (nm) εii (kJ/mol) εiO (kJ/mol) q (e)

KBFF Li 0.1820 0.7000 0.2700 þ1.0

Na 0.2450 0.3200 0.3420 þ1.0

K 0.3340 0.1300 0.2327 þ1.0

Rb 0.3620 0.1500 0.2655 þ1.0

Cs 0.4130 0.0065 0.1954 þ1.0

F 0.3700 1.0000 �1.0

Cl 0.4400 0.4700 �1.0

Br 0.4760 0.3000 �1.0

I 0.5350 0.2000 �1.0

SPC/E O 0.3166 0.6506 �0.8476

H 0.0000 0.0000 þ0.4238
aThe following combination rules used: σij = (σii � σij)

1/2, εij = s(εii �
εij)

1/2. The value of swas set to unity for all interactions except for cation
to water oxygen, where values of s = 0.4 (Li), 0.75 (Na), 0.8 (K), 0.85
(Rb), and 0.95 (Cs) were used. The NaCl ion and SPC/E water
parameters were taken from previous studies.25,44

Table 3. Summary of the Alkali Halide Crystal Simulations
Using the Final Parametersa

Epot (kJ/mol) Fsim (g/cm3) Fexp (g/cm3) asim (nm) aexp (nm)

NaF �1217.74 1.965 2.558 0.257 0.231

NaCl �808.24 2.108 2.163 0.285 0.281

NaBr �776.08 3.326 3.246 0.295 0.297

NaI �750.94 3.878 3.665 0.303 0.323

LiCl �1178.03 1.776 2.069 0.270 0.257

KCl �725.29 1.980 1.990 0.315 0.314

RbCl �692.73 2.800 2.859 0.325 0.327

CsCl �650.12 3.990 3.973 0.419 0.412

KI �663.23 3.406 3.125 0.343 0.353

CsBr �628.80 4.582 4.453 0.433 0.429
a Symbols are Epot, average total potential energy per molecule (Ns); F,
mass density; and a, unit cell dimension. Subscripts sim and exp indicate
simulation and experimental data,70 respectively.
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current force fields may result in crystal lattices which are too
stable with respect to the solution phase. This could be a concern
for future simulations. However, a recent study of the KBFF
model for NaCl indicates an approximate solubility of 7.9 m,59

compared to the experimental value of 6.1 m.60 The higher
observed solubility suggests that, if anything, the opposite could
be true. Some of these differences are probably related to the
rather crude LJ 6�12 potential used in the current work which is
known to fail for crystals.6 Our main aim in studying the salt
crystal lattice properties was to guide the systematic development
of anion and cation LJ σ parameters. Furthermore, the enthalpies
of mixing appear to be well reproduced (see later), indicating
good compatibility with the SPC/E water model. Hence, we have
not considered any further attempts to significantly improve the
current data.

The radial distribution functions (rdf’s) obtained from the 1M
salt simulations are displayed in Figure 2 for the sodium halides
and in Figure 3 for the alkali metal chlorides. The sodium to
halide anion�cation rdf’s displayed a large first (ion pair) and a
significant second (solvent separated ion pair) peak, which is in

agreement with experimental results.61 All rdf’s approached unity
beyond 1 nm. The first shell coordination numbers, nij, as well as
the distances to the first rdf maximum (contact distance), Rmax,
and the first rdf minimum (first solvation shell), Rmin, were
calculated from the corresponding rdf’s as a function of the
solution molality and are presented in the Supporting Informa-
tion. The final contact distances for Liþ, Naþ, Kþ, Rbþ, Csþ, F�,
Cl�, Br�, and I�were 0.19, 0.23, 0.26, 0.28, 0.29, 0.27, 0.32, 0.33,
and 0.35 nm, respectively. As expected, the radius of the first
hydration shell increased as the size of the cation and anion
increased. The simulated contact distances agree with the
experimental values of 0.20, 0.24, 0.28, 0.29, 0.31, 0.26, 0.32,
0.34, and 0.36,62 respectively, to within a 0.01 nm root-mean-
square (rms) deviation—a similar deviation to that exhibited by
the force field of Joung and Cheatham.4 The first water shell
coordination numbers of Naþ, Kþ, Rbþ, and Csþ in ∼4 M
aqueous solutions were determined to be 4.9, 5.9, 6.2, and 6.4,
respectively. As expected, and similar to the trend in the radii of
the first hydration shell, the hydration numbers increase as the

Figure 2. Radial distribution functions obtained from simulations of
1 M sodium salt solutions containing NaF (black lines), NaCl (red
lines), NaBr (green lines), and NaI (blue lines). Cations, anions, and the
water oxygen are denoted by the symbols þ, �, and 0, respectively.

Figure 3. Radial distribution functions obtained from simulations of
1 M chloride salt solutions containing LiCl (black lines), NaCl (red
lines), KCl (green lines), RbCl (blue lines), and CsCl (brown lines).
Cations, anions, and the water oxygen are denoted by the symbolsþ,�,
and 0, respectively.

Figure 4. Excess coordination numbers as a function of salt molality.
The Ncc (black lines), Ncw (red lines), and Nww (green lines) are
obtained from a KB analysis of the experimental data. The Ncc (black
dots), Ncw (red dots), and Nww (green dots) are obtained from
simulations performed with the KBFF models.

Figure 5. Excess coordination numbers as a function of salt molality.
The Ncc (black lines), Ncw (red lines), and Nww (green lines) are
obtained from a KB analysis of the experimental data. The Ncc (black
dots), Ncw (red dots), and Nww (green dots) are obtained from
simulations performed with the KBFF models.
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size of the cation increases. The predicted hydration numbers agree
with those determined from X-ray and neutron scattering data
under the same conditions61—4.9, 5.3, 6.9, and 7.5, respectively—
to within a 0.2 rms deviation. The Supporting Information also
indicates that the coordination numbers are sensitive not only to
the size of the alkali metal ion but also to changes in the salt
concentration. The degree of ion pairing increases with increas-
ing concentration. We note that no aggregation or crystallization
was observed during any of the simulations.

The simulated and experimental excess coordination num-
bers, Nij, are shown in Figure 4 for the sodium halides and in
Figure 5 for the alkali metal chlorides, as a function of salt molality.
The KBFF models quantitatively reproduce the experimental
data, although the simulated values were somewhat less accurate
for NaI and CsCl solutions. The correct trends (with salt con-
centration) are reproduced for all salts. The ion�ion excess co-
ordination numbers (black lines) did not vary significantly from
salt to salt when compared to the variation in the ion�water excess
coordination numbers (red lines), which is in agreement with the
experimental data (see Figure 1). This suggests that changes to
the ion�water and water�water distributions determine the
solution behavior to a large extent. However, it is very difficult to
clearly relate these composition-dependent changes to the force

field parameters used here. The relatively poor agreement for the
NaI and CsCl solutions probably arises due to the high polariz-
ability of the anion and cations, respectively, which would make
the development of parameters suitable for both crystals and
aqueous solutions quite challenging.

In Figures 6 and 7, the simulated activity derivatives (acc) as a
function of molality are compared to the experimental values.38

The KBFF model reproduced the correct increase in acc with
concentrations at higher salt concentrations as indicated by the
experimental data. We note that acc plays an important role for
solutions as it characterizes the change in activity (chemical po-
tential) of the salt with concentration.31 Hence, accurate force
fields are required to reproduce this data.25 An expression for the
molar activity coefficient (yc = y( ) provided by the current force
fields was obtained by taking appropriate derivatives of the fitting
equations adopted for the experimental data (eq 4) and then
obtaining parameters that best fit the simulated activity deriva-
tives. The final fitting parameters are provided in the Supporting
Information for most of the salt solutions studied here. It should

Figure 6. Activity derivatives for sodium salts as a function of salt
molality. Lines are obtained from a KB analysis of the experimental data,
while symbols correspond to the results obtained with the KBFFmodels.

Figure 7. Activity derivatives for chloride salts as a function of salt
molality. Lines are obtained from a KB analysis of the experimental data,
while symbols correspond to the results obtained with the KBFFmodels.

Figure 8. Partial molar volumes (cm3/mol) for sodium salts as a
function of salt molality. Lines are obtained from a KB analysis of the
experimental data, while symbols correspond to the results obtained
with the KBFF models. The partial molar volume of the salt is displayed
in black with the partial molar volume of water displayed in red.

Figure 9. Partial molar volumes (cm3/mol) for chloride salts as a
function of salt molality. Lines are obtained from a KB analysis of the
experimental data, while symbols correspond to the results obtained
with the KBFF models. The partial molar volume of the salt is displayed
in black with the partial molar volume of water displayed in red.
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be noted that many common force fields do not correctly re-
produce the experimental excess coordination numbers and activity
derivatives.20,22,23,25 For instance, in our previous work, we
simulated 2 M NaCl solutions using a variety of salt force
fields.25 Many force fields provided values of acc < 0.5. Large
deviations from experimental results are also observed for other
solutes.20,34,63 Hence, the data provided in Figures 6 and 7 for the
present models, while not perfect, can be considered to be in good
agreement with experimental results relative to typical results for
similar force fields.

Figures 8 and 9 show the experimental and simulated partial
molar volumes of both the water and salt as a function of the
concentration. The experimental partial molar volumes of the salts
generally increase monotonically, while that of water slightly de-
creases monotonically, as the salt concentration increases. The
same trends were exhibited by the simulated values. Also, as
expected, the partial molar volume of the salt increases as the size
of the ions increases. The KBFF models reproduce the experi-
mental data quantitatively except for LiCl, for which the salt
partial molar volume is too large, presumably due to an overes-
timation of the cation size. This is also consistent with the low
simulated crystal density. However, it was not possible to develop
parameters using a smaller σ parameter for lithium and still re-
produce the experimentally observed cation to water oxygen
contact distance.Hence, we chose to correctlymodel this latter data.

The current models reproduce the excess coordination num-
bers, and therefore chemical potential derivatives and partial
molar volumes, of a variety of salt solutions as a function of the
concentration. This is the primarily goal for the KBFF models.
However, it is important to test the models and their ability to
reproduce other properties of salt solutions not included in the
initial parametrization process, especially to see if they display
significant deviations from experimental results, and to fully
characterize the models in order to develop the exact range of
properties for which the models will provide reliable results. The
self-diffusion constants, calculated using themean square fluctua-
tion approach,51 are displayed in Figures 10 and 11 as a function
of alkali halide molality. The majority of the water, cation, and
anion experimental diffusion constants all exhibit an essentially
linear decrease with increasing salt molality. The notable excep-
tions are the diffusion constants for the chloride ion in RbCl and

CsCl solutions. All the simulated diffusion constants decreased
with salt concentration but typically displayed a stronger con-
centration dependence compared to experimental results. The
self-diffusion constants of alkali metal cations increase with size
even though the mass of the ions increases, confirming that the
solvation of the cation is the most important factor for the diffusion
constant.64 In contrast, the self-diffusion constants of halide ions
do not display any apparent correlation with the size of the ion.
Wenote, however, that it is difficult to obtain quantitative agreement
with the experimental data for most solutions, as even the diffusion
constant of water varies considerably between water models and
can be a factor of 2 too large.65 The agreement with experimental
results can be improved somewhat by correcting for finite size
effects,66 not included here, which typically result in larger
(5�10%) diffusion coefficients. However, the simulated results
would still appear to be more sensitive to changes in concentra-
tion compared to experimental results. It is unclear at present
why this is the case. Comparison with diffusion data obtained
for other models suggests the present models are reasonably
competitive.18

Figure 10. Diffusion constants (�10�9 m2/s) for sodium salts as a
function of salt molality. The Dþ (black lines), D� (red lines), and Dw

(green lines) represent the experimental diffusion constant data,71�74

while the Dþ (black dots), D� (red dots), and Dw (green dots) were
obtained from simulations using the KBFF models.

Figure 11. Diffusion constants (�10�9 m2/s) for chloride salts as a
function of salt molality. The Dþ (black lines), D� (red lines), and Dw

(green lines) represent the experimental diffusion constant data,75 while
the Dþ (black dots), D� (red dots), and Dw (green dots) were obtained
from simulations using the KBFF models.

Figure 12. Dielectric decrements (ε� ε0) for a series of sodium salts as
a function of salt molality. Lines were obtained from the experimental
dielectric constant data,76�78 while the symbols correspond to data
obtained from simulations using the KBFF models.
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The dielectric decrements (ε � ε0) of alkali halide salts sol-
utions, calculated from the dipole moment fluctuations,53 are
displayed in Figures 12 and 13. Here, ε is the relative permittivity
of the solution, and ε0 is the relative permittivity of pure water.
The value of ε0 = 63 obtained for pure water using the SPC/E
model67 is low compared to the experimental value of 78.68

Hence, quantitative agreement for the absolute permittivities is
not possible with this water model. The experimental relative
permittivity for all salt solutions decreases as a function of molality,
and this trend is clearly reproduced by the current models. The
only exception appears to beNaF solutions at low concentrations
where a small increase is observed. This increase was also
reproduced in the present simulations. The KBFF models repro-
duce the experimental decrement data well, with the possible
exception of LiCl solutions, compared to the simulated uncer-
tainty of (5.

The excess enthalpies of mixing for the sodium halides as a
function of salt molality are displayed in Figures 14 and 15. The
excess enthalpy of mixing for each sodium halide solution is
calculated by the difference between the molar potential energy
in the solution phase and in the crystal and pure water phases.54

The data indicate that the models reproduce the experimental

mixing enthalpies in a quantitative manner for NaCl, NaBr, and
KCl, while the results for NaI and LiCl are somewhat too
favorable. The simulated data for alkali chlorides become in-
creasingly more unfavorable on moving from Liþ to Rbþ but then
change sign for CsCl solutions. We presume this is due to a
change in crystal structure from FCC to BCC for CsCl. It should
be noted that reasonable agreement for both the free energy and
enthalpy of mixingmust therefore indicate good estimates for the
entropy of mixing (data not shown).

In the previous sections, we have developed parameters for a
series of sodium halides and alkali metal chlorides by using
Kirkwood-Buff theory as a guide. In order to demonstrate the
transferability of the parameters to a variety of alkali halides, we
have used the same ion parameters to study two other systems,
aqueous KI and aqueous CsBr, which were not included in the
previous parametrization and for which there are no longer any
free parameters. The results are presented in Figures 16�18 and
clearly suggest that, to a high degree of accuracy, the parameters

Figure 13. Dielectric decrements (ε� ε0) for a series of chloride salts as
a function of salt molality. Lines were obtained from the experimental
dielectric constant data,76�78 while the symbols correspond to data
obtained from simulations using the KBFF models.

Figure 14. Excess enthalpy of mixing (kJ/mol) for sodium salts as a
function of salt molality. Lines correspond to experimental data,79 while
symbols were obtained from simulations using the KBFF models.

Figure 15. Excess enthalpy of mixing (kJ/mol) for chloride salts as a
function of salt molality. Lines correspond to experimental data,79 while
symbols were obtained from simulations using the KBFF models.

Figure 16. Excess coordination numbers as a function of salt molality
(top). The Ncc (black lines), Ncw (red lines), and Nww (green lines) are
obtained from a KB analysis of the experimental data. The Ncc (black
dots), Ncw (red dots), and Nww (green dots) are obtained from
simulations. Activity derivatives as a function of salt molality
(bottom): Lines are obtained from a KB analysis of the experimental
data, while symbols correspond to results obtained using the KBFF
models.
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developed here for the sodium and chloride salts are transferable
to other alkali halide salts.

’CONCLUSIONS

A series of models for aqueous alkali halide solutions have
been developed by attempting to reproduce the experimentally
derived Kirkwood-Buff integrals using molecular dynamics si-
mulation. Amajor advantage of this type of approach is the ability
to provide insight into salt activities in a computationally efficient
manner and to ensure a reasonably accurate balance between
solute�solute (Ncc) and solute�solvent (Ncw) distributions
and, by inference, their interactions. Other physical and thermo-
dynamic properties such as ion diffusion constants, relative
permittivity, density, and heat of mixing have also been reason-
ably well reproduced. In addition, by examining the results

obtained for aqueous KI and CsBr solutions, it has been clearly
demonstrated that the parameters developed for sodium and
chloride salts are transferable to other alkali halide salts. Un-
fortunately, not all the models provide good agreement for all the
experimental data. To some degree, this is expected when using
such simple models. The major issues involved the most highly
polarizing ions (Liþ an F�), while the diffusion constant data also
provided only modest agreement with experimental results.
Hence, care should be taken when using the current models for
these types of applications. The models are specifically designed
to be used with the SPC/E water model, although, according to
previous studies,25,69 other simple point charge models should
provide similar results. The recent models contribute to a con-
sistent set of parameters that can eventually be used to study salt
effects on peptides and proteins.

The solutions studied in this work include a variety of po-
larizable and polarizing anions and cations over a range of com-
positions. It is encouraging that one can reproduce much of the
experimental data with the simple nonpolarizable models used
here. However, to achieve this goal, it was necessary to break the
standard combination rules when determining the cation�water
interactions. The modified ε parameters actually lead to an
increase in the cation�water interaction and can be thought
of, to some degree, as a crude approach to incorporate polariza-
tion effects, which undoubtedly play a significant role in these
solutions.

The present models provide an alternative to other recent ion
force fields developed using more traditional approaches—such
as the free energy of hydration.We have argued that the use of the
experimental KBIs provides a rigorous test of force field accuracy
and thereby provides ideal target data for the parametrization.31

Furthermore, this can be achieved without a significant sacrifice
in agreement with other solution properties. Whether the current
models are substantially better than other, more traditional, models
remains to be seen. This issue requires amore thorough and com-
prehensive study than is feasible here. The present models should
be viewed as providing a reasonable balance between solute�
solute, solute�solvent, and solvent�solvent interactions, as
inferred by their resulting distributions, and are therefore suitable
for studies of solute activities and cosolvent interactions with
biomolecules.30,63 Of course, one should always test that any
potential model reasonably reproduces any specific properties of
interest before use.
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Figure 18. Excess enthalpy of mixing (kJ/mol) as a function of salt
molality (top) and dielectric decrements as a function of salt molality
(bottom). Lines correspond to the experimental data,79 while symbols
were obtained from simulations using the KBFF models.

Figure 17. Partial molar volumes (cm3/mol) as a function of salt
molality (top). Lines are obtained from aKB analysis of the experimental
data, while symbols correspond to results obtained using the KBFF
models. The black lines and symbols represent the partial molar volume
of the salt, while red lines and symbols indicate partial molar volume of
water. Diffusion constants (�10�9 m2/s) as a function of salt molality
(bottom): The Dþ (black lines), D� (red lines), and Dw (green lines)
are obtained from experimental diffusion constant data,80 while the Dþ
(black b), D� (red O), and Dw (green �) were obtained from
simulations performed using the KBFF models.
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ABSTRACT: We describe a versatile method to enforce the rotation of subsets of atoms, e.g., a protein subunit, in molecular
dynamics (MD) simulations. In particular, we introduce a “flexible axis” technique that allows realistic flexible adaptions of both the
rotary subunit as well as the local rotation axis during the simulation. A variety of useful rotation potentials were implemented for the
GROMACS 4.5 MD package. Application to the molecular motor F1-ATP synthase demonstrates the advantages of the flexible axis
approach over the established fixed axis rotation technique.

1. INTRODUCTION

Biomolecular function often rests on or is performed through
motions of subunits. Rotary motions, in particular, are essential
for the function of many motor proteins. These nanomotors
use the free energy of chemical reactions or ion concentration
gradients to generate mechanical torque. Rotary mechanisms
were unequivocally demonstrated for three molecular engines,
the Fo and F1 motors in F-ATP synthase (F-ATPase)1,2 and the
bacterial flagellar motor.3 Recently, rotary motion was also shown
for the V1 portion of the prokaryotic homologue of the vacuolar
ATPase (V-ATPase).4Othermotor proteins that are assumed to be
rotary include DNA helicases5 and proteins that translocate viral
DNA into preformed capsids.6�8

The molecular mechanisms by which chemical reactions or
transmembrane gradients drive protein rotary motions are in
most cases not understood in full detail.9 Also, these often quite
complex motions are typically too slow or infrequent to be
accessible to equilibriummolecular dynamics (MD) simulations.
To overcome this limitation, techniques have been developed
to exert external forces10�12 or torques13�15 to certain subunits
to induce rotation and/or to increase its rate without severely
perturbing the nature of the involved structural changes. This
approach has also been used to simulate experiments in which
biomolecules, such as proteins or DNA, are mechanically driven
to rotate by externally applied torques by single molecule
manipulation techniques.16 In one impressive example, the F1
portion of ATP synthase (F1-ATPase) has been shown to produce
ATP when the γ subunit is enforced to rotate using magnetic
tweezers.17

With exceptions,18 in most simulations involving external
torque, a fixed, “stiff” rotation axis has been used so far15,19,20

(dashed line in Figure 1A). As shown in the figure, this approach
does not properly describe situations such as F1-ATPase, where
the rotating part flexibly adapts (dotted lines) to the steric
restraints set by the bearing (gray). To more realistically describe
biomolecular rotations, we have therefore developed a flexible
axis rotation technique that (i) exerts torque with a curved
axis that flexibly fits the shape of an arbitrarily shaped cavity

(Figure 1A), (ii) avoids any impact or bias previously introduced
by the necessary choice of the pivot for the axis, (iii) perturbs the
internal dynamics and flexibility of the rotated structure as little
as possible, and (iv) allows the curvature of the axis to adapt to
structural changes of the bearing. In summary, a rotated fragment
such as the γ subunit inside the ATPase R3β3 stator should
deform like a rotating pipe-cleaner.

To clarify notation and to explain the basic ingredients needed
for the flexible technique, we start with a recapitulation of the
established fixed axis rotation, as implemented, e.g., in NAMD21

or EGO.22 From these notions, several more complex potentials
will be developed and characterized, and the resulting forces will
be derived. We will then motivate and describe in detail the
flexible axis approach, for which we present two different variants.
After outlining details of our GROMACS23,24 implementation,
we will apply flexible axis rotation to the F1-ATPase molecular
motor and test if our approach is indeed capable of providing
more accurate torque or free energy profiles.

2. FIXED AXIS ROTATION

Stationary Axis with an Isotropic Potential. In the estab-
lished fixed axis approach15,19�22 (Figure 1B), torque on a group
of N atoms with positions xi (denoted “rotation group”) is ap-
plied by rotating a reference set of atomic positions—usually
their initial positions yi

0—at a constant angular velocityω around
an axis defined by a direction vector v̂ and a pivot point u. To that
aim, each atom with position xi is attracted by a “virtual spring”
potential to its moving reference position yi = Ω(t) (yi

0 � u),
whereΩ(t) is a matrix that describes the rotation around the axis.
In the simplest case, the “springs” are described by a harmonic
potential

V iso ¼ k
2 ∑

N

i¼ 1
wi½ΩðtÞðy0i � uÞ � ðxi � uÞ�2 ð1Þ
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with optional mass-weighted prefactors wi = Nmi/M with total
mass M = ∑i=1

N mi. The rotation matrix Ω(t) is

ΩðtÞ ¼
cos ωt þ v2xξ vxvyξ� vz sin ωt vxvzξþ vy sin ωt

vxvyξþ vz sin ωt cos ωt þ v2yξ vyvzξ� vx sin ωt

vxvzξ� vy sin ωt vyvzξþ vx sin ωt cos ωt þ v2xξ

0
BBB@

1
CCCA

where vx, vy, and vz are the components of the normali-
zed rotation vector v̂ and ξ := 1 � cos (ωt). As illustrated
in Figure 2A for a single atom j, the rotation matrix Ω(t)
operates on the initial reference positions yj

0 = xj(t0) of atom j at
t = t0. At a later time t, the reference position has rotated away
from its initial place (along the blue dashed line), resulting in
the force

Fisoj ¼ �rjV
iso ¼ kwj½ΩðtÞðy0j � uÞ � ðxj � uÞ� ð2Þ

which is directed toward the reference position.
Pivot Free Isotropic Potential. We first address the bias

introduced by an arbitrary choice of the pivot vector u. This arbi-
trariness is avoided by defining as the pivot the center of mass xc
of the rotation group

xc ¼ 1
M ∑

N

i¼ 1
mixi and y

0
c ¼ 1

M ∑
N

i¼ 1
miy

0
i ð3Þ

which yields the “pivot-free” potential

V iso-pf ¼ k
2 ∑

N

i¼ 1
wi½ΩðtÞðy0i � y0cÞ � ðxi � xcÞ�2 ð4Þ

with forces

Fiso-pfj ¼ kwj½ΩðtÞðy0j � y0cÞ � ðxj � xcÞ� ð5Þ

Without mass-weighting, the pivot xc is the geometrical center of
the group.
Parallel Motion Potential Variant. Obviously, the forces

generated by the isotropic potentials (eqs 1 and 4) also contain
components parallel to the rotation axis and thereby restrain
motions along the axis of either the whole rotation group (in case

of Viso) or within the rotation group (in case of Viso-pf). For cases
where unrestrained motion along the axis is preferred, we
have implemented a “parallel motion” variant by eliminating all
components parallel to the rotation axis for the potential. This is
achieved by projecting the distance vectors between reference
and actual positions:

ri ¼ ΩðtÞðy0i � uÞ � ðxi � uÞ ð6Þ

onto the plane perpendicular to the rotation vector

r^i :¼ ri � ðri 3 v̂Þv̂ ð7Þ

yielding

V pm ¼ k
2 ∑

N

i¼ 1
wiðr^i Þ2 ¼ k

2 ∑
N

i¼ 1
wi ΩðtÞðy0i � uÞ � ðxi � uÞ�

� f½ΩðtÞðy0i � uÞ � ðxi � uÞ� 3 v̂gv̂
�2 ð8Þ

and similarly

Fpmj ¼ kwjr
^
j ð9Þ

Pivot-Free Parallel Motion Potential. Replacing in eq 8 the
fixed pivot u with the center of mass xc yields the pivot-free
variant of the parallel motion potential. With

si ¼ ΩðtÞðy0i � y0cÞ � ðxi � xcÞ ð10Þ

the respective potential and forces are

Vpm-pf ¼ k
2 ∑

N

i¼ 1
wiðs^i Þ2 ð11Þ

Fpm-pf
j ¼ kwjs

^
j ð12Þ

Radial Motion Potential. In the above variants, the minimum
of the rotation potential is either a single point at the reference
position yi (for the isotropic potentials) or a single line through
yi parallel to the rotation axis (for the parallel motion potentials).
As a result, radial forces restrict radial motions of the atoms.
The two subsequent types of rotation potentials, Vrm and Vrm2,
drastically reduce or even eliminate this effect. The first variant,

Figure 1. Comparison of fixed and flexible axis rotation. (A) Rotating the sketched shape inside the white tubular cavity creates severe artifacts when a
conventional fixed rotation axis (dashed) is used. More realistically, the shape would revolve like a flexible pipe-cleaner (dotted) inside the bearing
(gray). (B) Fixed rotation around an axis v with a pivot point specified by the vector u. (C) Subdividing the rotating fragment into slabs with separate
rotation axes (v) and pivot points (•) for each slab allows for the required flexibility. The distance between two slabs with indices n and n þ 1 is Δx.
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Vrm (Figure 2B), eliminates all force components parallel to the
vector connecting the reference atom and the rotation axis

V rm ¼ k
2 ∑

N

i¼ 1
wi½pi 3 ðxi � uÞ�2 ð13Þ

with

pi :¼
v̂ �ΩðtÞðy0i � uÞ

jj v̂ �ΩðtÞðy0i � uÞ jj ð14Þ

This variant depends only on the distance pi 3 (xi�u) of atom i
from the plane spanned by v̂ and Ω(t)(yi

0�u). The resulting
force is

Frmj ¼ � kwj½pj 3 ðxj � uÞ�pj ð15Þ

Pivot-Free Radial Motion Potential. Proceeding similar to
the pivot-free isotropic potential yields a pivot-free version of the
above potential. With

qi :¼
v̂ �ΩðtÞðy0i � y0cÞ

jjv̂ �ΩðtÞðy0i � y0cÞjj
ð16Þ

the potential and force for the pivot free variant of the radial

motion potential read

V rm-pf ¼ k
2 ∑

N

i¼ 1
wi½qi 3 ðxi � xcÞ�2 ð17Þ

Frm-pf
j ¼ � kwj½qj 3 ðxj � xcÞ�qj þ k

mj

M ∑
N

i¼ 1
wi½qi 3 ðxi � xcÞ�qi

ð18Þ

Radial Motion 2 Alternative Potential. As seen in
Figure 2B, the force resulting from Vrm still contains a small,
second-order radial component. In most cases, this perturba-
tion is tolerable; if not, the following alternative, Vrm2, fully
eliminates the radial contribution to the force, as depicted in
Figure 2C,

V rm2 ¼ k
2 ∑

N

i¼ 1
wi

½ðv̂ � ðxi � uÞÞ 3ΩðtÞðy0i � uÞ�2
jj v̂ � ðxi � uÞ jj2 þ ε0

ð19Þ

where a small parameter ε0 has been introduced to avoid
singularities. For ε0 = 0 nm2, the equipotential planes are

Figure 2. Selection of different rotation potentials discussed in the text and definition of notation. All four potentials V (color coded) are shown for a
single atom at position xj(t). (A) Isotropic potentialV

iso, (B) radial motion potentialVrm and flexible potentialVflex, (C,D) radial motion 2 potentialVrm2

and flexible 2 potential Vflex2 for ε0 = 0 nm2 (C) and ε0 = 0.01 nm2 (D). The rotation axis is perpendicular to the plane and marked byX. The light gray
contours indicate Boltzmann factors e�V/(kBT) in the xj plane forT = 300 K and k = 200 kJ/(mol 3 nm

2). The green arrow shows the direction of the force
Fj acting on atom j; the blue dashed line indicates the motion of the reference position.
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spanned by xi � u and v̂, yielding a force perpendicular to
xi � u, thus not contracting or expanding structural parts that
moved away from or toward the rotation axis.
We note that this variant is particularly suitable for free energy

calculations via umbrella sampling techniques,25 because the
radial orientation of the equipotential planes shown in Figure 2C
guarantees statistically consistent sampling of adjacent umbrella
windows, as required for a consistent definition of the free energy
profile via subspace projection. To see why this is actually the case,
note that consistent umbrella sampling requires that for adjacent
umbrella windows the “stack” of (3N� 1 dimensional) configura-
tional subspaces defined by the values of the chosen reaction
coordinate agrees, subspace by subspace, with the one defined by
the values of the umbrella potential. This in turn requires that the
equipotential planes shown in Figure 2 coincide with those of a
rotated potential, which is obviously the case for Figure 2C, but not
for Figure 2A or B.
Choosing a small positive ε0 (e.g., ε0 = 0.01 nm2, Figure 2D) in

the denominator of eq 19 yields a well-defined potential and
continuous forces also close to the rotation axis, which is not the
case for ε0 = 0 nm2 (Figure 2C). With

ri :¼ ΩðtÞðy0i � uÞ ð20Þ

si :¼ v̂ � ðxi � uÞ
jj v̂ � ðxi � uÞ jj � Ψiv̂ � ðxi � uÞ ð21Þ

Ψ
�
i :¼

1
jj v̂ � ðxi � uÞ jj 2 þ ε0

ð22Þ

the force on atom j reads

Frm2
j ¼ � k wjðsj 3 rjÞ

Ψ
�
j

Ψj
rj �

Ψ�2
j

Ψ3
j

ðsj 3 rjÞsj
2
4

3
5

8<
:

9=
;� v̂ ð23Þ

Pivot-Free Radial Motion 2 Potential.The pivot free variant of
the above potential is

V rm2-pf ¼ k
2 ∑

N

i¼ 1
wi
½ðv̂ � ðxi � xcÞÞ 3ΩðtÞðy0i � ycÞ�2

jj v̂ � ðxi � xcÞ jj 2 þ ε0
ð24Þ

with

ri :¼ ΩðtÞðy0i � ycÞ ð25Þ

si :¼ v̂ � ðxi � xcÞ
jj v̂ � ðxi � xcÞ jj � Ψiv̂ � ðxi � xcÞ ð26Þ

Ψ
�
i :¼

1

jj v̂ � ðxi � xcÞ jj 2 þ ε0
ð27Þ

the force on atom j reads

Frm2-pf
j ¼ � k wjðsj 3 rjÞ

Ψ
�
j

Ψj
rj �

Ψ�2
j

Ψ3
j

ðsj 3 rjÞsj
2
4

3
5

8<
:

9=
;� v̂

þ k
mj

M ∑
N

i¼ 1
wiðsi 3 riÞ

Ψ
�
i

Ψi
ri �Ψ�2

i

Ψ3
i

ðsi 3 riÞsi
" #( )

� v̂ ð28Þ

3. FLEXIBLE AXIS ROTATION

As sketched in Figure 1A,B, the rigid body behavior of the fixed
axis rotation scheme is a drawback for many applications. In
particular, deformations of the rotation group are suppressed when
the equilibrium atom positions directly depend on the reference
positions. To avoid this limitation, eqs 18 and 24 will now be
generalized toward a “flexible axis”, as sketched in Figure 1C. This
will be achieved by subdividing the rotation group into a set of
equidistant slabs perpendicular to the rotation vector, and by
applying a separate rotation potential to each of these slabs.
Figure 1C shows the midplanes of the slabs as dotted straight lines
and the centers as thick black dots.

To avoid discontinuities in the potential and in the forces, we
define “soft slabs” by weighing the contributions of each slab n
to the total potential function Vflex by a Gaussian function

gnðxiÞ ¼ Γ exp �β2nðxiÞ
2σ2

 !
ð29Þ

centered at the midplane of the nth slab. Here, σ is the width of
the Gaussian function, Δx the distance between adjacent slabs,
and

βnðxiÞ :¼ xi 3 v̂� nΔx ð30Þ

A most convenient choice is σ = 0.7Δx and

1=Γ ¼ ∑
n ∈ Z

exp �
n� 1

4

� �2

2� 0:72

0
BBBB@

1
CCCCA � 1:75464

Figure 3. Gaussian functions gn centered at nΔx for a slab distanceΔx =
1.5 nm and n g �2. Gaussian function g0 is highlighted in bold; the
dashed line depicts the sum of the shown Gaussian functions.
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which yields a nearly constant sum, essentially independent of xi
(dashed line in Figure 3), i.e.,

∑
n ∈ Z

gnðxiÞ ¼ 1þ εðxiÞ ð31Þ

with |ε(xi)| < 1.3 � 10�4. This choice also implies that the
individual contributions to the force from the slabs add up to
unity such that no further normalization is required.

To each slab center xc
n, all atoms contribute by their Gaussian-

weighted (optionally also mass-weighted) position vectors gn(xi)xi.
The instantaneous slab centers xc

n are calculated from the current
positions xi

xnc ¼
∑
N

i¼ 1
gnðxiÞmixi

∑
N

i¼ 1
gnðxiÞmi

ð32Þ

while the reference centers yc
n are calculated from the reference

positions yi
0

ync ¼
∑
N

i¼ 1
gnðy0i Þmiy0i

∑
N

i¼ 1
gnðy0i Þmi

ð33Þ

Due to the rapid decay of gn, each slab will essentially involve
contributions from atoms located within ∼3Δx from the slab
center only.
Flexible Axis Potential.We consider two flexible axis variants.

For the first variant, the slab segmentation procedure with
Gaussian weighting is applied to the radial motion potential
(eq 18/Figure 2B), yielding as the contribution of slab n

Vn ¼ k
2 ∑

N

i¼ 1
wignðxiÞ½qni 3 ðxi � xncÞ�2

and a total potential function

V flex ¼ ∑
n
Vn ð34Þ

Note that the global center of mass xc used in eq 18 is now
replaced by xc

n, the center of mass of the slab. With

qni :¼
v̂ �ΩðtÞðy0i � yncÞ

jj v̂ �ΩðtÞðy0i � yncÞ jj ð35Þ

bni :¼ qni 3 ðxi � xncÞ ð36Þ
the resulting force on atom j reads

Ff lexj ¼ � kwj∑
n
gnðxjÞ bnj qnj � bnj

βnðxjÞ
2σ2

v̂

( )

þ kmj∑
n

gnðxjÞ
∑
h
gnðxhÞ ∑

N

i¼ 1
wignðxiÞ bni

qni �
βnðxjÞ
σ2

½qni 3 ðxj � xncÞ�v̂
( )

ð37Þ

Note that for Vflex, as defined, the slabs are fixed in space and so
are the reference centers yc

n. If during the simulation the rotation
groupmoves too far in the vdirection, itmay enter a regionwhere—
due to the lack of nearby reference positions—no reference slab
centers are defined, rendering the potential evaluation impossi-
ble. We therefore have included a slightly modified version of
this potential that avoids this problem by attaching the mid-
plane of slab n = 0 to the center of mass of the rotation group,
yielding slabs that move with the rotation group. This is achieved
by subtracting the center of mass xc of the group from the
positions

~xi ¼ xi � xc, and ~y0i ¼ y0i � y0c ð38Þ

such that

V f lex-t ¼ k
2∑n ∑

N

i¼ 1
wignð~xiÞ v̂ �ΩðtÞð~y0i � ~yncÞ

jj v̂ �ΩðtÞð~y0i � ~yncÞ jj 3
ð~xi � ~xncÞ

" #2

ð39Þ

To simplify the force derivation, and for efficiency reasons, we
here assume xc to be constant, and thus ∂xc/∂x = ∂xc/∂y = ∂xc/
∂z = 0. The resulting force error is small (on the order ofO(1/N)
or O(mj/M) if mass-weighting is applied) and can therefore be
tolerated.With this assumption, the forcesFflex-t have the same form as
eq 37.
Flexible Axis 2 Alternative Potential. In our second variant,

slab segmentation is applied to Vrm2 (eq 24), resulting in a flexible
axis potential without radial force contributions (Figure 2C)

V f lex2 ¼ k
2 ∑

N

i¼ 1
∑
n
wignðxiÞ½ðv̂ � ðxi � xncÞÞ 3ΩðtÞðy0i � yncÞ�2

jj v̂ � ðxi � xncÞ jj 2 þ ε0

ð40Þ

with

rni :¼ ΩðtÞðy0i � yncÞ ð41Þ

sni :¼
v̂ � ðxi � xncÞ

jj v̂ � ðxi � xncÞ jj � ψiv̂ � ðxi � xncÞ ð42Þ

ψ
�
i :¼

1
jj v̂ � ðxi � xncÞ jj 2 þ ε0

ð43Þ

Wn
j :¼ gnðxjÞmj

∑
h
gnðxhÞmh

ð44Þ

Sn :¼ ∑
N

i¼ 1
wignðxiÞðsni 3 rni Þ

ψ
�
i

ψi
rni �

ψ�2
i

ψ3
i
ðsni 3 rni Þsni

" #
ð45Þ



1386 dx.doi.org/10.1021/ct100666v |J. Chem. Theory Comput. 2011, 7, 1381–1393

Journal of Chemical Theory and Computation ARTICLE

the force on atom j reads

Ff lex2j ¼ � k ∑
n
wjgnðxjÞðsnj 3 rnj Þ

ψ
�
j

ψj
rnj �

ψ�2
j

ψ3
j

ðsnj 3 rnj Þsnj
" #( )

�v̂ þ k

�
∑
n
Wn

j S
n

�
� v̂� k ∑

n
Wn

j

βnðxjÞ
σ2

1
ψj
snj 3 S

n

�
v̂

(

þ k
2 ∑

n
wjgnðxjÞ

βnðxjÞ
σ2

ψ
�
j

ψ2
j
ðsnj 3 rnj Þ2

�
v̂

(
ð46Þ

Applying transformation 38 yields a translation-tolerant ver-
sion of the flexible 2 potential, Vflex2-t. Again, assuming that
∂xc/∂x, ∂xc/∂y, and ∂xc/∂z are small, the resulting equations for
Vflex2-t and Fflex2-t are similar to those of Vflex2 and Fflex2.

4. GROMACS IMPLEMENTATION

For an efficient implementation, the following issues were
taken into account. GROMACS 4 distributes the atoms among
the parallel processors by domain-decomposing24 the simulation
box and assigning each domain to a processor. Depending on van
der Waals and Coulomb cutoff settings, positions of atoms near
the domain boundaries are communicated such that each processor
can compute the forces assigned to its domain. However, the
calculation of some of the proposed potentials and forces requires
atom positions not present on the local processor. For instance, the
pivot free potentials require the center ofmass of the rotation group,
while the flexible potentials require all N positions of the rotation

group. The required coordinates are therefore distributed to all
processors before the force calculations, which entails one extra
communication step in the rotation module. Further, repeated
expressions such as the last terms in eqs 18 and 28 are precalculated
whenever possible. For the efficient computation of the forces Fflex,
the inner sum of the last term of eq 37

∑
N

i¼ 1
wignðxiÞbni qni �

βnðxjÞ
σ2

½qni 3 ðxj � xncÞ�v̂
( )

ð47Þ

is rewritten as

sn �
βnðxjÞ
σ2

½sn 3 ðxj � xncÞ� 3 v̂ ð48Þ

such that the repeated terms

sn ¼ ∑
N

i¼ 1
wignðxiÞbni qni ð49Þ

are also precomputed for each relevant slab n and then used for the
calculation of each Fj term. Likewise, for F

flex2, the terms Sn (eq 45)
of eq 46 are precalculated.

Moreover, for the flexible potentials, only significant contribu-
tions to V and F are computed, defined by a cutoff value of
gn(x) g gn

min with a default value gn
min = 0.001, which is checked

according to a simple distance criterion. Also, the atoms of the
rotation group are sorted according to their position along
the rotation vector such that for each slab n, a first and a last

Figure 4. F1-ATPase structure. In the upper left (right) corners, the full protein structure (R3β3δε) is shown in a side (top) view. Subunit color-coding
is R, red; β, green; γ, cyan; δ, magenta; and ε, orange. The central panel illustrates the initial orientation of the rotor domain (γδε) with respect to the
stator (R3β3); for the sake of simplicity, only the γ and two β subunits are shown. The 3-fold symmetry axis ofR3β3 that was used as a rotation axis inV

iso

is shown inmagenta. The red spheres and yellow arrows depict slab centers and local rotation axes as used by the flexible potentials. The left and right side
panels show the orientation of the rotor after 120� of enforced rotation using Viso and Vflex2, respectively. The two orange spheres denote harmonic
restraints applied to the N-terminal tags of the β subunits. This is to prevent co-rotation of the R3β3 stator in close resemblance to single-molecule force
probe experiments, in which the stator is immobilized by attaching the protein to the surface via His tags attached to one subunit type (usually the β
chains). Figure prepared with VMD.38
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index i between gn(xi) g gn
min "i ∈ [ifirst...ilast] is stored, and all

contributions outside that range can safely be ignored.
Special care has been taken for periodic boundary conditions.

Here, the appropriate periodic image for each of the particles
of the rotation group has to be chosen such that groups are not
split. For fixed axis rotation, each atom is put closest to its current
reference position. For the flexible and pivot-free radial motion
potentials, each atom is put next to its position at the previous
time step, thereby ensuring the integrity of all rotation fragments.

5. APPLICATION TO F1-ATP SYNTHASE

As a sample application of our flexible axis approach, and to
compare results obtained by fixed and flexible axis rotation, a
series of all-atom MD simulations was performed in which the γ
subunit of F1-ATPase was enforced to rotate with respect to its
stator part, R3β3 (Figure 4).

F1-ATPase is the soluble domain of the FoF1-ATP synthase, a
rotary motor protein that synthesizes ATP from ADP using the
electrochemical proton gradient across the membrane as its
energy source.26 The mitochondrial F1-ATPase is an oligomeric
protein consisting of nine polypeptide chains, R3β3γδε.

27 In
synthesis direction, F1-ATPase is driven by the membrane-
embedded proton-translocating Fo motor while the F1 mobile
subunit, γδε, rotates clockwise (seen from the membrane) within
the bearing formed by the hexagonally arrangedR andβ chains.28,26

The energy transmitted mechanically via the rotating subunit is
subsequently used at the catalytic sites of R3β3 for ATP synthesis.
To prevent co-rotation, the R3β3 hexamer is connected to the
membrane-embedded Fomotor by a peripheral linker stalk. Despite
numerous theoretical29�31 and simulation studies,15,32�36 the mo-
lecular mechanism of energy transmission between the rotor subunit
and the ligand binding sites in the stator is still not fully understood.37

Simulation Setup. The initial configuration of the F1 motor
was based on the X-ray structure of bovine F1-ATPase deter-
mined at 2.4 Å resolution39 (Protein Data Bank entry 1E79). The
covalently bound inhibitor as well as the glycerol and sulfate
molecules were removed, leaving only Mg 3ATP and Mg 3ADP
ligands in their respective binding sites. All crystal water mole-
cules were retained. Two five-residue-long loops missing from
the γ subunit were modeled with tCONCOORD.40 Protonation
states of ionizable groups were set according to the pKa shifts
calculated with the DelPhi41 interface of WhatIf.42 The protein
structure was solvated with 87 321 water molecules in a 16.7 �
13.8 � 13.8 nm rectangular unit cell. To neutralize the system
and to obtain physiological ionic strength, 261 Naþ and 216 Cl�

ions were added. The system was energy-minimized using the
steepest descent method in two stages. First, all heavy atoms
of the protein and the protein’s ligands were kept fixed; subse-
quently, all atoms in the system were allowed to relax.
All simulations were performed with GROMACS 4.024 in

which the potentials Viso, Vflex, and Vflex2 were implemented. For
convenience, we here also describe the newer 4.5 version, which
produces the same results for the Viso, Vflex, and Vflex2 potentials
but includes nine additional rotation potentials.
For the protein as well as its ligands and ions, the OPLS/AA

force field43,44 was used, and TIP4P45 was used for the water.
All production runs were carried out in the NPT ensemble at
300 K and 1 bar. Temperature and pressure were controlled
by Nos�e�Hoover46,47 (coupling constant τt = 0.5 ps) and
Parrinello�Rahman48,49 (τp = 2.0 ps) schemes, respectively.
To avoid severe density oscillations, the first 5 ns of the NPT

equilibration run were performed with Berendsen weak coupling50

for temperature and pressure. Periodic boundary conditions were
applied in 3D, and electrostatic forces were calculated with the
particle mesh Ewald (PME) method51,52 using a real-space cutoff
of 1 nm and an FFT grid density of 10 nm�1. Lennard-Jones
interactions were truncated at 1 nm. Covalent bond lengths in the
protein and ligand were constrained to their reference values with
P-LINCS.53 SETTLE was used to constrain the water geometry.54

Equations of motion were integrated using the leapfrog scheme with
a time step of 2 fs. Prior to enforcing the rotormovement, the system
was equilibrated for 10 ns at the target temperature and pressure.
During the first 1 ns of this run, all protein heavy atoms were
harmonically restrained to their initial positions.
To mimic the effect exerted on the F1 subunit by the rotation

of the Fo motor, a potential of the form Viso (eq 1), Vflex (34), or
Vflex2 (40) was applied during the production runs. All 272 CR
atoms of the γ subunit were chosen as a rotation group. The
longest principal axis of the R3β3 stator, i.e., the eigenvector of
the inertia tensor of R3β3 corresponding to the largest eigenva-
lue, was used as a rotation vector v. For the fixed variant, the pivot
vector u of the axis was placed at the center of mass of the R3β3
units, thus defining the 3-fold pseudosymmetry axis of the stator
subunit (Figure 4). For the flexible axis runs, a slab distance of
Δx = 1 nm, a Gaussian function cutoff of gn

min = 0.001, and ε0 =
0 nm2 were chosen. The γ reference positions were rotated
counter-clockwise around v at an angular rate of ω = 0.021�/ps
over 6 ns of the simulation time, yielding a 120� rotation of the
γδε domain. Due to its symmetry, this covers a complete
synthesis cycle, as also seen from the observed stepped motion
of the γδε domain.28 To examine the effect of the chosen spring
constant k, for each of the three potentials, five runs were
performed with k values ranging from 100 to 800 kJ/(mol 3 nm

2).
In each case, all heavy atoms of theN-terminal six-residue sequences
of each β subunit were harmonically restrained to their initial
positions using a force constant of 1500 kJ/(mol 3 nm

2).

Figure 5. GROMACS 4.5 performance for various rotation potentials
(colors) compared to a simulation without rotation. The system
comprises 401 152 atoms in total, of which 2116 are subjected to the
rotation potential. For the flexible potentials, slab distance Δx = 1 nm
and gn

min = 0.001 have been chosen. The thin black line denotes ideal
scaling.
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Additionally, for k = 600 kJ/(mol 3nm
2), a complete 360� rotation

of the γδε domain was simulated.
Performance.We demonstrate that, due to the optimizations

described in the implementation section, simulation performance is
nearly unaffected for typical setups such as the F1-ATPse system,
where only a small fraction of all atoms are subjected to a rotation
potential. The described ATPase example with the implemented
rotation types was benchmarked (Figure 5) on a cluster of Intel Xeon
L5430 nodes connected by a DDR Infiniband network. Each node
comprised eight processor cores running at 2.66 GHz. An Intel MPI
3.2.1 was used with the Intel 11.1 compiler and the FFTW 3.2 library.
For the benchmarks, Coulomb and van der Waals cutoffs were set to
0.9 nmand theFourier grid to 144� 120� 120points, yielding a grid
spacing of less than 0.12 nm in each dimension. Separation into long-
range (PME-only) and short-range (particle�particle) processes was
allowed.Theoptimal numberofPME-onlyprocesseswas derivedwith
the g_tune_pme55 tool using 2000 equilibration steps for the dynamic
load balancing, with run times taken from 2000 subsequent steps.
With theN = 272 CR atoms of the γ subunit as the rotation group,

none of the potentials significantly reduced the MD performance. To
be able to analyze the scaling behavior (Figure 5), the rotation group
was therefore enlarged to contain allN= 2116 atoms of theγ subunit.
As seen, the overall performance decreases only slightly compared to
the case without rotation. For the most computationally demanding
flexible potentials, on eight processors, a 2% decrease is seen and a 9%
decrease on 192 processors.

6. RESULTS

Evolution of the Rotor Angle. To verify that the proposed
methods properly control the motion of the rotary subunit, we

first determined the time evolution of the rotor angle θ. The
actual rotation angle θ(t) of the γ subunit was determined by a
mass-weighted root-mean-square deviation (RMSD) fit to the
initial (θ = 0�) configuration of the γ backbone. Figure 6 shows
θ(t) with respect to the R3β3 symmetry axis.
The results show that in all 6-ns-long enforced rotation runs

the rotor changes its orientation with respect to the stator by the
expected 120�. The angle increases nearly linearly with time, with
the slope reflecting the constant angular velocity of 0.021�/ps, at
which the reference is rotated. For fixed axis rotation, the subunit
closely follows the reference for all tested force constants k =
100�800 kJ/(mol 3 nm

2). In contrast, for both flexible variants, a
less regular evolution is observed, as indicated by the large
fluctuations of θ for k = 100 kJ/(mol 3 nm

2). These result from
conformational changes of the rotor that occur because the
flexible method allows for structural relaxations and adaptations
to the bearing. Additionally, at high rotation velocities, frictional
forces occur, which cause further conformational changes.
Movies illustrating the effect of the fixed and flexible axis

methods have been included within the Supporting Information.
In the movies, a Viso and a Vflex2 rotation potential with k = 600
kJ/(mol 3 nm

2) is applied to all CR atoms of the γ subunit.
For a quantitative comparison of the γ subunit internal

deformation, Figure 7 shows the time evolution of the RMSD
of the γ backbone atoms from their initial configuration. Relatively
small RMSD variations are observed for the fixed method, con-
firming nearly rigid-body like rotation. In contrast, both flexible
axis methods allow for structural rearrangements particularly for
small k values. A secondary structure analysis shows that for
the F1-ATPase flexibly rotating at 0.021�/ps the force constant k
should be 200 kJ/(mol 3 nm

2) or larger to preserve the rotor

Figure 6. Time evolution of the γ rotor angle with respect to the R3β3
symmetry axis for the F1-ATPase motor enforced to rotate in the
synthesis direction using the potentials Viso (A), Vflex (B), and Vflex2

(C) with spring constants k of 100�800 kJ/(mol 3 nm
2).

Figure 7. RMSD of the γ subunit backbone atoms with respect to the
X-ray structure as a function of time for the F1 motor driven to rotate in
the synthesis direction using the potentials Viso (A), Vflex (B), and Vflex2

(C) with spring constants k of 100�800 kJ/(mol 3 nm
2).
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coiled-coil conformation of the crystal structure (Figure 4). For
any of the rotation potentials, the force constant will depend on
the studied system and on the rotation rate. Generally, higher
rotation rates will require larger force constants that stabilize the
rotation group with the help of a stronger coupling to its reference.
Yet, the decrease in conformational freedom with increasing k
(Figure 7) shows that when using the flexible axis approach one can
optimize the tradeoff between structural flexibility and mechanical
resistance of the rotary subunit. Note that the 120� rotations, in
principle, cannot perfectly reproduce the starting configuration of
the F1-ATPase, as in our simulations the rotor motion is not
accompanied by occupancy changes of the active sites.
Because for the flexible potentials the local rotation axis adapts

dynamically, it is interesting to monitor the evolution of the F1
rotor angle θ also with respect to a variable axis. Figure 8 shows
the time dependence of θ computed in the same manner as
previously but now with the instantaneous (longest) principal
axis of the γ subunit used as the reference axis. Significantly
smoother variation of θwith time is seen in Figure 8 compared to
using a fixed symmetry axis (Figure 6B,C). This result illustrates
the ability of the flexible methods to adapt the rotation geometry
to the structure and conformational changes of the stator.
Torque Profiles. We will now characterize the different

rotation methods in terms of torque and energetics. Because
the efficiency of the chemomechanical energy transmission in the
F1-ATPase, when studied in single molecule measurements, is
close to 100%,28 and due to the implied tight coupling between the
mechanical reaction coordinate (e. g., the θ angle) and conforma-
tional changes in the catalytic subunit, thework necessary to enforce
a 120� rotation of F1-ATPase in the synthesis direction should
approach the free energy of ∼50�70 kJ/mol required for ATP
synthesis.26,37

Figure 9 therefore compares the torque profiles along the
mechanical reaction coordinate θ (eq 53) for the three methods
considered above. As can be seen, for both flexible axis potentials,
the average torque along θ is about 5 times smaller than that for
the fixed axis potential. Assuming that for infinitely slow rotation
the (equilibrium) torque curve is smaller than the observed
torques, and, further, that this difference is due to dissipation or

other nonequilibrium effects, this result implies that the flexible
axis approach reduces the dissipated energy by at least a factor of
5 with respect to the fixed axis potential.
Integrated over 120�, the corresponding work is 5900 ( 300,

1400 ( 100, and 1490 ( 80 kJ/mol, for the fixed, flexible, and
flexible 2 potential, respectively. Due to the large angular velocity
applied as well as the resulting nonequilibrium nature of this
process, this work is still much larger than the free energy of ATP
synthesis but clearly shows the dramatic reduction by the flexible
axis method. For much lower velocities of 0.00042�/ps, the
integrated work reduces further to 350 ( 50 kJ/mol (data not
shown).
Already for the short simulations, the dependence of the torque

on the angular position of the rotor reveals details of the free energy
landscape governing the F1 rotation. In all simulationswith a flexible
axis potential (Figures 9 and 10), only small variations of the average
torque with respect to the rotor angle are observed. This suggests
that the underlying energy landscape is smooth and nearly linear,
which is in agreement with recent experiments.26,56 However, due

Figure 8. Time evolution of the angular position of the γ rotor
computed as the best-fit angle with respect to the γ longest principal
axis for the F1 motor enforced to rotate in the synthesis direction using
Viso (A) and Vflex2 (B).

Figure 9. The angular dependence of the driving torque for the γ
subunit enforced to rotate in the synthesis direction using Viso (fixed
axis), Vflex2 (flexible axis), and Vflex2 (flexible axis 2), using five different
spring constants k = 100�800 kJ/(mol 3 nm

2). All torque profiles were
smoothed using a running average window of 8�.

Figure 10. Evolution of the driving torque for the γ subunit enforced to
rotate in the synthesis direction using Viso (red) and Vflex2 (green) with
k = 600 kJ/(mol 3 nm

2) (A). RMSD of the γ rotor backbone atoms
(solid) and of the R3β3 stator backbone atoms (dotted) with respect to
their respective X-ray structure (B).
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to themuch larger angular velocity employed here, the torque values
calculated from our simulations are at least one order of magnitude
larger than the F1-generated torque measured under a viscous load
(40�50 pN 3nm).

28,56 In addition, the calculated torque profiles
indicate that the free energy landscape is steepest at θ ≈ 40�. The
increase of the torque for θ > 90� that shows up in the fixed type
points to shortcomings of this particular method, which will be
discussed in the next section.
Since in the simulations the motion along the mechanical

reaction coordinate is not synchronized with changes in chemical
occupancy of the stator binding sites, we do not expect the torque
to drop to zero after 120� of rotation. To examine how far
our nonequilibrium simulations are from the reversible limit,
Figure 10A shows torque profiles of full 360� rotations applying
Viso and Vflex2 with k = 600 kJ/(mol 3 nm

2). As can be seen, the
torque determined for the fixed axis case increases strongly,
whereas for the flexible case, after a small increase up to θ≈ 40�,
the torques decrease toward considerably smaller values. This
result underscores that the flexible potential perturbs the system
to a much lesser extent, such that it remains much closer to
equilibrium than for a fixed axis rotation.
The fixed axis potential induces structural changes almost

exclusively in the bearing (stator in Figure 10B) while in the
flexible axis case, the structural changes are distributed rather
equally among the rotating subunit and its bearing. Moreover, in
the flexible axis case, both structures nearly approach the starting
structure (θ = 0�) at the end of a whole 360� turn with an RMSD
below 2.5 Å, which is not seen for the fixed axis simulation.
Origin of Differences in Energetics of Fixed and Flexible

Axis Rotation.When using a simple fixed axis rotation potential,
the rotating part behaves like a rigid body. In combination with

the fixed axis, this behavior can cause unphysical close contacts
and strong torques between the rotor and the bearing, whichmay
cause extensive artificial structural changes of the bearing. The
flexible axis approach, in contrast, keeps the system closer to the
equilibrium for two reasons. First, the self-adjusting local rotation
axis ensures an overall optimal position of the pivot; second, the
built-in flexibility allows for structural relaxation of the rotating
part and thus locally minimizes sterical hindrances. As the F1-
ATPase motor components are strongly coupled and leave only
little room for the rotating subunit inside the bearing, both
reasons allow for the necessary tight adaption of the γ rotor to
the R3β3 bearing.
To quantify this effect, Figure 11 displays the enforced

conformational changes of the bearing, in terms of stator RMSD
with respect to its X-ray structure as a function of time for the R2

subunit. This subunit was chosen because it interacts most
closely with the γ rotor throughout the whole runs. It is evident
that the structural changes induced in R2 are considerably larger
for fixed axis rotation than for the flexible potentials. Secondary
structure analysis reveals that in the former case the structural
motifs exposed to the center of theR3β3 hexamer are distorted by
the rotating γ subunit. Also in Figure 4 one can notice partial
disruption of the helices in the C-terminal part of the β3 subunit
(the bottom part of β on the left side of γ, red dashed circle)
when it is pressed upon by the rotor driven to rotate around the
fixed axis. The torque increase for angles θ > 90� (Figure 9, left,
and Figure 10) reflects this effect, which is mainly due to
wrapping of the β3 C-terminal domain around the γ subunit.

7. CONCLUSIONS

We have developed, implemented, and tested a new method
to enforce the rotation of protein subunits that allows for (i) a
flexible rotation axis and (ii) structural adaptions of the rotated
subunit to its environment. For γ subunit rotation in F1-ATPase,
we have shown that our flexible axis method reduced the frictional
dissipation of the γ subunit within theR3β3 bearing by more than a
factor of 5. As a result, also the induced torque was 5-fold smaller
compared to the one using a fixed axis.

Concerning the use of the flexible axis potentials developed
here, we should like to point out two possible caveats. The first
caveat is due to the fact that, while the pivot vector is free to adapt
flexibly, the orientation of the direction vector is fixed. For
systems where the subsystem subjected to the rotation potential
is embedded within a curved “bearing”, the flexible adaptation
will work properly only as long as the angle between the orientations
of the bearing axis and the direction vector is not too large, i.e., for
not too strong bending of the bearing. In extreme cases such as a
complete U-shaped bearing, artificial structural changes of the
bearing similar to those induced by fixed axes may occur. This
problem can be addressed by subdividing the system into several
parts and using a separate flexible rotation axis for each of these
parts, with orientation vectors locally adapted to the respective part
of the bearing.

The second caveat regards the proper choice of the slab
thickness. If chosen too small, only a few atoms will be assigned
to each slab, thus compromising the averaging that defines the
pivot vector of each slab. In contrast, if chosen too large, the slabs
might stretch over regions that would require changing pivot
vectors, in which case the enforced rotation would induce, albeit
to a lesser extent, the artifacts caused by fixed axis approaches.

Figure 11. RMSDof theR3 subunit backbone atoms with respect to the
X-ray structure when driving γ subunit rotation using Viso (A) and Vflex2

(B). For comparison, the corresponding RMSD evolution for five
independent free MD runs is also shown (C).
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Obviously, in the limit of just a single slab covering the complete
rotating subsystem, the fixed axis potential is recovered.

With these limitations and caveats in mind, our flexible axis
potentials are applicable to a broad range of quite diverse biomo-
lecular systems, processes, and functions. Apart from mimicking
molecular rotary motors, it can also serve to restrain the orientation
of a protein or ligand, or, in combination with umbrella sampling, to
calculate the preferred orientation of transmembrane proteins or
membrane-active agents within a lipid bilayer. Further, the method
is expected to yield more accurate free energy profiles along circular
reaction coordinates via umbrella sampling. In the long run, our
flexible axis approachmight prove useful for the study and design of
synthetic nanodevices with rotating elements, such as those con-
sidered for molecular nanotechnology.57

’APPENDIX: USING GROMACS FOR ENFORCED RO-
TATION SIMULATIONS

All methods and potentials described in this paper have been
implemented into GROMACS and will be part of the next major
release. For immediate use, the rotation repository branch should
be checked out from the GROMACS git repository. See www.
gromacs.org for how to access the repository.

To use one of these potentials, the particles i that are to be
subjected to rotation potentials are defined via index groups
rot_group0, rot_group1, etc., in the grompp preprocessor mdp
input file. The reference positions yi

0 are read from a file provided
to grompp. If no such file is found, xi(t = 0) are used as reference
positions and written to file such that they can be used for
subsequent setups. All parameters of the potentials such as k, ε0,
etc. (Table 1) are provided via input file parameters; rot_type
selects the type of the potential. The option rot_massw allows
one to choose whether or not to use mass-weighted averaging.
Table 2 summarizes observables that are written to additional
output files, which are described below.

Angle of Rotation Groups: Fixed Axis. For fixed axis rota-
tion, the average angle θav(t) of the group relative to the
reference group is determined via the distance-weighted angular

deviation of all rotation group atoms from their reference
positions

θav ¼
∑
N

i¼ 1
riθi

∑
N

i¼ 1
ri

ð50Þ

Here, ri is the distance of the reference position to the rotation
axis, and the difference angles θi are determined from the atomic
positions, projected onto a plane perpendicular to the rotation
axis through pivot point u (see eq 7 for the definition of ^)

cos θi ¼ ðyi � uÞ^ 3 ðxi � uÞ^
jj ðyi � uÞ^ 3 ðxi � uÞ^jj ð51Þ

The sign of θav is chosen such that θav > 0 if the actual structure
rotates ahead of the reference.

Angle of Rotation Groups: Flexible Axis. For flexible axis
rotation, two outputs are provided, the angle of the entire
rotation group and separate angles for the segments in the slabs.
The angle of the entire rotation group is determined by an
RMSD fit of xi to the reference positions yi

0 at t = 0, yielding θfit as
the angle by which the reference has to be rotated around v̂ for
the optimal fit

RMSDðxi,ΩðθfitÞy0i Þ¼! min ð52Þ
To determine the local angle for each slab n, both reference
and actual positions are weighted with the Gaussian function of
slab n, and θfit(t,n) is calculated as in eq 52 from the Gaussian-
weighted positions.
For all angles, the input option rot_fit_method controls

whether a normal RMSD fit is performed or whether for the fit
each position xi is put at the same distance to the rotation axis as
its reference counterpart yi

0. In the latter case, the RMSD
measures only angular differences, not radial ones.

Table 1. Parameters Used by the Various Rotation Potentials Defined Abovea

parameter k v̂ u ω ε0 Δx gn
min

grompp input k vec pivot rate eps slab_dist min_gauss

unit variable name eq [(kJ)/(mol 3 nm
2)] [-] [nm] [deg/ps] [nm2] [nm] [-]

fixed axis:

isotropic Viso 1 X X X X - - -

�pivot-free Viso-pf 4 X X - X - - -

parallel motion Vpm 8 X X X X - - -

�pivot-free Vpm-pf 12 X X - X - - -

radial motion Vrm 13 X X X X - - -

�pivot-free Vrm-pf 18 X X - X - - -

radial motion2 Vrm2 19 X X X X X - -

�pivot-free Vrm2-pf 24 X X - X X - -

flexible axis:

flexible Vflex 34 X X - X - X X

�transl. tol. Vflex-t 39 X X - X - X X

flexible2 Vflex2 40 X X - X X X X

�transl. tol. Vflex2-t X X - X X X X
aX’s indicate which parameter is actually used.
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Angle Determination by Searching the Energy Minimum.
Alternatively, for rot_fit_method=potential, the angle of the
rotation group is determined as the angle for which the rotation
potential energy is minimal. Therefore, the used rotation poten-
tial is additionally evaluated for a set of angles around the current
reference angle. In this case, the rotangles.log output file contains
the values of the rotation potential at the chosen set of angles,
while rotation.xvg lists the angle with minimal potential energy.

Torque. The torque τ(t) exerted by the rotation potential is
calculated for fixed axis rotation via

τðtÞ ¼ ∑
N

i¼ 1
riðtÞ � f^i ðtÞ ð53Þ

where ri(t) is the distance vector from the rotation axis to xi(t)
and fi

^(t) is the force component perpendicular to ri(t) and v̂. For
flexible axis rotation, torques τn are calculated for each slab using
the local rotation axis of the slab and the Gaussian-weighted
positions.
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ABSTRACT: We present an efficient, automated expanded ensemble method to calculate the residual chemical potential or
solvation free energy bymolecular dynamics simulation. Themethodology is validated by computing the residual chemical potential
of 13 amino acid analogs in water at 300 K and 1 bar and comparing to reference simulation data. Overall agreement is good, with the
methodology of the present study reaching limiting precisions of less than 0.1 kBT in half of the total simulation time of the reference
simulation study which utilized Bennett’s acceptance ratio method. The apparent difference in the efficiencies is a result of the
inherent advantages of the expanded ensemble method, which creates an improved decorrelation of simulation data and improves
the sampling of the important regions of the configurational phase space of each subensemble. The present adaptation utilizes
histograms of proposed transition energies collected throughout the entire simulation, to make extremely precise calculations of the
relative free energy between neighboring subensembles.

1. INTRODUCTION AND MOTIVATION

The thermodynamic behavior of all chemical and biological
systems at equilibrium may be fundamentally understood in
terms of the underlying free energy or chemical potential.
Knowledge of the free energy is crucial to understanding the
phase equilibria between solids, liquids, and gases, which in turn
is key for the design of separation processes and the selection of
solvents for synthesis reactions. Likewise, the transport of drug
molecules between cell membranes and partitioning between
multiple environments may be explained in terms of the relative
chemical potentials, whose knowledge is crucial for drug design.1

The importance of such information in drug design is empha-
sized by the fact that entiremonographs have been devoted to the
topic.2,3

Proteins are required by the body for the growth, repair, and
maintenance of cells. They are vital for virtually every process
within the human body, such as metabolism and digestion, and
are necessary for the production of antibodies to fight off
infections and diseases. Proteins may be regarded as large
biopolymers of amino acids, creating an expansive range of
possible chemical compositions.4 Insight into the native structure
and the folding mechanism of proteins in solution may be
obtained by examining the solvation free energy of individual
constituent amino acid analogs.5,6

To make the link between the solvation free energy of a given
amino acid analog and a particular solvent, one must account for
the molecular-level details that occur during solvation. One way
to do this is via molecular simulation. Recently, several studies
have looked at the ability of molecular simulation to predict
hydration free energies of amino acid analogs.7�11 All of the
studies employed either thermodynamic integration (TI)12 or
Bennett’s acceptance ratio (BAR) method,13 and results were
presented with an unprecedented level of precision.7 Despite
the success of the studies, all of the employed methods were

computationally intensive. To facilitate the calculations, a strati-
fication or staging strategy was used in which intermediate states
were constructed in between the target and the reference state, so
as to increase the phase space overlap between neighboring
states.14,15 That is, many simulations at varying coupling
strengths of the amino acid analogs were conducted, followed
by postsimulation data analysis.

An additional method that may help facilitate the exploration
of phase space for computing solvation free energies is the
expanded ensemble (EE) method originally developed by Lyu-
bartsev and co-workers.16�19 While the free energy between
states is calculated with an appropriate technique, a single
simulation is performed in which a random walk is constructed
over the reference, intermediate, and target states. The phase
space of each state is sampled according to a unique Hamilto-
nian, and the propagation of configurations between neigh-
boring states helps prevent quasi-nonergodicity, improving
the rate of exploration of phase space. The EE method has
been combined previously with various techniques to
compute free energy changes in an efficient, automated
fashion20�23 with a high level of precision.24,25 In addition,
the EE method has been applied to study the solvation free
energies of drug molecules.26 Together, these previous studies
suggest that automated EE calculations may be applied to
obtain precise solvation free energies of biological systems in
an extremely efficient manner.

In the present study, we evaluate the use of EE to calculate the
solvation free energy of amino acid analogs in an efficient,
automated fashion, reaching levels of precision comparable to
previous studies.7,27 We have accomplished this by combining
the strengths of the flat histogram method of Wang and Landau

Received: November 19, 2010
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(WL)28�30 with the BAR technique. The approach extends our
previous work25 in two ways: First, the current implementation
of EE is in a molecular dynamics (MD) framework rather than a
Monte Carlo (MC) framework.17 The choice of sampling
configurational phase space with MD resulted from the over-
whelming preference of the biological modeling community for
MD versus MC as a means of generating configurations.
Furthermore, the numerous, highly efficient, freely available
MD codes reinforced this motive. Second, the current study
employs BAR rather than transition-matrix Monte Carlo
(TMMC).31�35 This was done because BAR is straightforward
to implement within MD. By using BAR, the method may be
employed using either MC or MD. We note that TMMC and
BAR have been shown to be intimately related,36,37 and the MD
implementation of EE17 has similarities with the independently
formulated λ-dynamics method.38 In Section 2 of the paper we
will present an overview of the employed methodology, followed
by the relevant computational details in Section 3. Results and
discussion are given in Section 4, followed by a summary of our
findings in Section 5.

2. METHODS

EE. The main idea behind the EE method is to construct an
augmented ensemble as a sum of subensembles.16�19 This
series of subensembles connects two systems of interest by
gradually performing transitions between the two systems. In
the current study, the systems of interest are pure solvent
(water) and solvent with the addition of a single solute (amino
acid analog) molecule at the same temperature and pressure.
These systems are connected through a series of subensem-
bles that begin with a noninteracting solute molecule in a pure
solvent (i.e., an ideal gas reference state at the same density of
the pure solvent) and end with a fully interacting solute
molecule in solution. The intermediate subensembles serve
to scale the intermolecular interaction potential of the solute.
A specific subensemble is designated by index m. Intermole-
cular Lennard-Jones (LJ) and electrostatic (elec) interactions
are regulated by the subensemble dependent coupling param-
eters λm

LJ and λm
elec, respectively, which vary from 0 e λm

LJ e 1
and 0 e λm

elec e 1.
While within a given subensemble, configurational phase

space is sampled by MD. Periodically, a MC random walk
is performed in which moves consist of transitions to neigh-
boring subensembles. In this way, a probability distribution
over subensembles is generated. In the isothermal�isobaric
expanded ensemble (EE-NpT), a specific microstate (or
configuration within a subensemble m) is observed with
probability:

πmðrÞ ¼ 1
ZNpT

expf�β½UmðrÞ þ pVðrÞ�g ð1Þ

where ZNpT is the EE-NpT configurational partition function
(or configurational integral), Um is the subensemble depen-
dent potential energy, p and V are the pressure and the volume,
respectively, β = 1/kBT, where kB is Boltzmann’s constant and
T is the temperature, and r is a 3(Nsolv þ Nsolute) dimensional
vector representing the positions of the solvent and solute
molecules, where Nsolv and Nsolute are the number of solvent
and solute molecules, respectively. Note that for all of the cases
examined hereNsolute = 1. A transition from subensemblem to

subensemble n is accepted with probability:39

am f n ¼ min 1,
πnðrÞ
πmðrÞ

� �
ð2Þ

Transitions attempting to take the system outside the
range of subensembles are rejected. Further, the probab-
ility Πm of finding the system in a given macrostate (or
subensemble m) is the sum over all microstates in the
subensemble:

Πm ¼ ∑
r
πmðrÞ ð3Þ

The probability of visiting a macrostate is characterized by the
configuration of the system and the subensemble. Thus, each
microstate maps to a single macrostate. The relative Gibbs free
energy between any two subensembles m and n is related to
the relative macrostate probabilities as:16�18

βGnðNsolv ,Nsolute,T, pÞ � βGmðNsolv ,Nsolute,T, pÞ

¼ � ln
Πn

Πm

� �
ð4Þ

It follows from the definition of the chemical potential and
finite difference arguments that18

μressoluteðNsolv ,Nsolute,T, pÞ ¼ � ln
ΠMTotal

Π0

� �
ð5Þ

where μsolute
res is the residual chemical potential of the solute

(i.e., chemical potential of the solute relative to an ideal gas
reference state), and the subscripts MTotal and 0 are the
subensemble indices corresponding to the fully interacting
solute in solution and the noninteracting solute in solution,
respectively. The residual chemical potential is equivalent to
the Gibbs free energy of transfer reported in many studies of
biological systems.7�9,11

As a result of eq 4, we find that as the free energy difference
between subensembles increases, the frequency of transitions
between subensembles decreases exponentially. To ensure that
the system sufficiently samples the entire range of subensembles,
a subensemble dependent weighting function ηm is employed
to bias the acceptance probability.40 Trial moves between
subensembles are accepted according to a biased acceptance
probability:

aη,m f n ¼ min 1,
πnðrÞ
πmðrÞ expðηn � ηmÞ

� �
ð6Þ

A uniform sampling of subensembles is obtained if the weighting
functions are set according to

ηn � ηm ¼ � ln
Πn

Πm

� �
ð7Þ

Unfortunately, Πn and Πm are the unknown macrostate prob-
abilities that one seeks to calculate and, in general, are not known
a priori. In the original implementation of the EE method,16�19 a
multicanonical algorithm41 was adopted to estimate the weight-
ing functions in an iterative manner through a series of short
simulations until a relatively flat visited states histogram was
achieved. Advances have been made with the use of histogram
based methods that aim to calculate directly the macrostate
probabilities with a high level of precision and obtain the relevant
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weights by use of eq 7. These histogram methods include WL
and TMMC and the intimately related BAR.36,37,42 Recent
studies have also successfully combined multiple methods,
namely WL and TMMC.25,43 In the present study, we will
employ a combined WL-BAR approach, as described in the
next subsection.
WL-BAR Scheme. To obtain an initial estimate of the weight-

ing functions in eq 6, WL is used to estimate the macrostate
probability and hence the weighting functions via eq 7. The EE-
NpT simulation is started with the phase space of each sub-
ensemble being sampled byMD, and periodic attempts are made
to transition between subensembles. After each attempted
transition, the current estimate of the macrostate probability is
updated as

ln Πnew
m ¼ ln Πold

m þ υWL ð8Þ
where υWL is a convergence factor greater than 0. After a
specified period of time, the convergence factor is reduced
according to the following expression:

υnewWL ¼ k 3 υ
old
WL ð9Þ

where κ is an update factor less than 1. The entire process is
then repeated. The implementation of WL has been studied
extensively in the past,28�30,44,45 including a detailed discus-
sion with regards to combining WL with TMMC.43 Given the
close resemblance of TMMC and BAR,36,37,42 we have fol-
lowed the recommendations of Shell et al.43 Namely, the
convergence factor should initially be large enough to sample a
broad range of subensembles, allowing for the collection of an
expansive amount of transition energies. However, the con-
vergence factor should not be excessively large and should
then be quickly reduced, minimizing the time and the extent
at which our random walk violates detailed balance. The
heuristics of this update scheme are provided in the next
section.
The WL procedure quickly samples a broad range of

subensembles but converges to a limiting, nonprecise estimate
of the macrostate probabilities that are not improved with
additional steps.29 On the other hand, TMMC and BAR
methods may be slower to sample a broad range of sub-
ensembles35 but converge upon an extremely precise estimate
of the macrostate probabilities.34,36 Therefore, in an effort to
utilize the strengths of both WL and BAR, after sufficient
sampling has been achieved with WL, the WL calculated
weights are refreshed with weights calculated with BAR. It is
important to emphasize that the role of WL is only to quickly
sample a broad range of macrostates; the free energy is
ultimately calculated using BAR.
BAR is an optimal method to calculate free energy differences

between neighboring states and has been derived previously
using several different criteria: by minimizing the variance of the
acceptance ratio between neighboring states,13,46 as an optimal
overlap-sampling method,47 and by using maximum likelihood
arguments.48 In addition, Ferrenburg and Swendsen49 showed
that the optimal combination of histogram data reduces to BAR
in the limit that only two states are sampled. Also, Escobedo and
co-workers36,37 have shown that TMMC is a limiting case of
BAR. As a result of the many derivations in previous studies, only
the relevant working equations will be presented here. To
calculate the free energy difference between subensembles n
andm, BAR considers perturbations from bothm to n and n tom.

The difference in free energy is then calculated as

βGnðNsolv ,Nsolute,T, pÞ � βGmðNsolv ,Nsolute,T, pÞ

¼ � ln
Æf ðUn �Um � CÞæm
Æf ðUm �Un þ CÞæn

� �
þ βC ð10Þ

where f(x) is the Fermi�Dirac function [1 þ exp (βx)]�1, C is
an adjustable parameter, and the brackets correspond to an
ensemble average taken with respect to the probability distribu-
tion of subensemble n or m, as indicated by the subscript. While
in principle any value of C may be used,13 the optimal value is
found by the following relationship:

∑
Nn f m

f ðUm �Un þ CÞ ¼ ∑
Nm f n

f ðUn �Um � CÞ ð11Þ

where Nnfm and Nmfn are the number of perturbations from n
tom andm to n, respectively. During the course of the simulation,
histograms are collected to track the transition energies (i.e.,
Un�Um) between each subensemble.While configurations (and
hence energies) are correlated for a finite time, when a transition
is accepted, the system begins sampling from a different Hamil-
tonian. This transitioning reduces the configurational correlation
time of the system relative to a simulation in a fixed ensemble.
Periodically, an estimate of the free energy difference between

neighboring subensembles is calculated by self-consistently sol-
ving eq 11 and then using eq 10 to obtain the free energy
difference. From eqs 4 and 7, the free energy difference may be
used as a new estimate of the weighting functions. While the
weighting functions are continuously changing, the transition
energies required for BAR are continuously collected from the
unbiased target and reference subensembles. In this way, the
transition energy histograms do not need to be rezeroed.31,33,36

Physical insight into the success of BAR is presented nicely in
the work of Kofke and co-workers,47,50,51 who present BAR as an
optimized overlap sampling method. Rather than viewing BAR in
the context of a perturbation from both m to n and n to m, it is
better viewed as a two stage perturbation in which perturbations
in each direction are performed to a mutual intermediate state.
The optimized BAR will select an intermediate state between the
two neighboring states that is inside the overlapping region of
their respective phase spaces; the free energy prediction from
BAR is then the sum of the free energy difference between each
neighbor and the intermediate state.47,50,51 Therefore, so long as
there exists a phase space overlap, with sufficient sampling, BAR
will be successful.

3. COMPUTATIONAL DETAILS

Molecular Models. To model the intermolecular and intra-
molecular interactions of the systems, a proper force field is
required. While many models exist, it was not the objective of the
present work to evaluate which models reproduce experimental
data the best. Rather, the objective was to test the simulation
method itself, and therefore models were selected to allow for
comparison with previous work of Dill and co-workers.27 Con-
sistent with that work, water was modeled with the rigid three-
point transferable intermolecular potential function (TIP3P) of
Jorgensen and co-workers.52 Parameters for the amino acid analogs
were taken from the general AMBER force field (GAFF)53,54

with AM1-BCC partial charges.55 A complete listing of para-
meters may be found in the Supporting Information of the paper
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by Dill and co-workers.27 The studied amino acid analogs and the
corresponding amino acids are summarized in Table 1. In all of
these cases, nonbonded intermolecular interactions were treated
using a combined LJ and fixed point charge model of the form:

UnbðrijÞ ¼ 4εij
σij

rij

 !12

� σij

rij

 !6
2
4

3
5þ 1

4πε0

qiqj
rij

ð12Þ

where rij, εij, σij, qi, and qj are the site separation distance between
atoms i and j, well-depth of the LJ interaction, distance at which
the LJ interaction is zero, and partial charge values, respectively.
For interactions between unlike LJ sites, Lorentz�Berthelot
combining rules39 were employed. To prevent instabilities in
the trajectory when the solute is nearly decoupled from the
system (i.e., when λm

LJ ≈ 0), solute�solvent intermolecular
nonbonded LJ interactions were modeled with a modified,
“soft-core” potential of the form:8,56,57

Usc
LJðrij;mÞ

¼ 4λLJm εij
σ12
ij

½ð1� λLJm ÞRLJσ6
ij þ r6ij �2

� σ6
ij

½ð1� λLJm ÞRLJσ6
ij þ r6ij �

( )

ð13Þ
where rij, εij, and σij are the same LJ parameters as in eq 12, λm

LJ is
the subensemble dependent coupling strength of the LJ poten-
tial, and RLJ is a constant, taken in this study to be 1/2. Note that
when the solute molecule is fully coupled to the system, λm

LJ = 1,
and eq 13 reduces to the normal LJ potential given by eq 12.
When the solute is nearly decoupled, λm

LJ approaches 0, and eq 13
represents a smooth interaction function that allows solvent
molecules to overlap the solute with finite energy. When the
solute is decoupled from the system, λm

LJ = 0, and the potential is
0. Thus, the potential form in eq 13 correctly represents the
limiting behavior of the solute�solvent interactions, while
eliminating instabilities when λm

LJ approaches 0. Solute�solvent
intermolecular electrostatic interactions are decoupled linearly as

Uelectðrij;mÞ ¼ λelectm
1

4πε0

qiqj
rij

ð14Þ

where rij, qi, and qj are the same as in eq 12, and λm
elec is the suben-

semble dependent coupling strength of the electrostatic interactions.
The same standard LJ and electrostatic interaction potentials

(eq 12) and combining rules are used for all intramolecular
nonbonded interactions by all pairs of atoms separated by three
or more bonds. For the case in which the intramolecular sites are
separated by exactly three bonds, the LJ and electrostatic
interactions are scaled by a factor of 1/2 and 5/6, respectively.
While the TIP3P water model is completely rigid, the amino

acid analogs were modeled with fixed bond lengths but flexible
bond and dihedral angles. The bond angle bending intramole-
cular interaction between sites separated by two bonds was
modeled by a simple harmonic potential of the form:

UangleðθijkÞ ¼ kijkðθijk � θ0ijkÞ2 ð15Þ
where kijk, θijk, and θijk

0 are the force constant, angle between sites
i, j, and k, and corresponding nominal bond angle, respectively.
The torsional potential describing the intramolecular interaction
between sites separated by three bonds was modeled by a
potential of the form:

UtorsðjijklÞ ¼ ∑
5

n¼ 0
Kn cos

nðjijkl � 180oÞ ð16Þ

where φijkl is the dihedral angle between sites i, j, k, and l, and the
Kn coefficients are constants. The same torsional potential form
was used to describe improper dihedral angles, meant to keep
planar groups planar. All of the amino acid analog force field files
used in the present study are provided in the Supporting
Information.
Simulation Details. All simulations were performed with a

modified version of the MD simulation package M.DynaMix
5.2.58,59 For all systems studied in this work, LJ interactions were
truncated at a distance of rcut = 12 Å, and standard uniform fluid
tail corrections were applied to both the energy and the pressure,
assuming g(r) = 1 beyond the cutoff.39,46 Electrostatic interac-
tions were evaluated with an Ewald summation with tin foil
boundary conditions,39,46 with real space interactions truncated
at rcut. A damping parameter of Rrcut = 3.72 was used, and the
maximum number of reciprocal space lattice vectors was set by
Kmax = 11.0. Integration of the equations of motion was
performed with the Verlet leap-frog algorithm in Cartesian
coordinates39,46 with a time step of 2 fs. All bond lengths and
the H�O�H angle of water were constrained with the SHAKE
algorithm60 with a tolerance of 10�6. An Andersen thermostat,61

as implemented by Andrea et al.,62 and Andersen�Hoover
barostat61,63 were used to sample the phase space of an iso-
thermal�isobaric (NpT) ensemble at 300 K and 1 bar. The
collision time for the thermostat was set at 0.4 ps, and the time
constant for the barostat was 1.5 ps. Modifications to M.
DynaMix include implementation of the Andersen thermostat,
the “soft-core” potential (eq 13), separate decoupling of LJ and
electrostatic interactions for EE calculations, WL-BAR, modifica-
tion of the Ewald summation with EE solute molecules as
described in the Appendix, and other minor additions.
The systems were set up by randomly placing a single gas

phase minimized solute molecule in each of the five indepen-
dently equilibrated cubic boxes of 900 TIP3P water molecules.
Production runs were carried out in an EE-NpT ensemble at 300
K and 1 bar for a total of 10 ns. Each of the five independent
systems were initialized with a unique random number seed for
the thermostat and for the MC random walk, with all velocities

Table 1. Studied Amino Acid Analogs and the Corresponding
Amino Acid

amino acid analog

NH2(R)CHCOOH RH

Ala methane

Val propane

Ile n-butane

Leu isobutane

Ser methanol

Thr ethanol

Phe toluene

Tyr p-cresol

Cys methanethiol

Met methylethylsulfide

Asn acetamide

Trp 3-methylindole

His 4-methylimidazole
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initialized from a Maxwell�Boltzmann distribution at 300 K.
The system began in the subensemble with a noninteracting
solute molecule and attempts to change subensembles were
made every 10 fs. Over the first 0.5 ns, the random walk was
carried out with WL biasing, in which the WL weight factor was
initially taken to beυWL= 0.25 and reduced asυWL

new = 0.25υWL
old every

0.1 ns. The initial WL weight factor was chosen to be an order of
magnitude smaller than O (1) values typically used,28�30,44,45 yet
large enough to sample a broad range of subensembles. The update
schemequickly reduced theweight factor to a value of 0.004 after 0.4
ns for the last WL biasing cycle. During the entire course of the
simulation, transition energies (in both directions) were computed
each time a transition between subensembles was attempted/
proposed, and new subensemble weights were computed from
BAR every 0.5 ns. The solutewas taken fromnoninteracting (m=0)
to fully interacting (m = 20) by first bringing the intermole-
cular LJ interaction to full strength over 15 subensembles (1e
m e 15) and then adding in intermolecular electrostatic
interactions in the final five subensembles (16 e m e 20),
for a total of 20 subensembles. For the first 15 subensembles,
the intermolecular electrostatic interactions were turned off,
and the intermolecular LJ interactions were strengthened as
λm
LJ = {0.05, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.65, 0.70, 0.75,

0.80, 0.85, 0.90, 0.95, 1.0}. Next, while the LJ intermolecular
interactions were fully restored, the intermolecular electro-
static interactions were strengthened as λm

elec = {0.2, 0.4, 0.6,
0.8, 1.0}. Care must be taken to properly decouple the
solute�solvent intermolecular interactions with Ewald sum-
mation; a detailed description of how this was done is given in
the Appendix.
The reported residual chemical potentials of the present work

are the mean value of the five independent productions runs for
each solute, and the uncertainty is taken as the bootstrap
standard error.64�66 To compute the bootstrap standard error
for each solute�solvent combination, the estimate of the che-
mical potential from each of the five production runs was taken to
be an independent data point. Next, 1000 sets containing 5 data
points each were created by randomly selecting 5 of our
independent data points, with replacement. The mean of each
set was computed, creating a bootstrap sample of 1000 estimates
of the residual chemical potential. The bootstrap standard error

was then found as the standard error of the bootstrap sample
relative to the mean of the five independent production runs for
each solute�solvent combination.

4. RESULTS AND DISCUSSION

A summary of the computed residual chemical potentials and a
comparison to experiment67 and the simulation work of Dill and
co-workers27 are provided in Figure 1 and in Table 2. The results
of the present study are in good overall agreement with the
previous simulation results, with an average absolute difference
between the computed residual chemical potentials of the
present study and Dill and co-workers27 of 0.13 kBT. If we
exclude isobutane from this calculation, which will be discussed
in further detail, the average difference decreases to 0.09 kBT,
which is the same order of magnitude of the reported uncertain-
ties. The excellent agreement of the results suggests that the
proposed method yields correct residual chemical potentials. In
all cases, an estimate of the residual chemical potential may be
obtained within a few ns of simulation time. Further time beyond
this serves only to decrease the uncertainty of the calculation.

The largest discrepancy between the present study and that of
Dill and co-workers27 is found for isobutane, corresponding to a
discrepancy of 0.53 kBT, which warrants further investigation.
While results of EE calculations are not known to be biased, a
potential source of error in the calculations may result from
a lack of configurational phase space overlap between neigh-
boring states;50,51,68,69 the degree of phase space overlap between
neighboring states is related to the relative entropy and the
energy histograms between neighboring states,50,51 and for the
case of EE, it is related to the observed visited states16,17 and
transition20 probabilities. As mentioned previously, BAR is
limited to applications in which neighboring states have at least
some phase space overlap. So long as the states have some phase
space overlap, with sufficient sampling, BAR will select an
intermediate state between the two neighboring states that is
inside the overlapping region of their respective phase spaces; the
free energy prediction from BAR is then the sum of the free
energy difference between each neighbor and the intermediate
state.47,50,51 Therefore, if there is little or no phase space overlap,
BAR will be unsuccessful, and we would expect there to be little
or no transitions between neighboring subensembles. The result
would be a relatively large uncertainty in the predicted residual
chemical potential between independent simulations stemming
from inadequate sampling.

To this end, Figure 2 shows the observed visited state and
transition probabilities for our EE simulation of isobutane. In the
bottom pane it is observed that in all cases, the forward transition
probability from subensemble m to subensemblemþ 1 is nearly
indistinguishable from the reverse transition probability to sub-
ensemble m from subensemble m þ 1. Therefore, as a result of
MC detailed balance,39 there is nearly a uniform probability of
visiting each subensemble, as shown in the top panel. In addition,
the observed transition probabilities are fairly high, between 20
and 50%, ensuring an adequate sampling of each subensemble.
As shown in Table 2 and Figure 3, the predicted free energy for
isobutane converges to a limiting value with a precision of 0.09
kBT, dismissing concerns with regards to phase space overlap.

Furthermore, in Figure 4 we can compare to the results of
Pande and co-workers7 who employed the same TIP3P water
model but used a previous version of the AMBER force field and
a different treatment of long-range electrostatic interactions.

Figure 1. Comparison of the residual chemical potential (βμres) of the
13 studied amino acid analogs (solutes) from experiment,67 computed in
this study and reference simulation results of Dill and co-workers.27
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While we would not expect quantitative agreement, for alkanes in
which the electrostatics interactions have a small contribution to
the overall free energy, we would expect qualitative agreement.
The observed trends for the alkanes in both the present study and
that of Pande and co-workers7 are consistent. Both studies
observe that the solvation free energy of methane is less than

propane and that of isobutane is less than n-butane. This
observation is contrary to the results of Dill and co-workers.27

This suggests that perhaps the uncertainty of the present results
and for those of Dill and co-workers27 may be larger than
reported.

Overall, given the good agreement between the present study
and that of Dill and co-workers,27 we next draw our attention to
evaluating the efficiency of the methodology employed in the
current study. Figures 3 and 5�7 show the convergence of eight
representative compounds from the current study. At the end of

Table 2. Summary of the Residual Chemical Potential (βμres) of the 13 Studied Amino Acid Analogs (Solutes) fromExperiment,67

Computed in This Study, and Reference Simulation Results of Dill and Co-Workers27 a

βμres

solute amino acid experiment67 this work Dill et al.27 absolute difference

methane Ala 3.25 4.09 ( 0.03 4.26 ( 0.02 0.17 ( 0.04

propane Val 3.34 4.22 ( 0.05 4.29 ( 0.03 0.07 ( 0.06

n-butane Ile 3.61 4.22 ( 0.08 4.26 ( 0.03 0.04 ( 0.08

isobutane Leu 3.82 4.07 ( 0.09 4.60 ( 0.03 0.53 ( 0.09

methanol Ser �8.49 �5.89 ( 0.04 �5.84 ( 0.02 0.05 ( 0.04

ethanol Thr �8.19 �5.73 ( 0.04 �5.79 ( 0.05 0.06 ( 0.06

toluene Phe �1.27 �1.26 ( 0.05 �1.19 ( 0.03 0.07 ( 0.06

p-cresol Tyr �10.25 �9.16 ( 0.08 �8.99 ( 0.03 0.17 ( 0.08

methanethiol Cys �2.08 �0.33 ( 0.01 �0.44 ( 0.02 0.11 ( 0.02

methylethylsulfide Met �2.48 0.51 ( 0.04 0.57 ( 0.03 0.06 ( 0.05

acetamide Asn �16.24 �14.61 ( 0.05 �14.46 ( 0.05 0.15 ( 0.07

3-methylindole Trp �9.86 �11.01 ( 0.07 �10.99 ( 0.05 0.02 ( 0.09

4-methylimidazole His �17.24 �13.26 ( 0.04 �13.40 ( 0.05 0.14 ( 0.06
aThe last column is the absolute difference of the present study relative to Dill and co-workers,27 with the uncertainty computed from propagation of
errors.

Figure 2. Summary of the observed visited states (top) and forward and
reverse transition probabilities (bottom) for the EE simulations of
isobutane as a function of subensemble m. For forward transition
probabilities, the x-axis refers to the subensemble the transition is
attempted from. For reverse transition probabilities, the x-axis refers
to the subensemble the transition is attempted to. The error bars are the
standard deviation of five independent simulations.

Figure 3. Performance of the EE method for predicting the residual
chemical potential (βμres) of n-butane and isobutane. The top panel is
the estimate of the residual chemical potential as a function of simulation
time, and the bottom pane is the boot strap standard error64�66 of the
five independent simulations as a function of simulation time.
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the 10 ns simulation, all of the systems have converged to final
residual chemical potentials (or hydration free energies) in
agreement with Dill and co-workers27 and with comparable
precision. In the BAR study of Dill and co-workers,27 indepen-
dent simulations needed to be performed in each subensemble.
Throughout the course of each simulation, transitions energies
were periodically collected, and the free energy difference was

computed postsimulation using all of the collected data. While
the present study utilized 5 independent, 10 ns simulations, the
work of Dill and co-workers27 required a 5 ns simulation at each
of the 20 coupling strengths used. Therefore, the current study
required half of the total simulation time, reducing the computa-
tional time by a factor of 2. Both studies used the same LJ scaling

Figure 4. Comparison of the computed residual chemical potential
(βμres) of the four alkane molecules from Pande and co-workers,7 this
study, and Dill and co-workers.27 Pande and co-workers7 employed the
same TIP3P water model but used a previous version of the AMBER
force field and a different treatment of long-range electrostatic interactions.

Figure 5. Performance of the EE method for predicting the residual
chemical potential (βμres) of methane and propane. The top panel is the
estimate of the residual chemical potential as a function of simulation
time, and the bottom panel is the boot strap standard error64�66 of the
five independent simulations as a function of simulation time.

Figure 6. Performance of the EE method for predicting the residual
chemical potential (βμres) of methanethiol and methylethylsulfide. The
top panel is the estimate of the residual chemical potential as a function
of simulation time, and the bottom panel is the boot strap standard
error64�66 of the five independent simulations as a function of
simulation time.

Figure 7. Performance of the EE method for predicting the residual
chemical potential (βμres) of 4-methylimidazole and acetamide. The top
panel is the estimate of the residual chemical potential as a function of
simulation time, and the bottom panel is the boot strap standard
error64�66 of the five independent simulations as a function of
simulation time.
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and number of LJ subensembles, and both used the same linear,
evenly spaced electrostatic scaling scheme, but the present study
used an extra electrostatic subensemble. With the close agree-
ment of the scaling and staging schemes, we will focus our
attention on the employed methods themselves. Given the
similarities of the two methods, namely both sampled configura-
tional space with MD and employed similar BAR algorithms to
calculate the free energy, a natural question arises: What is the
source of the apparent difference in efficiencies of the two
studies? The answer to this question gives insight into the clear
advantages of employing EE in a MD framework.

First, equilibrium MD studies using BAR are limited by the
configurational correlation time of the system. On the other
hand, in the present study, subensemble transitions are periodi-
cally attempted. When a transition is accepted, the system begins
sampling in a different subensemble. This transitioning reduces
the configurational correlation time of the system and increases
the rate of phase space sampling, akin to parallel tempering
(or replica exchange) simulations.70�72

Second, in order for BAR to be successful, all of the important
phase space of the target and reference subensemble need to be
sampled.15,47,50,51,68,69 In addition to stratification, the use of an
importance weighted14 MC sampling procedure39 allows the
system to bridge free energy barriers separating neighboring
subensembles. This is accomplished by weighting the subensem-
ble transition acceptance probabilities so as to artificially enhance
the occurrence of important configurations of intrinsically low
probability. Put differently, within a given subensemble, there are
likely important regions of phase space of low probability of
being observed or separated from other important regions by
large energetic barriers. If we again draw analogy to parallel
tempering (or replica exchange),70�72 in subensembles in which
we sample from a different Hamiltonian, these states may be
sampled with a much greater probability. By importance weight-
ing the transition acceptance probabilities, the likelihood of
propagating these configurations is enhanced.

In addition to the theoretical advantages mentioned, although
not utilized in the present study, the EE method with BAR is
readily amenable to parallel processing. The present study
utilized 5 independent 10 ns simulations for a total of 50 ns of
simulation time. The MD BAR method of Dill and co-workers27

required 20 independent 5 ns simulations or 100 ns of total
simulation time. As all of the MD BAR simulations are indepen-
dent from each other, with sufficient computational resources,
they could be performed faster in real time using multiple
processors. However, for the EE method the range of suben-
sembles studied may be broken into various overlapping win-
dows, in which an independent simulation may be conducted.
Within each window the relevant free energy change may be
calculated, and then all of the results may be stitched together by
enforcing that the free energy be a continuous function of
subensemble.73,74 With an intelligent choice of windowing, the
wall clock time necessary to calculate the residual chemical
potential with EE may be readily decreased.25

Another advantage of the EEmethod is that it requires a single
simulation whose convergence can be monitored during the
simulation. Once the desired level of uncertainty is reached,
the simulations may be terminated. For example, many of the
simulations of the present study could have been stopped after 5
ns, and the precision would not have suffered (see Figures 3 and
5�7). The fact that no postprocessing is required to obtain a
solvation free energy makes the method particularly easy to use.

5. CONCLUSION

Results have been presented for a refined expanded ensemble16�19

algorithm that combines the flat histogram method of Wang and
Landau28�30 with the Bennett’s acceptance ratio methodo-
logy36,37,42 in a MD framework. The methodology was inspired
by our previous success25 with a combined transition-matrix
Monte Carlo31�35 and Wang�Landau approach. Use of the
Bennett’s acceptance ratio methodology is advantageous as a
result of the ability to implement themethodology in either aMC
or MD framework. The method was validated by computing the
residual chemical potential of 13 amino acid analogs and by
comparing to reference simulation data.27 Overall agreement is
good, with the methodology of the present study reaching a
comparable precision in half of the total simulation time of the
previous study.27 The apparent difference in the efficiencies is a
result of the inherent advantages of the expanded ensemble
method. The proposed method creates an improved decorrela-
tion of simulation data and enhances the sampling of the
important regions of the configurational phase space of each
subensembles. Furthermore, the present method enables the
solvation free energy to be computed from a single simulation
with no postprocessing. The encouraging results of the present
study suggest consideration of the employed methodology in
future studies requiring free energy calculations. Moreover, the
proposed methodology is highly adaptable and may be used in
any type of multicanonical framework.

’APPENDIX

Ewald Summationwith Expanded Ensemble.While the use
of the Ewald sum for electrostatic interactions in molecular sim-
ulations has been described extensively in the literature,39,46,75,76

we will briefly overview the necessary implementation when
decoupling electrostatic interactions of a solute molecule using
the EEmethod. With the EEmethod, modifications to the stand-
ard Ewald sum are necessary to ensure that electrostatic interac-
tions are properly decoupled such that solute�solvent interac-
tions are treated with scaled charges of the solute (corresponding
to a given coupling strength), while intramolecular interactions
are treated with unaltered charge interactions.
For charge neutral systems that are periodic in three dimen-

sions, the electrostatic potential energy, Uelect, may be divided
into four parts with the Ewald summation:

Uelect ¼ 1
4πε0

½Ureal þUrecip þUintra � self þUpoint � self � ð17Þ

where Ureal and Urecip are the real- and reciprocal-space terms,
respectively, and Uintra-self and Upoint-self are the intramolecular-
and point-self energies, respectively.
The real-space term is given by

Ureal ¼ 1
2 ∑

N

i¼ 1
∑†
N

j¼ 1
qiqj

erfcð ffiffiffiffi
R

p
rijÞ

rij
ð18Þ

where R is the damping parameter, and N is the total number of
charge sites. The “dagger” (†) summation indicates the exclusion
of all pairs i = j, and intramolecular interactions separated by one,
two, and three bonds. When evaluating the real-space term, all
intramolecular electrostatic interactions separated by more than
three bonds and all intermolecular electrostatic interactions
involving only solvent molecules are treated with full charges,
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and all intermolecular electrostatic interactions between the
solute and solvent are treated with scaled charges.
The general form of the reciprocal-space term is given by

Ugeneral
recip ¼ 2π

V ∑
k 6¼0

1
k2

exp � k2

4R

 ! 					∑
N

i¼ 1
qi cosðk 3 riÞ

					
2

2
4

þ
					∑
N

i¼ 1
qisinðk 3 riÞ

					
2#

ð19Þ

where ri is the position vector of site i, and k is the reciprocal
lattice vector of the periodic cell images. Regardless if scaled or
full charges are used for the solute molecule, eq 19 will be
inconsistent with the real-space term in which different charges
are used for intramolecular and intermolecular interactions. As a
result, eq 19 is extended to involve three contributions:

Urecip ¼ Uscaled
recip þUsolute, full

recip �Usolute, scaled
recip ð20Þ

where the first term Urecip
scaled is the evaluation of eq 19 using the

actual intermolecular charges of the system. That is, the charges
are full for the solvent and are scaled for the solute. To remain
consistent with the formulation of the Ewald sum, the last two
additional terms correct for different charges used for the
intramolecular and intermolecular electrostatic interactions of
the solute. Urecip

solute,full is the evaluation of eq 19 but using full
charges for the solute and performing the sine and cosine sum
over all of the charge sites of the solute molecule (not the entire
system). Similarly,Urecip

solute,scaled is the evaluation of eq 19 but using
scaled charges for the solute and performing the sine and cosine
sum over all of the charge sites of the solute molecule. These
additional two terms may be thought of as computing the
reciprocal-space term for a system containing only the solute
molecule at the same position, with both full and scaled charges.
In the absence of interactions with the solvent, the difference of
these two terms, Urecip

solute,full � Urecip
solute,scaled, gives the desired net

effect of using different intermolecular and intramolecular
charges. The necessary corrections to eq 19 may readily and
efficiently be implemented into existing reciprocal-space Ewald
subroutines with minor modifications. In addition, the extension
to applications of particle-mesh Ewald46 is straightforward.
The intramolecular-self energy is given by

Uintra-self ¼ � 1
2 ∑

M

j¼ 1
∑
Nj

k¼ 1
∑†�1
Nj

l¼ 1
qkql

erfð ffiffiffiffi
R

p
rklÞ

rkl
ð21Þ

whereM is the total number of molecules in the system, andNj is
the number of charge sites on molecule j. The “inverse dagger”
(†�1) summation indicates that the sum is only over intramole-
cular sites excluded in the real-space term of eq 18 (i.e.
intramolecular interactions separated by one, two, and three
bonds). While it is straightforward to exclude these terms in the
real-space term in the central simulation cell, they are implicitly
included in the reciprocal-space term. Equation 21 corrects the
reciprocal-space term by removing these interactions.76 Since all
intramolecular interactions use full charges, full charges are used
in eq 21.
Lastly, the point-self energy is given by

Upoint-self ¼ �
ffiffiffiffi
R
π

r
∑
N

i¼ 1
q2i ð22Þ

Similar to the intramolecular self energy, the point self energy
corrects the reciprocal space term for self interactions. That is,
interactions of a charge site with itself are straightforward to
exclude in the real-space term in the central simulation cell, but
they are implicitly included in the reciprocal-space term. There-
fore, eq 22 corrects the reciprocal-space term by removing these
interactions.
For completeness, many force fields, including those used in

the present study for the amino acid analogs, use scaled electro-
static interactions between intramolecular sites separated by
exactly three bonds to complement the dihedral potential. These
“1-4” electrostatic interactions are computed using a direct
Coulombic interaction and are hence excluded from the Ewald sum.

’ASSOCIATED CONTENT

bS Supporting Information. M.DynaMix 5.2 force field files
for the studied amino acid analogs. This material is available free
of charge via the Internet at http://pubs.acs.org/.
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ABSTRACT:Weperform a statistical and energetic analysis of atomic polarizabilities obtainedwith the LoProp approach for all atoms
in the avidin tetramer for 70 snapshots frommolecular dynamics simulations with seven different biotin analogues, and from the crystal
structure of the photosynthetic reaction center (in total 560 698 individual polarizabilities). Dynamic effects give a variation of the
polarizabilities of 0.09 Å3 on average. Atoms at different positions in the sequence show a variation of 0.14 Å3 on average, caused by the
conformational dependence of the polarizabilities. This variation gives errors of 2 and 1 kJ/mol for relative conformational and ligand-
binding induction energies. Averaged elementwise or atom-type polarizabilities give larger errors, e.g., 9 and 7 kJ/mol, respectively, for
the relative conformational energies. Therefore, we recommend that polarizabilities should be assigned atomwise (i.e., individual
polarizabilities for each atom in all residues), in the same way as for charges. We provide such a set of extensively averaged
polarizabilities (xAvPol) for all atoms in avidin and the photosynthetic reaction center, applicable at the B3LYP/aug-cc-pVTZ level,
which is converged with respect to the basis-set limit.

’ INTRODUCTION

During the latest decades, molecular simulations have become
a powerful alternative and complement to experiments to obtain
information about the structure and function of macromolecules.
Such simulations are mainly based on the molecular mechanics
(MM) approach, employing empirical force fields.1 One of the
most crucial issues in these force fields is the treatment of
electrostatics. The great majority of such MM force fields for
macromolecules employ a simple Coulomb interaction between
atom-centered fixed partial charges. The atomic charges are
typically obtained from quantum mechanics (QM) calculations,
by fitting them to reproduce either theQM electrostatic potential
or intermolecular interaction energies.2�5

It has long been recognized that this provides a quite crude
description of the electrostatics. In particular, induction effects are
completely ignored or treated in an implicit average sense, although
it is well-known that polarization typically constitutes 6�30% of
the electrostatic interaction energy.6�11 Consequently, there has
been great interest in incorporating induction effects in the MM
force field,11�15 e.g., by using fluctuating charges,16,17 induced
dipoles,18�20 or Drude oscillators.21�23 The first polarizable force
field appeared as early as in the mid-1970s,19 and specialized and
accurate force fields such as SIBFA, EFP, and NEMO also early
employed polarizabilities (and higher-order multipoles).13,24,25

During the past decade, polarized variants of the more widely used
macromolecular force fields have started to appear, e.g., Amber02,
PFF, and Amoeba,11,26�28 all three of which are based on atomic
isotropic dipole polarizabilities.

Naturally, the accuracy of polarizable force fields depends on
the accuracy of the atomic polarizabilities employed. As for
atomic partial charges,2 atomic polarizabilities are not observa-
bles, meaning that there are no reference values that could be

obtained from experiments or QM calculations.11 Instead, atom-
ic polarizabilities have to be determined by some (arbitrary)
method that is optimized in a specific way. Several methods to
obtain distributed polarizability from QM calculations have been
suggested.11 For example, the atomic polarizabilities can be
obtained by partitioning molecular polarizabilities, either in real
space (e.g., the atoms-in-molecules approach29) or in terms of
the basis set.30,31Moreover, there are also several ways to apply the
perturbing field.32�34 Alternatively, the polarizabilities can be
determined by fitting to a property calculated by QM methods,
e.g., the molecular polarizabilities or induction energy.18,35�42

There are several sets of atomic polarizabilities available. Some
of them are listed in Table 1.18�20,26�28,35,43�45 Apparently,
there is little agreement in the values used or how the polariz-
abilities should be assigned. Thole and van Duijnen have argued
that good reproduction of molecular polarizabilities can be
obtained by a single isotropic polarizability for each element,20,46

and Warshel simply uses 0.5 Å3 for hydrogen atoms and 1 Å3 for
all other atoms.19 Other force fields use 8�15 atom types, with
one to four different polarizabilities for each element for the
normal amino acids. This is in sharp contrast to atomic charges,
for which most general-purpose macromolecular force fields
today employ individual charges on each distinct (by symmetry)
atom in each amino acid. In fact, Woods and co-workers have
shown that improved accuracy is obtained using specific atomic
polarizabilities, rather than polarizabilities determined by the
atom type.42 They also tested the conformational dependence of
the fitted polarizabilities and showed that it was quite small,∼1%.

Received: December 13, 2010
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In this paper, we address these issues in a more systematic way.
In previous investigations of the influence of the protein electro-
statics on excitation and ligand-binding energies, we have calcu-
lated polarizabilities for all atoms in several proteins with QM
calculations,47,48 using the LoProp approach.34 Here, we analyze
those data, collecting statistics over the polarizabilities of each
atom in the sequence. Thereby, we can address questions such as
the following: How large is the conformational dependence of
atomic polarizabilities? How are polarizabilities best assigned: by
element, by atom type, or by atom? Can transferable polarizabil-
ities be obtained by simply averaging over all calculated values?

’METHODS

In this paper, we analyze polarizabilities calculated in two studies,
viz., a study of the binding affinity of seven biotin analogues to the
protein avidin48 and new calculations for the photosynthetic
reaction center (PRC) from Rhodobacter sphaeroides. Both these
studies employed a multicenter�multipole expansion up to quad-
rupoles and anisotropic polarizabilities, obtained with the LoProp
approach34 using the Molcas software.49 The LoProp method has
been shown to be better than other related methods to calculate
polarizabilities.50 The calculations were performed at the density
functional B3LYP51 level, using either the 6-31G*,52 aug-cc-pVDZ,
aug-cc-pVTZ, or aug-cc-pVQZ basis sets.53 These basis sets are of
sizes smaller than, similar to, larger than, and much larger than,
respectively, the popular Sadlej basis set designed for the calculation
of polarizabilities.54 Each basis set was turned into the atomic
natural orbital form (as required by the LoProp procedure) by a
linear transformation that does not affect the orbital optimization.

The properties were calculated for the whole protein by dividing it
into the individual amino acid residues, which were capped with
CH3CO� and �NHCH3 groups (dipeptides). The effects of the
capping groups were removed by calculating the properties also of
the overlapping CH3CONHCH3 fragments and subtracting them

from the properties of the corresponding dipeptides—the molecular
fractionation with conjugate caps approach,55 which has been
shown to give errors of 1 kJ/mol or less.10 A separate calculation
was performed on every residue in the structure, with the actual
geometry obtained either from the crystal structure (PRC) or from
10 snapshots from a molecular dynamics (MD) simulation with the
Amber02 force field (avidin56).

In the standard LoProp approach, anisotropic polarizabilities are
obtained both for atoms and for bond isocenters. To facilitate the
present comparison, we restricted this study to isotropic polariz-
abilities, because this is the form used in the Amber02, PFF, and
Amoeba force fields. The isotropic polarizabilities were obtained as
the average of the three diagonal elements of the anisotropic tensor.
Moreover, only atomic polarizabilities were considered by parti-
tioning the bond polarizabilities equally on the two bonded atoms.

Interaction energieswere calculatedwith theAmber10 software,57

using Amber exclusion rules, i.e., that polarization between atoms
separated by one or two bonds is ignored, whereas for atoms
separated by three bonds, the electric field was scaled by a factor
of 1.2.26 The induction energy was calculated iteratively until succes-
sive estimates of the induced dipoles agreed within 0.0001D, using a
second-order extrapolation scheme (indmeth=1).

The exclusion rules are important, because they influence the
molecular polarizability resulting from a given set of atomic
polarizabilities. Therefore, polarizabilities derived with a specific
set of rules are in principle not comparable to those derived with
other rules, and they cannot be directly transferred. Nevertheless,
such transferability has sometimes been assumed, as in the
development of the Amber 2002 force field,26 in which Applequist
polarizabilities, derived using coupling between all atoms, were
adopted into themuchmore restricted coupling scheme of Amber.
One can therefore expect that these polarizabilities are too small.

The same problem also occurs in this investigation, because
the LoProp polarizabilities add up to the molecular polarizability

Table 1. Comparison of 10 Different Sets of Atomic Polarizabilities (Å3)

atom Vogel43 Applequist18 Thole20 Dykstra35 Enzymix19 Charmm45 a Amber0226 b Amoeba28 c PFF27 d Amber0911

HC alkyl 0.514 0.00 0.5 0.044 0.135 0.496 0.25 0.443

HC aromatic 0.407 0.135 0.514 0.00 0.5 0.10 0.167 0.800 0.39 0.443

HO alcohol 0.405 0.135 0.514 0.00 0.5 0.044 0.135 0.496 0.22 0.443

HN amides 0.161 0.514 0.00 0.5 0.044 0.161 0.496 0.24 0.443

HN amines 0.514 0.00 0.5 0.044 0.135 0.496 0.24 0.443

HN in RNH3
þ 0.514 0.00 0.5 0.044 0.135 0.496 0.24 0.443

C alkyl 1.027 0.878 1.405 1.87 1.0 0.98 0.878 1.334 1.22 0.920

C aromatic 1.405 1.61 1.0 2.07 0.360 1.334 1.49 1.298

C amide 1.027 0.616 1.405 1.88 1.0 1.65 0.616 1.334 0.83 1.298

C in COO� 1.405 1.88 1.0 1.65 0.616 1.334 0.82 1.298

N amine 1.105 1.64 1.0 1.10 0.530 1.073 1.33 0.934

N aromatic 1.105 1.29 1.0 1.10 0.530 1.073 1.42 0.934

N amide 0.530 1.105 1.29 1.0 1.10 0.530 1.073 1.15 0.934

OH aliphatic alcohol 0.604 0.465 0.862 0.75 1.0 0.84 0.465 0.834 0.77 0.606

OH aromatic alcohol 0.862 0.75 1.0 0.84 0.465 0.873 0.77 0.593

O backbone amide 0.841 0.434 0.862 0.25 1.0 0.84 0.434 0.837 0.91 0.593

O side-chain amide 0.862 0.25 1.0 0.84 0.434 0.834 0.91 0.593

O in COO� 0.862 0.25 1.0 2.14 0.434 0.837 0.97 0.593

S 1.0 0.34 2.900 3.300 2.872 3.183
a Listed data for CHARMM are from an old but complete listing.13 Newer developments for alcohols, alkanes, and amides7�9 have used either slightly
modified Applequist parameters18 or the Thole parameters.20 bData from the parm99.dat file in the Amber10 distribution. cData from the amoebapro.
prm files in the Amber10 distribution. dData from Table 8 in ref 27.
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and thus should not be coupled within the molecule used to
calculate them, in our case a protein residue. Thus, when they are
used with the Amber exclusion rules or numerically compared to
Amber polarizabilities, they should in principle be scaled down to
reproduce the (isotropic) molecular polarizability. To investigate
the magnitude of this effect, we assumed a uniform scaling over all
atoms in a molecule and calculated the required scale factor for
each of the 991 molecules used to compute the LoProp polariz-
abilities for an avidin snapshot. On average, this factor was 0.987,
with a standard deviation of 0.007. Because the influence of such
scaling on the results would be negligible, we did not modify the
polarizabilities. It should also be noted that the choice of exclusion
rules also has an effect on the polarization caused by the static
charges. However, in the Amber polarizable force field, the charges
are derived by taking the statically induced dipoles into account so
that the major part of this effect is canceled. Because of this
connection, we did not specifically study this issue.

We studied the binding of the seven biotin analogues
(Btn1�Btn7) in Figure 1 to avidin. The setup of the molecular
dynamics simulations has been described before.10,56 We used 10
snapshots (sampled every 20 ps) for each analogue taken from
this investigation, performed by the polarizable Amber 2002
force field11,26 (the 02ohp simulation in ref 56).

’RESULT AND DISCUSSION

Polarizabilities. First, we studied the conformational depen-
dence of the polarizabilities calculated with the LoProp
approach34 for all atoms in 10 snapshots from MD simulations

of avidin bound to the seven different biotin analogues in Figure 1
using the B3LYP/6-31G* method. The LoProp polarizabilities
range from 0.05 to 2.45 Å3 (H in Phe-70 to SG in Cyx-452; Cyx
denotes Cys in cystine linkages). For individual atoms, the range
of the polarizability (i.e., themaximumminus theminimum value
of the polarizability of the same atom) among the 70 snapshots
varies from 0.008 to 0.35 Å3 (for HH2 in Trp-219 and CD2 in
Trp-68; average 0.09 Å3). This illustrates the expected variation
of the polarizabilities caused by dynamic effects. There is little
similarity between the calculated polarizabilities and those in the
Amber02 force field: In fact, for 6796 of the 7708 protein atoms

Figure 1. The seven biotin analogues used in this study. (a) Btn1 (biotin); (b�g) Btn2�Btn7.

Table 2. Polarizabilities Calculated for Each Element in the
70 Snapshots of Avidin (Only Protein Atoms) (Å3)a

LoProp Amber02

element no. Aver Stdev Min Max Range Min Max

H 267 820 0.22 0.04 0.05 0.33 0.27 0.14 0.17

C 169 400 1.13 0.13 0.82 1.59 0.77 0.36 0.88

N 48 160 0.91 0.13 0.49 1.24 0.75 0.53 0.53

O 53 060 0.54 0.03 0.41 0.68 0.27 0.43 0.47

S 1 120 2.16 0.13 1.88 2.45 0.57 2.90 2.90
a no. is the number of individual polarizabilities obtained for each
element. Aver, Stdev, Min, Max, and Range are the average, standard
deviation, minimum, and maximum values for each element. Range is
Max �Min. For comparison, the Min and Max values of the Amber02
polarizabilities are also included.
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(88%), the Amber value is outside the range of the calculated
polarizabilities in the various snapshots.
An interesting question is how polarizabilities are best assigned

to atoms in a protein. Are they the same for each element,
for each atom type, or should they be assigned atomwise, like
point charges? Statistics for elemental polarizabilities are given in
Table 2. It can be seen that the LoProp polarizabilities of all
elements show a quite large variation, ranging from 0.27 Å3 for H
and O to ∼0.75 Å3 for N and C. Thus, it does not seem to be a

good idea to assign polarizabilities only on the basis of the element.
For all elements, except sulfur, the averagedLoProp polarizabilities
are higher than the corresponding Amber values. For H, N, and O,
the Amber values are within the calculated range, but for C and S,
at least some of the Amber values are outside the range of the
LoProp values. The same applies to all the other sets of polariz-
abilities in Table 1, although with different elements.
The corresponding statistics for the Amber02 atom types are

shown in Tables 3 and 4. Amber02 employs 27 atom types for a
normal protein, which are all included and described in Table 4.
However, most of the Amber02 atom types of the same element
use the same polarizabilities. In fact, there are only 10 distinct
polarizabilities in Amber (taken from Applequist;18 three for C
and H, two for O, and one for N and S). These are shown in
Table 3. It can be seen that the LoProp polarizabilities still show
large ranges, e.g., up to 0.77 Å3 for carbon, and 0.57 and 0.75 Å3

for S and N. Hydrogen has the lowest ranges (0.10�0.23 Å3),
followed by oxygen (0.23�0.27 Å3). There is a fair correlation
between the average calculated values and the Amber values
(r2 = 0.78).
The corresponding statistics for all the 27 Amber02 atom

types are given in Table 4. It can be seen that the range is still
large for most atom types, up to 0.77 Å3 for CT (sp3 carbon). In
fact, the range is below 0.1 Å3 only for three of the Amber atom
types, H4, H5, and HP (explained in Table 3). For 20 of the 27
atom types, the Amber polarizabilities are outside the range of
the calculated ones. In many cases, it is obvious that the Amber

Table 3. Statistics for LoProp Polarizabilities over the Am-
ber02 Atom Types That Have Distinct Polarizabilities (Å3)a

atom type no. Aver Stdev Min Max Range Amber

C 41 020 1.15 0.06 0.94 1.39 0.45 0.62
CT 103 040 1.12 0.15 0.82 1.59 0.77 0.88
C other 25 340 1.17 0.09 0.88 1.52 0.64 0.36
H 59 920 0.17 0.02 0.05 0.23 0.18 0.16
HA, H4, H5 17 080 0.28 0.02 0.23 0.33 0.10 0.17
H other 190 820 0.24 0.03 0.09 0.32 0.23 0.14
N 48 160 0.91 0.13 0.49 1.24 0.75 0.53
O, O2 44 380 0.54 0.03 0.41 0.68 0.27 0.43
OH 8 680 0.53 0.03 0.45 0.68 0.23 0.47
S 1 120 2.16 0.13 1.88 2.45 0.57 2.90

aThe columns have the same meaning as in Table 2. The atom types are
explained in Table 4.

Table 4. Statistics for the LoProp Polarizabilities over All the Amber02 Atom Types for Proteins (Å3)a

atom type no. Aver Stdev Min Max Range Amber description

C 41 020 1.15 0.06 0.94 1.39 0.45 0.62 sp2 C in carbonyl groups

CA 20 020 1.15 0.08 0.98 1.51 0.53 0.36 aromatic C

CB 1 120 1.25 0.06 1.01 1.47 0.46 0.36 CD2 in Trp

CC 280 1.19 0.03 1.11 1.26 0.15 0.36 CG in His

CN 1 120 1.27 0.05 1.10 1.41 0.31 0.36 CE2 in Trp

CR 280 0.96 0.03 0.89 1.03 0.14 0.36 CE1 in His

CT 103 040 1.12 0.15 0.82 1.59 0.77 0.88 sp3 aliphatic C

CV 280 0.97 0.04 0.88 1.07 0.19 0.36 CD2 in Hid

CW 1 120 1.15 0.04 1.02 1.25 0.23 0.36 CD2 in Hie and Hip, CD1 in Trp

C* 1 120 1.34 0.05 1.19 1.52 0.34 0.36 CG in Trp

H 59 920 0.17 0.02 0.05 0.23 0.18 0.16 H bound to N

H1 57 540 0.23 0.03 0.15 0.30 0.15 0.14 aliphatic H bound to C with one electron-withdrawing group

H4 1 400 0.28 0.02 0.23 0.30 0.07 0.17 HD1 in Trp, HD2 in Hid

H5 280 0.29 0.01 0.28 0.30 0.03 0.17 HE1 in Hid

HA 15 400 0.28 0.02 0.23 0.33 0.10 0.17 aromatic H

HC 119 840 0.25 0.02 0.18 0.32 0.13 0.14 aliphatic H bound to C without electron-withdrawing groups

HO 8 680 0.16 0.02 0.09 0.21 0.12 0.14 H in hydroxyl groups

HP 4 760 0.22 0.01 0.17 0.27 0.09 0.14 HE in Lys

N 37 660 0.96 0.09 0.64 1.24 0.61 0.53 sp2 N in amide groups

N2 6 300 0.74 0.12 0.57 1.02 0.44 0.53 NE and NH in Arg

N3 2 520 0.64 0.02 0.49 0.70 0.21 0.53 NZ in Lys

NA 1 400 0.94 0.07 0.76 1.17 0.41 0.53 protonated N in aromatic rings

NB 280 0.87 0.04 0.79 0.97 0.18 0.53 nonprotonated N in aromatic rings

O 37 660 0.54 0.03 0.41 0.64 0.23 0.43 O in carbonyl groups

O2 6 720 0.58 0.04 0.42 0.68 0.26 0.43 O in carboxyl groups

OH 8 680 0.53 0.03 0.45 0.68 0.23 0.47 O in hydroxyl group

S 1 120 2.16 0.13 1.88 2.45 0.57 2.90 S
aThe columns have the same meaning as in Table 2.
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atom types still are too crude to give accurate and transferable
polarizabilities. This is clearly illustrated for CA atoms of Gly
and Asp (which share the same Amber atom type), shown in
Figure 2, where the frequencies of the LoProp polarizabilities
are shown for the 70 snapshots and the 44 and 22 atoms of each
type, respectively. It is obvious that the two distributions are
distinct and essentially nonoverlapping, so that different polar-
izabilities are appropriate for the CA atom in these two
amino acids.
Finally, we calculated the average of the polarizabilities for the

same atom in the same residue anywhere in the sequence and
over the 70 snapshots. This suppressed some of the variation.
Now, the average range was 0.14 Å3. 229 of the 388 distinct
atoms (59%) showed a range of less than 0.15 Å3 and only 28
atoms showed a range over 0.3 Å3, with CD2 of Trp showing the
largest range (0.46 Å3). Other atoms with large ranges are always
carbon and nitrogen atoms, as well as the two sulfur atoms. These
are also the atoms with the highest polarizabilities. In fact, there is
a good correlation between the size of the polarizabilities and the
range (r2 = 0.76), as is shown in Figure 3. This shows that there is
a significant conformational dependence of the polarizabilities
(23% on average), much larger than for small model compounds
(1%).42 In fact, 70% of the polarizabilities of all possible pairs of
atoms from the same residue at different places in the sequence
were statistically different at the 95% level according to a simple
t test.
The largest polarizabilities are those of the two S atoms in Cys

and Met (2.27 and 2.04 Å3). Next largest are those of some
carbon atoms, typically CA atoms in various residues, but also
some CB and CG atoms (up to 1.39 Å3 for CA in Asp). The

smallest C polarizability is that of the CG atoms of Val (0.90 Å3).
The largest nitrogen polarizability is that of the backbone amide
in Pro (1.14 Å3), and the smallest one is that of the side-chain NZ
of Lys (0.62 Å3). The largest oxygen polarizability is that of the
OH group in Tyr (0.64 Å3). The smallest one is that of the amide
backbone O of Cyx (0.43 Å3). The hydrogen polarizabilities
are well separated from those of the other elements. The largest
one is that of HH2 in Trp (0.32 Å3), and the smallest is that of the
amide backbone H of Phe (0.16 Å3).
There are several obvious groups of the calculated polarizabilities.

For O, they are distinct and not overlapping: hydroxyl and back-
bone carbonyl groups (0.50�0.55 Å3), side-chain carbonyl groups
and all carboxyl groups (0.56�0.60 Å3), and the hydroxyl group of
Tyr (0.64 Å3). The same applies to N atoms, although the ranges
are larger:N in Lys side chains and inNHof Arg (0.62�0.69Å3),N
in side-chain amides (0.71 Å3), N inHis andNE in Arg (0.86�0.91
Å3), N in the backbone amides andNE in Trp (0.84�1.06 Å3), and
N in Pro (1.14 Å3). However, for the hydrogen atoms, the ranges
are large and overlapping: H in amide and NH3

þ groups
(0.14�0.18 Å3), H in hydroxyl groups (0.16�0.17 Å3), H in
side-chain amide groups (0.18�0.22 Å3), HC with electron-with-
drawing neighbors (0.19�0.26 Å3), H in aromatic groups
(0.26�0.32 Å3), and other HC (0.22�0.28 Å3).
Finally, for carbon atoms, it becomes even harder to find natural

groups: methyl groups, as well as CB and CD in Pro and CE1 in
His have 0.90�0.96Å3, CD2 inHis, CD inArg, andCGandCD in
Lys have 0.97�1.06 Å3, C in side-chain carbonyl groups and all
carboxyl groups have 1.04�1.13 Å3, C in backbone carbonyl
groups, as well as CD2 in Hie and Hip, and CD1 in Trp give
1.10�1.20 Å3. However, the remaining aliphatic and aromatic C

Figure 2. Frequency plot for the LoProp polarizabilities (Å3) of the CA atom in Gly and Asp in avidin (3080 and 1400 individual polarizabilities,
respectively).
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atoms still give large and overlapping ranges (1.03�1.39 and
1.07�1.34 Å3, respectively), without any obvious grouping.
Figure 4 shows the correlation between the atomic polarizabilities

and the Amber polarizabilities. It can be seen that there is some
correlation (r2 = 0.72), but there is room for significant improvement,
in particular for the carbon, nitrogen, and sulfur atoms. Apparently,
the polarizabilities of the atoms are very sensitive to their neighboring
atoms in a way that is hard to describe without introducing verymany
atom types. Therefore, we suggest that, for accurate results, it is better
to assign separate polarizabilities to each atom in every amino acid,
rather than using atom types, in exactly the same way as done for the
charges in most force fields, including Amber. In analogy with the
extensively averaged electrostatic potential (xAvESP) charges ob-
tained in a similar way,58,59 we call these averaged LoProp atomic
polarizabilities from avidin xAvPol1 in the following and they are
provided in the Supporting Information, Table S1.
Basis-Set Dependence. It is well-known that calculated

polarizabilities are sensitive to the specific electronic-structure
method and the one-electron basis sets.60 Owing to the presence
of the electric-dipole operator in the second-order perturbation
theory expression for the dipole�dipole polarizability, use of
diffuse basis functions in accurate calculations of polarizabilities is
usually of great importance. In the avidin calculations, we have
used the B3LYP density functional combined with the middle-
sized 6-31G* basis set. In order to check the reproducibility of
these results, we need to ensure that polarizabilities calculated
with othermethods are not widely different. Fortunately, we have
also polarizabilities calculated at the B3LYP/aug-cc-pVTZ level
for one snapshot of two of the biotin analogues (Btn1 and Btn7;

the results for the two ligands are very similar). Therefore, we can
make a direct comparison of the polarizabilities obtained with
this more accurate but much more expensive method. The
polarizabilities calculated with the two methods differ by 0.12
Å3 on average, with the larger basis set giving larger polarizabil-
ities (only for ∼5% of the atoms does the calculation with the
smaller basis set give larger polarizabilities, and only by up to 0.04
Å3). As expected, the largest differences are obtained for the
negatively charged carboxylate groups and for the sulfur atoms:
The difference is 0.61 Å3 for SD in Met, 0.44 Å3 for SG in Cyx,
0.48�0.55 Å3 for the carboxylate O atoms, and 0.42�0.51 Å3 for
the carboxylate C atoms (with slight differences between Asp,
Glu, and the carboxy terminals). Other atoms with large differ-
ences are OE1 of Gln (0.31 Å3), CE1 and NE2 of Hid (0.29 Å3),
OD1 of Asn, and CH2 and CZ3 of Trp (0.28 Å3).
Again, there is a significant variation between the various atoms,

which is impossible to describe elementwise and also hard to
describe by atom types. Instead, it is best described by atomic
polarizabilities. Then, the differences are highly reproducible: Only
three atomic polarizabilities give differences over 0.01 Å3 between
the Btn1 and Btn7 simulations (SD in Met, OD1 in Asp, and C in
the carboxy terminal, with differences of 0.04, 0.02, and 0.02 Å3,
respectively). Thus, the effect of the basis set is quite small and
highly consistent and therefore the polarizabilities can quite easily
be extrapolated to the larger basis set. This will increase the
polarizabilities for all except five atoms (CA in Lys and Arg, CB
in Ile andVal, andCG inLeu). Therefore, the difference toward the
Amber polarizabilities will increase, except for the two S atoms,

Figure 3. Correlation between the average size of the LoProp atomic polarizabilities and their range (both in units of Å3). The points are coded
according to the element: H, green squares; C, black diamonds; N, blue right-pointing triangles; O, red up triangles; S, yellow double triangles.
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which become similar with the larger basis set, 2.65 and 2.67 Å3, for
SD in Met and SG in Cyx, respectively (2.9 Å3 in Amber).
To further study the basis-set dependence of the polarizabilities,

we performed some additional calculations with the aug-cc-pVDZ,
aug-cc-pVTZ, and aug-cc-pVQZ basis sets (still with the B3LYP
method) for the groups that showed the largest dependence with
respect to the basis set: Cys, Cyx,Met, Asp, and a carboxy terminal.
The results show that the polarizabilities are reasonably converged
at the aug-cc-pVTZ level: The polarizabilities calculated at the aug-
cc-pVTZ and aug-cc-pVQZ differ by only 0.02 Å3 on average, with
a maximum difference of 0.09 Å3 for SD in Met (the polarizability
decreases when the basis set is increased). The SG atoms in Cys
and Cyx also show rather large differences, 0.04�0.08 Å3, whereas
the polarizabilities of the carboxylate O atom change by only
0.03 Å3 (but those of the carboxylate C atom change by 0.05 Å3).
Besides these atoms, the largest change is 0.04 Å3 for some
carbonyl O atoms. In fact, the polarizabilities are fairly converged
already at the aug-cc-pVDZ level, with average and maximum
differences of 0.03 and 0.15 Å3 (again SD of Met gives the largest
change) toward the aug-cc-pVQZ data. This shows that it is
probably better to calculate the polarizabilities with the aug-cc-
pVDZ or Sadlej basis set than with 6-31G*.
On the other hand, it is normally assumed that polarizabilities

in the condensed phase are lower than those calculated in a
vacuum,27,61,62 e.g., by 7�9% for water. Therefore, the Friesner
group uses a basis set without diffuse functions (cc-pVTZ-f63) for
the calculation of polarizabilities, whereas MacKerell and co-
workers scale down polarizabilities by a factor of 0.724.62

However, the primary aim of this paper is not to establish a

proper level to calculate polarizabilities, but rather to quantify the
extent and effect of conformational dependence of polarizabil-
ities in proteins.
Different Proteins. Next, we performed the same analysis for

another protein, viz., the photosynthetic reaction center from
Rhodobacter sphaeroides. We calculated the LoProp isotropic atom-
centered polarizabilities for each atom (in total 12 818), but only
for a single structure (crystal structure with added hydrogen
atoms). From these, we calculated atomic polarizabilities by
averaging over all residues of each type in the protein (xAvPol2;
also included in Table S1 in the Supporting Information). For the
325 atoms that are common to avidin, the average difference
between the two sets is only 0.02 Å3, indicating that the LoProp
atomic polarizabilities are remarkably transferable between differ-
ent proteins. In particular, the largest differences (up to 0.13 Å3)
were observed for C and N atoms in Hid and Tyr residues, for
which there is only one occurrence in the avidin monomer,
showing that the deviation is mainly statistical in the nature (but
it also indicates that there is a significant conformational depen-
dence of the polarizabilities).
Finally, we constructed a set of atomic polarizabilities by

averaging over the two proteins, weighting the average after
the number of residues of each type in the monomer of each
protein. For example, there are 79 Ala residues in PRC and four
in the avidin monomer, so we summed the polarizability from
PRC multiplied by 79 and that of avidin multiplied by 4 and
divided the sum by 83. Note, however, that this weighting of the
average has a maximum effect of 0.06 Å3, so it is of little
importance. This averaged set of atomic polarizabilities will be

Figure 4. Comparison between the atomic LoProp and the Amber polarizabilities (both in units of Å3). The points are coded according to the element:
H, green squares; C, black diamonds; N, blue right-pointing triangles; O, red up triangles; S, yellow double triangles. The line is x = y.
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called “xAvPol3” in the following. We also constructed a fourth
set of polarizabilities by extrapolating the xAvPol3 polarizabilities
to the aug-cc-pVTZ basis set with the atomic correction factors
obtained in the previous section. The resulting set, xAvPol4, is
also included in Table S1 in the Supporting Information.
Induction Energies. Up to now, we have only discussed

the actual values of the polarizabilities. To put these into a more
interesting perspective, we studied how these differences in the
polarizabilities affect electrostatic interaction energies. Therefore, we
have calculated three types of energies for avidin and its complexes
with the seven biotin analogues in Figure 1. We tested 13 different
sets of polarizabilities, viz., the original LoProp polarizabilities for
avidin (LoProp), polarizabilities averaged over the 10 snapshots
(Aver), xAvPol1, xAvPol2, xAvPol3, xAvPol4, the average elemental
polarizabilities in Table 2 (Element), the averaged polarizabilities for
the 27 Amber atom types in Table 4 (Type), and the Amber02,
Amber09, Charmm, Amoeba, and Enzymix polarizabilities listed in
Table 1. The polarizabilities are briefly described in Table 5. All the
other MM parameters, including the atomic charges, were identical
in the calculations. The calculations were performed with the Amber
software57 and the Amber02 charges.26

First, we studied the total induction energy within the whole
avidin tetramer without any ligand and water molecules in the 70
snapshots. The absolute energies are not comparable, because
different polarizabilities are used, but the fluctuations around the
average value should be similar if the different force fields are to
sample the same configurational space. Interestingly, all polariz-
abilities give fluctuations with a range (maximum minus mini-
mum value among the 70 snapshots) of 1515�1651 kJ/mol. The
force fields based on the LoProp B3LYP/6-31G* polarizabilities
give a smaller range (1515�1533 kJ/mol) than the other
polarizabilities (1553�1595 kJ/mol), and Enzymix gives the
largest range (1651 kJ/mol).
Second, we compared these relative interaction energies for

each snapshot, using the Aver polarizabilities as a reference (we
cannot use the LoProp polarizabilities as a reference, because
they change for each snapshot). Several conclusions can be
drawn from the results presented in Table 6. First, the various
force fields give mean absolute differences (MADs) of 2�65 kJ/
mol in the order xAvPol1, xAvPol3, Type, Element, xAvPol2,
Amber02, xAvPol4, Amber09, Charmm, Amoeba, and Enzymix.

Thus, the polarizabilities are much less sensitive to the confor-
mation than charges: The MAD between the Aver and xAvPol1,
xAvPol2, or xAvPol3 sets is only 2 kJ/mol, and both the Type and
Element polarizabilities give MADs less than 10 kJ/mol, which
may be acceptable in many applications.
Third, the B3LYP/6-31G* polarizabilities are clearly not

converged, because the B3LYP/aug-cc-pVTZ polarizabilities
(xAvPol4) give induction energies that differ by 27 kJ/mol on
the average. This shows that larger basis sets should be used for
the calculation of the polarizabilities or they should be corrected
in the same way as for xAvPol4.
Fourth, different standard force fields give widely differing

results, differing from Aver by 26�65 kJ/mol, or up to 4% of the
total variation. In most cases, the crude Enzymix polarizabilities
give the largest difference. Of course, some of this difference may
be caused by the fact that the Aver polarizabilities are based on
calculations with a too small basis set. Therefore, we have added
an extra row in Table 6 (MAD0) where we instead use the
xAvPol4 results (which are close to the basis-set limit) as the
reference. It can be seen that the MAD for Amber09, Amoeba,
and Enzymix are reduced to 15, 35, and 42 kJ/mol, whereas the
MAD for Charmm is not changed and that of Amber02 actually
increases. This shows that there still are extensive differences
between the polarizabilities of the various force fields, far beyond
what is caused by the conformational dependence.
Finally, we note that the variation in the relative induction

energies is appreciably smaller than the corresponding variation
in relative electrostatic energies when the atomic charges were
varied in a similar manner (up to 150 kJ/mol).58 This is in
accordance with the observation that induction energies typically
are 6�30% of the electrostatic energies.6�11 Still, differences of
over 10 kJ/mol in relative energies may have a strong influence
on the phase space visited during a MD simulation.
Ligand Binding Energies. Next, we studied the induction

contribution to the binding energies of the seven biotin ana-
logues in Figure 1 with 10 snapshots for each ligand and the same
13 sets of polarizabilities (and still with the same Amber02
charges). The energy was calculated as the difference between
the interaction energies in the complex, the protein, and the
ligand:

EðPLÞ � EðPÞ � EðLÞ

Table 5. Description of the Various Sets of Polarizabilities Considered in the Work

polarizabilities different for

charge set no. distinct polarizabilities description snapshots same residue based on protein

LoProp 547 880 LoProp atomic polarizabilities yes yes avidin

Aver 7916 LoProp average over snapshots no yes avidin

xAvPol1 459 Aver, averaged over residues no no avidin

xAvPol2 309 like xAvPol1 but from PRC no no PRC

xAvPol3 521 weighted average over xAvPol1 and xAvPol2 no no avidin, PRC

xAvPol4 395 xAvPol3 corrected to aug-cc-pVTZ basis no no avidin, PRC

Element 5 LoProp averaged over elements (Table 2) no no

Type 27 LoProp averaged over atom types (Table 4) no no

Amber02 10 Amber FF02 polarizabilities26 no no

Amber09 7 new Amber polarizabilities11 no no

Charmm 9 CHARMM polarizabilities45 no no

Amoeba 8 Amoeba polarizabilities28 no no

Enzymix 2 Enzymix polarizabilities19 no no
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without any solvation. Only one of the biotin ligands in the
tetramer (the fourth) was considered, whereas the other three
were considered as a part of the protein. The results in Table 7
show that the Aver polarizabilities give induction contributions
to the binding energies that are most similar to those obtained
with the LoProp polarizabilities, with a MAD of 1 kJ/mol and a
maximum error of 3 kJ/mol for the three charged ligands
(Btn1�Btn3) and a MAD of 0.3 kJ/mol and a maximum error
of 0.9 kJ/mol for the neutral ligands, respectively. The xAvPol1
polarizabilities also give excellent results with only slightly higher
deviations. If the xAvPol2, xAvPol3, or even the atom-type polariz-
abilities are instead used, the MADs increase to 2 and 1 kJ/mol,
respectively, and themaximum errors increase to 5 and 2�3 kJ/mol.
On the other hand, the elemental polarizabilities give much worse
results, with a MAD of up to 8 kJ/mol for the charged ligands (but
only 1 kJ/mol for the neutral ligands). Recalculating the polarizabil-
ities with a larger basis set (xAvPol4) has a major effect on the
interaction energies, with MADs of 19 and 6 kJ/mol, respectively,
again indicating that 6-31G* is a too small basis set for polarizabilities.
Among the various standard force fields, Amber02 polarizabil-

ities give results that are closest to the LoProp results, with MADs
of 4�5 kJ/mol and maximum errors of 11�12 kJ/mol. The other
force fields give larger differences, e.g., MADs of 25�41 kJ/mol for
the charged ligands and 3�16 kJ/mol for the neutral ligands. If we
instead compare to the xAvPol4 results (available only for Btn1 and
Btn7), the results for all force fields are improved (to 2�8 kJ/mol
average deviation for Btn7 and 8�17 kJ/mol for Btn1), except for
Amber02. This indicates that the Amber02 polarizabilities are not
compatible with high-level QM calculations, presumably because
the force field employs artificially restrictive exclusion rules, as
discussed in the Methods section.
Previously, we have observed that effects of variations of the

charges are strongly screened by solvation.58Therefore, we studied
the effect of solvation also for the polarizabilities. Unfortunately,
neither of the continuum-solvation models available in Amber is
compatible with a polarizable force field. Therefore, we instead

simply included all explicit solvent molecules in the calculation of
the energy terms for the complex and the free protein. Of course,
this is not a fully consistent method, but it at least gives an
indication of how much solvation may screen the effect of
differences in the polarizabilities. The results in Table 8 show that
solvation has a small effect on the induction-energy part of the
ligand-binding energies. In particular, no clear screening by
solvation is seen. In fact, if different solvation models are used in
the calculations (i.e., polarizabilities for the explicit water mol-
ecules that are consistent with the respective force field), the
differences are typically increased, whereas if the same (LoProp)
water polarizabilities are used in all calculations, the results are
similar to those obtained without solvation.

’CONCLUSIONS

In this paper, we have made a statistical and energetic analysis
of isotropic atom-centered polarizabilities calculated individually
for all atoms in two different proteins and for 70 snapshots from
molecular dynamics simulations (in total 560 698 individual
polarizabilities). As mentioned in the Introduction, atomic
polarizabilities are not observables, so there are no true reference
values of these. It is also well-known that polarizabilities strongly
depend on the method and basis sets used for their calculation
and that polarizabilities in the condensed phase are different from
those in the gas phase.27,60�62 Moreover, the polarizabilities are
closely connected to the model used for the permanent electro-
statics and exclusion rules used in the force field.11 Therefore, it is
not meaningful to discuss whether one set of polarizabilities is
better than another without defining all the other components of
the force field. Instead, this article is concerned withmore general
aspects of the polarizabilities, viz., their variation with conforma-
tion and chemical environment, and how polarizabilities are best
assigned (by element, by atom type, or by individual atoms).

First, we show that dynamic effects induce a variation in the
polarizabilities of individual atoms of 0.01�0.35 Å3, with an

Table 6. Differences in Relative Polarization Energies Relative to Aver (kJ/mol)

xAvPol1 xAvPol2 xAvPol3 xAvPol4 Element Type Amber02 Amber09 Charmm Amoeba Enzymix

MAD 2 2 2 27 9 7 26 35 36 58 65

Min �5 �10 �9 �72 �36 �12 �69 �97 �133 �142 �151

Max 4 6 5 61 22 17 53 91 99 166 181

Range 9 15 14 134 57 29 122 188 232 308 333

MAD0 a 42 15 34 35 42
aMean absolute deviation from the xAvPol4 results.

Table 7. Differences in Ligand-Interaction Polarization Energies, Compared to LoProp (kJ/mol)a

Aver xAvPol1 xAvPol2 xAvPol3 xAvPol4 Element Type Amber02 Amber09 Charmm Amoeba Enzymix

MAD 0.6 0.8 1.1 1.1 12.6 4.1 1.5 4.8 17.2 12.4 24.9 25.7

Max 2.6 3.6 4.8 4.6 30.5 10.8 5.4 11.9 39.3 36.3 54.2 61.1

MAD1�3 1.0 1.4 1.8 1.7 19.4 7.8 2.1 4.2 28.7 24.6 36.9 40.6

Max1�3 2.6 3.6 4.8 4.6 30.5 10.8 5.4 10.6 39.3 36.3 54.2 61.1

MAD4�7 0.3 0.4 0.6 0.6 5.8 1.3 1.0 5.2 8.6 3.4 15.9 14.5

Max4�7 0.9 1.4 2.2 2.0 12.9 4.6 3.2 11.9 23.1 8.1 37.1 33.2

MAD0 b 12.7 6.9 5.2 14.5 15.7

Max0 b 32.7 14.9 12.7 24.7 30.6
aMean absolute (MAD) and maximum differences (Max) compared to those obtained with the LoProp polarizabilities are listed, calculated either over
all seven ligands or over the charged (1�3) or neutral ligands (4�7). bDeviations from the xAvPol4 results (only for Btn1 and Btn7).
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average of 0.09 Å3 for the 7827 atoms in the avidin tetramer. The
standard deviation ranges from 0.002 to 0.07 Å3 (average
0.02 Å3), indicating that up to 50 snapshots are needed to obtain
a standard error of less than 0.01 Å3 for all polarizabilities. This
clearly shows that it is not enough to calculate polarizabilities for
a single structure.

Second, we show that it is very hard to assign transferable
polarizabilities by element or atom types. Elementwise polariz-
abilities would have an uncertainty of up to 0.77 Å3, i.e., 50% of
the magnitude of the polarizabilities themselves. This would
induce errors of up to 36 kJ/mol in relative conformational
induction energies and of up to 11 kJ/mol in ligand-binding
energies. Likewise, polarizabilities assigned by the 27 Amber
protein atom types would still have an uncertainty of up to
0.77 Å3, and it would induce errors of up to 17 kJ/mol in relative
energies and of up to 5 kJ/mol for ligand-binding energies (7 and
2 kJ/mol on average). We have also tried to design better groups
of atom types, but this is very hard, in particular for aliphatic and
aromatic carbon atoms, for which the range is up to 0.36 Å3.

Therefore, we suggest that polarizabilities should be assigned
the same way as for charges, i.e., atomwise. This suppressed the
variation of the polarizabilities to 0.14 Å3 on average, with a
maximum of 0.46 Å3. The average and maximum standard
deviations are 0.01 and 0.07 Å3. This remaining variation reflects
the conformational dependence of the polarizabilities, and it
cannot be further suppressed unless the conformational depen-
dence is explicitly modeled. The variation is related to the size of
the polarizabilities, with an average of 23%. The conformational
dependence induces average and maximum errors of 2 and 5 kJ/
mol for relative conformational energies, and of 1 and 4 kJ/mol for
ligand-binding energies. Polarizabilities calculated in the same way
for a different protein (the photosynthetic reaction center) give
similar results: 2 and 9 kJ/mol average and maximum error for
relative conformational energies and 1 and 5 kJ/mol for ligand-
binding energies.

On the other hand, the polarizabilities strongly depend on the
basis sets used in the QM calculations. Clearly, the 6-31G* basis
set is too small to give converged polarizabilities. Instead, at least
the aug-cc-pVDZ (and preferably, the aug-cc-pVTZ) basis set

should be used in the calculations. Fortunately, the atomic
correction factors between the 6-31G* and aug-cc-pVTZ basis
sets are transferable, so the results can be easily extrapolated from
bulk calculations with the 6-31G* basis set. In the Supporting
Information, we present a set of such polarizabilities (xAvPol4),
averaged over 70 molecular dynamics snapshots for avidin and
over two different proteins, and finally extrapolated to the aug-cc-
pVTZ basis set. These are the best atomic polarizabilities
obtained in this paper.
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ABSTRACT: Polarizable simulations with second-order interaction model (POSSIM) force field has been extended to include
parameters for alanine peptides and protein backbones. New features were introduced into the fitting protocol, as compared to the
previous generation of the polarizable force field for proteins. A reduced amount of quantum mechanical data was employed in
fitting the electrostatic parameters. Transferability of the electrostatics between our recently developed N-methylacetamide model
and the protein backbone was confirmed. Binding energy and geometry for complexes of alanine dipeptide with a water molecule
were estimated and found in a good agreement with high-level quantum mechanical results (for example, the intermolecular
distances agreeing within ca. 0.06 Å). Following the previously devised procedure, we calculated average errors in alanine di- and
tetrapeptide conformational energies and backbone angles and found the agreement to be adequate (for example, the alanine
tetrapeptide extended globular conformational energy gap was calculated to be 3.09 kcal/mol quantum mechanically and
3.14 kcal/mol with the POSSIM force field). However, we have now also included simulation of a simple R helix in both gas
phase and water as the ultimate test of the backbone conformational behavior. The resulting alanine and protein backbone force field
parameters are currently being employed in further development of the POSSIM fast polarizable force field for proteins.

I. INTRODUCTION

While quantummechanical calculations offer valuable data in a
variety of biological and biomedical calculations, applications of
empirical force fields remain the only way of approaching the
majority of problems of interest. On one hand, they require less
computer resources. On the other hand, the issue of choosing the
best level of quantum theory is still a nontrivial one, and the level
of quantum mechanical accuracy in a specific application is far
from being guaranteed.

When empirical force fields are employed, accurate assess-
ment of energy often requires explicit treatment of the electro-
static polarization.1 The properties which depend on it include
dimerization energies and acidity constants of small molecules,
energies of protein�ligand interactions, protein pKa values, or
even the very thermodynamic stability of complexes in solu-
tions. For example, we have demonstrated that that pKa values
for acidic and basic residues of the turkey ovomucoid third
domain (OMTKY3) can be reproduced within 0.6 and 0.7 pH
units of the experimental data with a polarizable force field. The
corresponding errors with the nonpolarizable orthogonal par-
tial least-squares (OPLS) were 3.3 and 2.2 pH units.2 Forma-
tion of sugar�protein complexes represents yet another
example when polarization is critical for predicting a thermo-
dynamically stable structure.3 It is generally acknowledged that
polarization is an important component in many computa-
tional studies of proteins and protein�ligand complexes,
although it is sometimes included in surrogate forms, such as,
for example, conformation-specific protein charges.4

There are two main issues related to the empirical polariz-
able force field development. The first one is in the functional

form of the electrostatic polarization. Using fluctuating
charges saves time and is computationally efficient in simulat-
ing uniform systems, such as pure liquid water.5 However, it
causes problems when out-of-plane polarization response is
required or when a bifurcated hydrogen bond is formed.
Therefore, the inducible dipoles approach is more adequate

Figure 1. Protein backbone angles φ and ψ shown in the alanine
dipeptide molecule.
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when arbitrary systems have to be simulated with a high
degree of accuracy. On the other hand, it is known that the
inducible dipole technique slows down polariable calculations
significantly. In order to reduce the severity of this problem,
we are applying the second-order approximation in treatment
of the electrostatic polarization. It has been demonstrated to
increase the speed by ca. an order of magnitude without
sacrificing the accuracy.6 Moreover, this approximation makes

the so-called polarization catastrophe (the resonance-like
infinite growth of the induced dipole moment values) im-
possible. Our previous paper described development of the
polarizable simulations with second order interaction model
(POSSIM) software and the force field parameters for a series
of small molecules, including water and N-methylacetamide
(NMA). In this work, we describe creation of alanine and
protein backbone parameter sets in the POSSIM framework.

The second issue is choosing the source of fitting data for a
polarizable force field. High-level quantum mechanical re-
sults are very attractive in this respect,7,8 but experimental
data can be more robust. We follow the middle-of-the-road
path by relying on experimental data whenever possible and
by making heavy use of quantum mechanical calculations
when needed. One important issue is the standard procedure of
producing torsional parameters for peptides by fitting to conforma-
tional energies of di- and tetrapeptides.8 We include it in our work
and are describing an improved procedure for creation of the
torsional parameters in the Methods Section below. At the same
time, the quantum mechanical conformers employed in such
calculations are created by gas-phase quantum mechanical optimi-
zations, and they often belong to parts of the conformational
space which are not found in experimental protein structures.
Therefore, we have included an additional conformational test in
the alanine and the backbone parameter fitting. It is known that the
tridecaalanine peptide (ala-13) forms a stable R-helix.9 Therefore,
we studied the stability of our POSSIM ala-13 R-helix and
compared it to that of the OPLS-AA8 for benchmarking. We have
also discovered that the quality of the force field in reproducing the
quantum mechanical di- and tetrapeptide conformational energies
has a relatively weak effect on the stability of the tridecaalanine
peptide in water.

Overall, the following has been derived, developed, or
otherwise calculated in this work: (i) the torsional parameters
for the alanine residues and the protein backbones have been
produced; (ii) the binding energies of a water molecule with
the alanine dipeptide as calculated with the POSSIM and
OPLS-AA force fields have been compared with the quantum
mechanical data to confirm transferability of the nonbonded
parameters and to justify using the latter from the POSSIM
NMA model in protein studies; (iii) the resulting parameters
were employed in gas-phase and aqueous solution simulations
of an R-helix to validate the resulting POSSIM parameters as

Table 1. Backbone Torsional Parameters, Set tors.1a

parameter V1 V2 V3

C�N�RC�C, φ 0.667 �0.012 �4.003

N�RC�C�N, ψ �2.011 2.528 �4.829

C�N�RC�βC, φ0 �2.165 0.024 4.221

βC�RC�C�N, ψ0 0.594 �0.386 4.378
aThe coefficients are given in kcal/mol.

Figure 2. Torsional fitting subspace, for the alanine dipeptide φ/ψ
potential energy surface. Such crosses were centered at each of the six
minima, and each arm contained four fitting points (here some crosses
and points are omitted for the sake of clarity).

Table 2. Conformational Energies and Angles for Alanine Dipeptidea

energy φ ψ

conformer QM OPLS POSSIM QM OPLS POSSIM QM OPLS POSSIM

C7eq 0.00 0.00 0.00 �81.4 �79.5 �83.8 85.6 61.8 53.2

C5 1.00 0.91 0.78 �160.5 �149.8 �151.3 165.9 159.9 150.9

C7az 2.71 2.40 2.85 70.3 77.5 76.5 �76.8 �46.6 �50.3

β2 2.56 2.82 2.57 �105.1 �105.1 �105.1 10.6 10.6 10.6

RL 4.21 5.96 5.41 68.3 68.3 68.3 22.4 22.4 22.4

R0 5.47 5.96 5.53 �162.0 �156.5 �149.5 �33.2 �48.5 �100.3

PII 2.78 2.18 3.96 �85.0 �85.0 �85.0 160.0 160 160.0

RR 2.71 2.39 1.95 �83.7 �83.7 �83.7 �3.9 �-3.9 �3.9

error � 0.73 0.67 � 3.2 3.8 � 9.4 17.6
a Energies are in kcal/mol, and angles are in degrees. POSSIM refers to the polarizable force field with the tors.1 version of the torsional parameters.
Angles φ and ψ for conformers β2, RL, PII, and RR were fixed at their quantum mechanical values. Quantum mechanical energy minimizations were
unconstrained except for PII.
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acceptable in protein and peptide simulations. Moreover, the
additional optimizations in (i) above and (ii) and (iii) alto-
gether represent a novel development in our methodology of
protein force field production, as compared to that used to
create the previous version of the force field.

The rest of the paper is organized as follows: Section II is
a description of the methodology involved. Section III con-
tains results and discussion. Finally, Section IV presents the
conclusions.

II. METHODS

A. Force Field. The total energy Etot is a sum of the electro-
static interactions Eelectrostatic, van der Waals energy EvdW,
harmonic bond stretching and angle bending Estretch and Ebend,
and the torsional term Etorsion:

Etot ¼ Eelectrostatic þ EvdW þ Estretch þ Ebend þ Etorsion ð1Þ

Electrostatic Energy. The electrostatic polarization energy as
calculated with inducible point dipoles μ is

Epol ¼ � 1
2∑i

μiE
0
i ð2Þ

where E0 is the electrostatic field in the absence of the dipoles.

μi ¼ RiE
0
i þ Ri∑

j 6¼i

Tijμj ð3Þ

where R are scalar polarizabilities, and Tij is the dipole�dipole
interaction tensor. The self-consistent eq 3 is usually solved
iteratively. Let us explicitly write down the first two iterations:

μI
i ¼ RiE

0
i ð4aÞ

Figure 3. LMP2/cc-pVTZ(-f) geometry of the extended alanine tetrapeptide conformation.

Figure 4. LMP2/cc-pVTZ(-f) geometry of the globular alanine tetra-
peptide conformation.

Table 3. Backbone Torsional Parameters, Set tors.finala

parameter V1 V2 V3

C�N�RC�C, φ 2.000 �0.500 �3.772

N�RC�C�N, ψ �2.837 3.942 �3.328

C�N�RC�βC, φ0 �2.718 1.757 5.202

βC�RC�C�N, ψ0 0.372 �0.915 3.321
aThe coefficients are given in kcal/mol.
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μII
i ¼ RiE

0
i þ Ri∑

j 6¼i

Tijμ
I
j ¼ RiE

0
i þ Ri∑

j 6¼i

TijRjE
0
j ð4bÞ

We are using the second-order expression in eq 4b. It has been
previously shown to yield ca. an order of magnitude increase of
the computational speed with no loss of accuracy.6 The electro-
static energy also includes the pairwise additive contribution
from interactions of permanent charges:

Eadditive ¼ ∑
i 6¼j

qiqj
Rij

fij ð5Þ

The factor fij is set to 0 for 1,2- and 1,3-pairs (atoms which belong
to the same valence bond or angle), to 0.5 for 1,4-interactions
(atoms in the same dihedral angle), and to 1.0 otherwise.
To avoid unphysical increase of the electrostatic interactions at

short distances, each atom type has a cutoff parameterRcut. When
the overall distance Rij is smaller than the sum of these para-
meters Rmin

ij = Rcut
i þ Rcut

j for the atoms i and j, Rij is replaced by
an effective smooth function:

Reff
ij ¼ 1� Rij

Rij
min

 !2

þ Rij

Rij
min

 !3
0
@

1
A 3R

ij
min ð6Þ

The following important points about the second-order
approximation in eq 4b should be made: First of all, we do
not fit parameters using the full-scale polarization solution to
eq 3 to later employ eq 4b as an approximate technique
during the simulations. For our practical purposes, eq 4b is,
in fact, the representation of the many-body interactions. It
does differ from the true physical point�dipole approxima-
tion, and thus we always carefully monitor whether any
errors are introduced by not computing inducible dipoles
with the complete iterative procedure. So far, simulations of
gas-phase dimers, quantum mechanical electrostatic three-
body energies, pure liquids, solutions and peptides have
given us no indication that the second-order approximation
leads to any deficient physical results, and we have always
been able to produce fitting to quantum mechanical and
experimental data which was as good as for the full-scale
polarization.6,10 Moreover, application of the second-order
approximation given by eq 4b turns the expression for the
inducible dipoles into an analytical one, thus eliminating the

possibility of the polarization catastrophe. This can also
become a very useful feature in future developments, e.g.,
in creating a continuum dielectric model, as convergence
issues are known to be of importance for continuum solva-
tion techniques.

Table 4. Conformational Energies and Angles for Alanine Dipeptidea

energy φ ψ

conformer QM OPLS POSSIM QM OPLS POSSIM QM OPLS POSSIM

C7eq 0.00 0.00 0.00 �81.4 �79.5 �77.2 85.6 61.8 34.4

C5 1.00 0.91 1.37 �160.5 �149.8 �160.3 165.9 159.9 159.2

C7az 2.71 2.40 2.17 70.3 77.5 78.1 �76.8 �46.6 �36.2

β2 2.56 2.82 2.77 �105.1 �105.1 �105.1 10.6 10.6 10.6

RL 4.21 5.96 5.79 68.3 68.3 68.3 22.4 22.4 22.4

R0 5.47 5.96 5.98 �162.0 �156.5 �162.9 �33.2 �48.5 �38.0

PII 2.78 2.18 3.52 �85.0 �85.0 �85.0 160.0 160 160.0

RR 2.71 2.39 0.99 �83.7 �83.7 �83.7 �3.9 �-3.9 �3.9

error � 0.73 0.97 � 3.2 1.6 � 9.4 12.9
a Energies are in kcal/mol, and angles are in degrees. POSSIM refers to the polarizable force field with the tors.final version of the torsional parameters.
Angles φ and ψ for conformers β2, RL, PII, RR were fixed at their QM values. QM energy minimizations were unconstrained except for PII.

Figure 5. Two Alanine dipeptide hydrogen bonded complexes with a
water molecule.
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The Rest of the Force Field. We are using the standard
Lennard-Jones formalism for the van der Waals energy:

EvdW ¼ ∑
i 6¼j

4εij
σij

Rij

 !12

� σij

Rij

 !6
2
4

3
5fij ð7Þ

Geometric combining rules are applied (εij = (εi 3 εj)
1/2, σij =

(σi 3 σj)
1/2). Bond stretching and angle bending are computed

with the usual harmonic formalism, and the torsional term is
calculated as

Etorsion ¼ ∑
i

V i
1

2
½1þ cosðjiÞ� þ

Vi
2

2
½1� cosð2jiÞ�

þ Vi
3

2
½1þ cosð3jiÞ� ð8Þ

Figure 6. Average φ angles in the R-helix gas-phase simulations vs the
simulation length.

Figure 7. Average ψ angles in R-helix gas-phase simulations vs the
simulation length.

Table 5. Results of Simulating Alanine Dipeptide Complexes with Water a

structure A structure B

property QM OPLS POSSIM QM OPLS POSSIM

binding energy �9.80 �9.48 �7.95 �9.73 �11.19 �9.34

R(O 3 3 3O) 2.83 2.75 2.84 2.83 2.72 2.73

R(O 3 3 3N) 3.10 2.89 3.09 3.05 2.86 2.95

φ, dimer �83.4 �87.3 �80.2 �84.3 �89.4 �86.9

ψ, dimer 90.3 114.6 83.7 131.2 113.3 122.2

φ, monomer �79.7 �79.5 �77.2 �79.7 �79.5 �77.2

ψ, monomer 88.1 61.8 34.4 88.1 61.8 34.4
a Energies are in kcal/mol, distances in Å, angles in degrees.

Table 6. Results of Simulating Alanine Dipeptide Complexes with Watera

structure A structure B

property QM OPLS POSSIM QM OPLS POSSIM

binding energy �10.71 �10.04 �9.75 �11.68 �11.79 �12.24

R(O 3 3 3O) 2.83 2.81 2.82 2.83 2.75 2.74

R(O 3 3 3N) 3.10 2.94 3.06 3.05 2.94 2.98

φ, dimer �83.4 �83.4 �83.4 �84.3 �84.3 �84.3

ψ, dimer 90.3 90.3 90.3 131.2 131.2 131.2

φ, monomer �83.4 �83.4 �83.4 �84.3 �84.3 �84.3

ψ, monomer 90.3 90.3 90.3 131.2 131.2 131.2
a
φ andψ of both dimers andmonomers are fixed in the quantummechanical dimer positions. Energies are in kcal/mol, distances in Å, angles in degrees.



1420 dx.doi.org/10.1021/ct1007197 |J. Chem. Theory Comput. 2011, 7, 1415–1427

Journal of Chemical Theory and Computation ARTICLE

The fixed-charges OPLS-AA force field used for benchmarking
is functionally the same, except that it lacks the polarization part
of the electrostatic energy.
B. Parameterization of the Force Field.Whenever possible,

the force field parameters for the alanine peptides were adopted
directly from the previously created NMA parameter values.10

The only completely new parameters were those for the back-
bone torsions. This is different from the previous version of the
polarizable force field (PFF) for proteins in which electrostatic
parameters for the alanine (and thus for the backbone) were also
refitted.7 Therefore, we believe that the present work demon-
strates a greater degree of utilizing parameter transferability.
Fitting of torsional parameters for the protein backbone φ and

ψ angles (Figure 1) cannot be done separately from each other,
as the torsions are coupled.
The initial part of our torsional fitting was the same as used

before.7,8 (i) The fitting was done to an ab initio data obtained
previously8 at the LMP2/cc-pVTZ(-f)//HF-6-31G** level with
Jaguar software suite.11 (ii) The choice of the fitting subspace is
illustrated in Figure 2. Out of the six alanine dipeptide local
minima previously used,7,8 only two are shown for the sake of

clarity. (iii) We used the following non-Boltzmann weighting
scheme for the error at the fitting points:

Wi ¼ A 3 expð � b 3GiÞ ð9Þ

Here Gi is the magnitude of the torsional surface gradient at the
point i, and Wi is the weight. This way more importance was
given to the points with low gradients (near the minima).
In the presented work, we used the procedure described above

only to produce the initial guess for the torsional parameters to
be employed in eq 8. After that, the following approach was
taken. The errors in the conformational energies were combined
with the errors in the conformational angles φ andψ to produce
the error function as shown in eq 10:

erf ¼ ∑
i
ðE0i � EiÞ2þ∑

j
ðj0

j �jjÞ2 þ ðψ0
j �ψjÞ2 ð10Þ

Here Ei
0 and Ei are the quantum mechanical and empirical

conformational energies for all the conformers i, and the second
sum contains the values of the backbone angles φ and ψ. The

Figure 8. Structure of the ala-13 R-helix simulated with OPLS in gas phase, after 19 � 106 Monte Carlo configurations.
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error function was minimized as a function of the torsional
parameters in eq 8.
C. Calculating Dimerization Energies for the Alanine

Dipeptide Complexes with Water. In order to test the
transferability of the NMA nonbonded parameters employed
for our alanine and protein backbone model, we calculated
energies of interaction of the alanine�dipeptide with a water
molecule. Structures and energies obtained for these systems
with the POSSIM program were compared to the quantum
mechanical results obtained with Jaguar.11 For hydrogen
bonds, a good level of accuracy can be achieved via MP2
calculations extrapolated to the basis set limit, where the

contribution of higher level excitations (e.g., CCSD(T)) has
been shown to be negligible (except for some cases, such as π
stacking of aromatic rings, where the MP2 level has been
shown to not be sufficient).
Briefly, dimer geometries were obtained by LMP2 optimiza-

tions with a cc-pVTZ(-f) basis set. The final quantummechanical
dimer binding energy Ebind, as used in this work, is a linear
combination of the LMP2 binding energy for a smaller cc-
pVTZ(-f) basis set (Eccpvtz) and the LMP2 binding energy with
a larger cc-pVQZ(-g) basis set (Eccpvq).

15 This method has been
previously demonstrated to produce a high-quality fitting and
benchmarking data for force field development.7,8

Figure 9. Structure of the ala-13 R-helix simulated with POSSIM, version tors.1, in gas phase, after 19 � 106 Monte Carlo configurations.
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D. Gas-Phase and Liquid-State Simulations of the Tride-
caalanine Peptide. In order to give our alanine and backbone
model a final test, we carried out simulations of a tridecaala-
nine (ala-13) peptide both in gas-phase and in aqueous
solution at 25 �C and 1 atm. The initial structure was set at
the R-helix conformation, with φ = 296� and ψ = 319�, and
the simulations proceeded with all the degrees of freedom
completely unconstrained. It is known experimentally that an
R-helix represents a stable conformation of alanine peptides,
including ala-13, both in gas-phase and in aqueous solution.9

We intended to show that our POSSIM force field for the
alanine and backbone protein systems performs reasonably
well under these conditions and is thus sufficiently robust to
be successfully employed in protein and protein�ligand
studies.
Gas-phase and hydrated simulations consisted of at least 18�

106 and 25 � 106 Monte Carlo configurations, respectfully, to
ensure convergence. A 7 Å dipole�dipole cutoff was used. An 8
Å cutoff was employed for the intermolecular interactions in
solution (including both the solute�solvent and solvent�sol-
vent interactions). The standard correction procedure to ac-
count for the Lennard-Jones interactions beyond the cutoff was
used. The electrostatic interactions were quadratically feath-
ered over the last 0.5 Å before the cutoff distance. A rectangular

box with periodic boundary conditions was used. The box
contained 948 water molecules. The initial box setup was done
to have 10 Å of water on each side of the hydrated ala-13
molecule. After that, the isobaric�isothermal (NPT) ensemble
was used, with Metropolis Monte Carlo technique. In the case
of the OPLS simulations, a three-site model was used with
TIP3P13 nonbonded parameters and flexible bond lengths and
bond angles. A flexible three-site POSSIM water model10 was
employed in the polarizable runs.
All the calculations which did not involve quantum mechanics

(i.e., geometry optimizations and Monte Carlo runs) were
performed with our previously introduced POSSIM software
suite.10 Whenever possible, comparison with the fixed charges
OPLS-AA force field was done, and the OPLS-AA results were
also calculated with the POSSIM program.

III. RESULTS AND DISCUSSION

A. Alanine Dipeptide and Tetrapeptide Conformational
Energies and Angles. We have followed the previously
established procedure of calculating the alanine di- and te-
trapeptide conformational energies and φ and ψ values as
the initial assessment of the quality of the parameters for
the alanine and protein backbones. The same set of the

Figure 10. Structure of the ala-13 R-helix simulated with POSSIM, version tors.final in gas phase, after 19 � 106 Monte Carlo configurations.
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conformers that was employed in the previous studies was
used.7,8 The production of the torsional parameters pro-
ceeded as described in the Methods Section. First, weighted
fitting to rotamer energies was carried out. The resulting
parameters are shown in Table 1 (torsional parameters which
are not listed were the same as in the NMA model).10 We
denote this set of parameters as tors.1, as opposed to the final
set tors.final. Given in Table 2 are conformational energies
and φ and ψ values, as computed with the quantum me-
chanics, POSSIM and OPLS. In addition to the six confor-
mers used in previous studies, we have also added PII and RR

which are more relevant in aqueous solution.14 Quantum
mechanical optimizations were done at the LMP2/cc-pVTZ-
(-f) level. In both OPLS and POSSIM calculations, confor-
mers β2, RL, PII, and RR had the backbone dihedral angles

fixed at the quantum mechanical values. It is known that
molecular mechanics usually does not reproduce these con-
formers well. Overall, the performance of both POSSIM and
OPLS is satisfactory. The POSSIM results have a slightly
lower error in the conformational energies, while the OPLS
results are closer to the quantum mechanics in terms of the
geometries.
We have also calculated relative energies of the extended

and globular conformations of the alanine tetrapeptide
(shown on Figures 3 and 4, respectively). We determined
the quantum mechanical energy difference for these confor-
mers to be 3.09 kcal/mol, the globular form being the global
energy minimum. At the same time, this quantity is known to
have a relatively large range of calculated quantum mechanical
energies. For example, ref 15 lists the globular�extended
energy gap for the alanine tetrapeptide to be between 2.88
and 4.99 kcal/mol. The POSSIM result with the tors.1
torsional parameters set was 2.53 kcal/mol, and the OPLS
result was 3.51 kcal/mol.7,8

We then further refined the backbone torsional parameters
as described in the Methods section. The resulting values of
the torsional Fourier coefficients and the conformational
energies and angles are given in Tables 3 and 4, respectively.
This set of the torsional parameters is termed tors.final, and
this is the final set for the POSSIM protein backbone φ and ψ.
The average dipeptide conformational energy error is now
slightly higher at 0.97 kcal/mol, but the average errors in the
backbone angles φ and ψ are reduced to 1.6� and 12.9�,
respectively. Moreover, the globular�extended energy gap in
the tetrapeptide is 3.14 kcal/mol, in a better agreement with
the quantum mechanical results (3.09 kcal/mol with our
calculations and 2.88�4.99 kcal/mol from the data ref 15).
The value of the ψ for the C7eq conformer is lower now, but
this part of the conformational space is not relevant in
practical protein applications. The overall average error in
both backbone angles was reduced.
B. Alanine Dipeptide�Water Dimerization Energies and

Distances.There are four possible water hydrogen bonding sites
in the alanine dipeptide—two NH hydrogens and two carbonyl
oxygen atoms. However, our quantum mechanical energy mini-
mizations have demonstrated that water molecules prefer to
make two hydrogen bonds at the same time, one with the H
and one with the O atoms. Therefore, there are only two
water�alanine dipeptide heterodimer structures, as shown on
Figure 5.
The quantum mechanical structures were used as the initial

guesses for the POSSIM optimizations. Both POSSIM and
OPLS-AA were utilized. We compared the binding energies, as
well as the geometries of the complexes. Both hydrogen
bonding distances (O 3 3 3H�N) and H 3 3 3OdC) and the φ
and ψ angles of the alanine dipeptide backbone were used for
the comparison. The results of these calculations are pre-
sented in Table 5. The quantum mechanical energy of the
dimerization is reproduced slightly better with the OPLS, the
average error being 0.89 kcal/mol vs 1.12 kcal/mol with
POSSIM. The latter tends to underestimate the magnitude
of the binding energy. This is not unexpected. The nonbonded
parameters for the alanine dipeptide have been adopted from
NMA fitting.
And the same tendency was also present in the NMA

case, with the POSSIM underestimating the NMA�water bind-
ing energy by an average of 0.89 kcal/mol.10 The overall performance

Figure 11. Average φ angles in R-helix simulations in aqueous solution
vs the simulation length, in millions of Monte Carlo configurations.

Figure 12. Average ψ angles in R-helix simulations is aqueous solution
vs the simulation length, in millions of Monte Carlo configurations.
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of the NMA parameters was very good. This included reprodu-
cing liquid NMA heat of vaporization and density. Which lead us
to the conclusion that our quantum mechanical NMA�water
binding energies are probably somewhat overestimated.
Therefore, a similar trend in the alanine dipeptide complex
formation with water could have been expected and is not at all
an indication of problems with the protein POSSIM force
field. Moreover, it can be easily seen from the data in Table 5
that the POSSIM performed noticeably better than the OPLS
in reproducing the hydrogen-bond lengths, which are prob-
ably given much more accurate than the energies by the
quantum mechanics. The average errors in these lengths are
0.15 and 0.06 Å with the OPLS and POSSIM calculations,
respectively.
It is also worth noting that the values of the φ and ψ

backbone angles in this complex, as computed with the
POSSIM, are much closer to the resulting quantum mechan-
ical values of these angles than their OPLS counterparts, with
the average error of only 5.3� vs 12.8�. This is so even though
the POSSIM gives the lowest-energy monomer conformer
(C7eq) ψ angle of only 34.4� vs the quantum mechanical
88.1� and the OPLS 61.8�. We believe that this fact confirms
that: (i) the conformational energy surface is rather flat at that
region, and so the precise location of the minimum is not
entirely crucial; and (ii) the POSSIM force field is robust and
adequate in reproducing important binding geometries.

We have further investigated the alanine dipeptide�water
binding properties by running calculations, in which the values
of φ and ψ were kept the same as in the fully optimized
quantum mechanical dimers in all the cases (quantum me-
chanical, OPLS, and POSSIM monomers and also the OPLS
and POSSIM dimers). The results are presented in Table 6.
The structure B dimerization energy as computed with the
POSSIM is slightly greater than the quantum mechanical one
in this case (�12.2 vs �11.7 kca/mol), otherwise the trends
are the same as in the fully relaxed geometry optimizations.
The average errors in the dimerization energies with the
POSSIM and OPLS are 0.76 and 0.39 kcal/mol, respectively.
The POSSIM and OPLS errors in the hydrogen-bonding
distances are 0.09 and 0.05 Å. Interestingly, the improvement
in geometry achieved by fixing the backbone angles is greater
with the OPLS than it is with the POSSIM. Once again, we
believe this indicates that, even though the C7eq conforma-
tional geometry is better reproduced with the OPLS, the more
important binding properties are better assessed with the
POSSIM force field.
C. Gas-Phase and Hydrated Simulations of the Tridecaa-

lanine Peptide (Ala-13). We have carried out Monte Carlo
simulations of the ala-13 in order to test the robustness of the
POSSIM force field by assessing stability of this experi-
mentally known R-helical peptide. While quantum mechani-
cal gas-phase alanine dipeptide conformational energies and

Figure 13. Structure of the ala-13 R-helix simulated with OPLS, in aqueous solution, after 25� 106 Monte Carlo configurations. Water molecules are
not shown for the sake of clarity.
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geometries are important in fitting, these simulations provided
a direct comparison with the available experimental observa-
tions. In particular, we were assessing the general stability of
the helix and the average values of the backbone φ and ψ
angles. Figures 6 and 7 show graphs of the average values of
these angles as a function of the simulation length (in millions
of Monte Carlo configurations) for the OPLS force field, as
well as with POSSIM, using both the tors.1 and tors.final
torsional parameters. Each angle value represents averaging
over the last 200 000 configurations before the indicated
simulation length.
The experimental values of the backbone φ andψ in anR-helix

are 296� and 319�, respectively, with a 7� uncertainty.16 In
finding the average values of the backbone angles, we disregarded
one residue on each end of the helix.
Two conclusions can be made from the presented results.

First, the final versions of the POSSIM as well as the OPLS
force field yield better agreement with the experimental data
than the POSSIM version with the tors.1 parameters. Second,
the φ values are more stable than those of the angle ψ with all
the force fields tested.
But one should keep in mind that the experimental data

represent crystallographic results, and thus the thermal mo-
tion allowed in the Monte Carlo calculations can cause os-
cillations beyond the (7� experimental lines. Overall, we
can conclude that the gas-phase simulations confirm that
the newly developed POSSIM force field is stable and ro-
bust. They reproduce the experimentally observed R-helix

gas-phase stability (see also Supporting Information). The
stability of the simulated helixes can also be evaluated by
studying the final structure of the system shown in
Figures 8�10. One can see that, while the OPLS and POSSIM
with tors.final produce a stable R-helix, the POSSIM/tors.1
helix denaturates. At the same time, the average φ and ψ
angles in the tors.1 version of POSSIM are not extremely far
from the experimental data, therefore the helicity of the
structure is at least partially conserved.
Average values of the φ and ψ angles as a function of the

simulation length for the ala-13 peptide in water are shown on
Figures 11 and 12. In this case, as can be expected, the stability
of the both angles is greater, and the deviations are smaller. It
should be noted that the angle φ tends to be too low compared
to the experimental crystallographic values, while the angle ψ
is somewhat too high, thus their sum stays roughly at the same
spot as the experimental one (255� or �105�), and the R-
helicity of the structure for all the force fields employed
is good.
Structures of the ala-13 peptide after 25� 106 Monte Carlo

configurations in water are given on Figures 13�15. Water
molecules are not removed for clarity. It can be seen from the
figures, in combination with the graphs and the table for the
liquid-state simulations, that in this case (hydrated ala-13) all
three force fields (OPLS and the two versions of POSSIM)
perform adequately, and no denaturation of the tridecaalanine
R-helix is observed.

Figure 14. Structure of the ala-13 R-helix simulated with POSSIM, version tors.1, in aqueous solution, after 25 � 106 Monte Carlo configurations.
Water molecules are not shown for the sake of clarity.
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IV. CONCLUSIONS

We have presented results of developing a fast polarizable
POSSIM force field for alanine and protein backbones. The
quantummechanical data set used for fitting was streamlined and
simplified as compared to the previous version of the complete
polarizable force field for proteins, and a high degree of transfer-
ability of the potential energy parameters has been demonstrated.

We have included a previously unused step of calculating
dipeptide dimerization energies with a water molecule as an
additional proof of validity of the technique and the resulting
force field. The POSSIM force field performs well in this test.

The torsional fitting procedure has been augmented by a
new step, a direct optimization-type fitting of the torsional para-
meters to the quantum mechanical conformational energies and
structures.

At the same time, we believe that quantum mechanical
dipeptide conformers in themselves are not a sufficient tool in
validation of a force field. One of the reasons for this assumption
is that most of these conformers belong to parts of the total
conformational space which are rarely found in experimentally
known proteins. Therefore, we have included an additional step
to further test the robustness of the POSSIM force field. We have

simulated the tridecaalanine peptide (ala-13) in both gas phase
and aqueous solution with the Monte Carlo technique. This
peptide is experimentally known to form an R-helix under these
conditions. The POSSIM ala-13 (and the OPLS used for
benchmarking) was found to maintain a stable R-helical con-
formation as well.

We conclude that the resulting polarizable POSSIM force field
is adequately accurate, and we will use this model for the alanine
and protein backbones as the basis for further development of a
complete polarizable POSSIM force field for proteins.
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bS Supporting Information. Tabulated values of φ and ψ
angles of the R-helix in gas phase and solution as a function of
simulation length. This material is available free of charge via the
Internet at http://pubs.acs.org.

’AUTHOR INFORMATION

Corresponding Author
*E-mail: gkaminski@wpi.edu.

Figure 15. Structure of the ala-13 R-helix simulated with POSSIM, version tors.final, in aqueous solution, after 25� 106 Monte Carlo configurations.
Water molecules are removed for clarity.



1427 dx.doi.org/10.1021/ct1007197 |J. Chem. Theory Comput. 2011, 7, 1415–1427

Journal of Chemical Theory and Computation ARTICLE

’ACKNOWLEDGMENT

This project was supported by grant no. R01GM074624 from
the National Institutes of Health. The content is solely the
responsibility of the authors and does not necessarily represent
the official views of the National Institute of General Medical
Sciences or the National Institutes of Health. The authors ex-
press gratitude to Schr€odinger, LLC, for the Jaguar and Impact
software.

’REFERENCES

(1) (1) See, for example: (a) Caldwell, J. W.; Kollman, P. A. J. Am.
Chem. Soc. 1995, 117, 4177–4178. (b) Cieplak, P.; Caldwell, J.;
Kollman, P. J. Comput. Chem. 2001, 22, 1048–1057. (c) Kaminski,
G. A. J. Phys. Chem. B 2005, 119, 5884–5890. (d) Jiao, D.; Zhang, J. J.;
Duke, R. E.; Li, G. H.; Schneiders, M. J.; Ren, P. Y. J. Comput. Chem.
2009, 30, 1701–1711. (e) Hernandez, G.; Anderson, J. S.; LeMaster,
D. M. Biochemistry 2009, 48, 6482–6494. (f) Wang, X. Y.; Zhang,
J. Z. H. Chem. Phys. Lett. 2011, 501, 508–512.
(2) (a) MacDermaid, C. M.; Kaminski, G. A. J. Phys. Chem. B 2007,

111, 9036–9044. (b) Click, T. H.; Kaminski, G. A. J. Phys. Chem. B
2009, 113, 7844–7850.
(3) Veluraja, K.; Margulis, C. J. J. Biomol. Struct. Dyn. 2005, 23,

101–111.
(4) (a) Ji, C.; Mei, Y.; Zhang, J. Z. H. Biophys. J. 2008, 95,

1080–1088. (b) Ji, C. G.; Zhang, J. Z. H. J. Phys. Chem. B 2009, 113,
16059–16064.
(5) For representative publications see: (a) Rick, S. W.; Stuart, S. J.;

Berne, B. J. J. Chem. Phys. 1994, 101, 6141–6156. (b) Liu, Y. P.; Kim, K.;
Berne, B. J.; Friesner, R. A.; Rick, S. W. J. Chem. Phys. 1998,
108, 4739–4755. (c) Ramon, J. M. H.; Rios, M. A. Chem. Phys. 1999,
250, 155–169. (d) Gonzalez, M. A.; Enciso, E.; Bermejo, F. J.; Bee, M.
J. Chem. Phys. 1999, 110, 8045–8059. (e) Soetens, J. C.; Jansen, G.;
Millot, C.Mol. Phys. 1999, 96, 1003–1012. (f) Dang, L. X. J. Chem. Phys.
2000, 113, 266–273. (g) Chen, B.; Xing, J. H.; Siepmann, J. I. J. Phys.
Chem. B 2000, 104, 2391–2401. (h) Jedlovszky, P.; Vallauri, R. J. Chem.
Phys. 2001, 115, 3750–3762. (i) Ribeiro, M. C. C. Phys. Rev. B 2001,
6309, 4205. (j) Rinker, S.; Gunsteren, W. F. J. Chem. Phys. 2011,
134, 084110. (k) Jiang, W.; Hardy, D. J.; Phillips, J. C.; MacKerrel,
A. D.; Schulten, K.; Roux, B. J. Phys. Chem. Lett. 2011, 2, 87–92.
(6) Kaminski, G. A.; Zhou, R.; Friesner, R. A. J. Comput. Chem.

2003, 24, 267–276.
(7) Kaminski, G. A.; Stern, H. A.; Berne, B. J.; Friesner, R. A.; Cao,

Y. X.; Murphy, R. B.; Zhou, R.; Halgren, T. J. Comput. Chem. 2002,
23, 1515–1531.
(8) Kaminski, G. A.; Friesner, R. A.; Tirado-Rives, J.; Jorgensen,

W. L. J. Phys. Chem. B 2001, 105, 6474–6487.
(9) (a) Marqusee, S.; Robbins, V. H.; Baldwin, R. L. Proc. Natl. Acad.

Sci. U.S.A. 1989, 86, 5286–5290. (b) Scholtz, J. M.; York, E. J.; Steward,
J. M.; Baldwin, R. L. J. Am. Chem. Soc. 1991, 113, 5102–5104. (c) Scholtz,
J. M.; Baldwin, R. L. Annu. Rev. Biophys. Biomol. Struct. 1992, 21, 95–119.
(d) Kinnear, B. S.; Kaleta, D. T.; Kohtani, M.; Hudgins, R. R.; Jarrold,
M. F. J. Am. Chem. Soc. 2000, 122, 9243–9256. (e) Wei, Y.; Nader, W.;
Hansmann, U. H. E. J. Chem. Phys. 2007, 126, 204307.
(10) Kaminski, G. A.; Ponomarev, S. Y.; Liu, A. B. J. Chem. Theory

Comput. 2009, 5, 2935–2943.
(11) (a) Jaguar, v3.5, Schr€odinger, Inc.: Portland,OR, 1998; (b) Jaguar,

v4.2, Schr€odinger, Inc.: Portland, OR, 2000.
(12) Kaminski, G. A.; Maple, J. R.; Murphy, R. B.; Braden, D.;

Friesner, R. A. J. Chem. Theory Comput. 2005, 1, 248–254.
(13) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey,

R. W. J. Chem. Phys. 1983, 79, 926–935.
(14) Takekiyo, T.; Imai, T.; Kato, M.; Taniguchi, Y. Biopolymers

2004, 73, 283–290.
(15) Distasio, R. A.; Steele, R. P.; Rhee, Y. M.; Shao, Y.; Head-Gordon,

M. J. Comput. Chem. 2007, 28, 839–856.

(16) Berndt K. D. Protein Secondary Structure, Birkbeck College,
University of London: London; http://www.cryst.bbk.ac.uk/PPS2/
course/section8/ss-960531_6.html. Accessed on December 10, 2010).



Published: April 22, 2011

r 2011 American Chemical Society 1428 dx.doi.org/10.1021/ct100711u | J. Chem. Theory Comput. 2011, 7, 1428–1442

ARTICLE

pubs.acs.org/JCTC

Vibrational Energy Levels via Finite-Basis Calculations Using a
Quasi-Analytic Form of the Kinetic Energy
Juana V�azquez,*,†,‡ Michael E. Harding,*,†,‡ John F. Stanton,† and J€urgen Gauss‡

†Center for Theoretical Chemistry, Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712,
United States
‡Institut f€ur Physikalische Chemie, Universit€at Mainz, D-55099 Mainz, Germany

bS Supporting Information

ABSTRACT: A variational method for the calculation of low-lying vibrational energy levels of molecules with small amplitude
vibrations is presented. The approach is based on the Watson Hamiltonian in rectilinear normal coordinates and characterized by a
quasi-analytic integration over the kinetic energy operator (KEO). The KEO beyond the harmonic approximation is represented by
a Taylor series in terms of the rectilinear normal coordinates around the equilibrium configuration. This formulation of the KEO
enables its extension to arbitrary order until numerical convergence is reached for those states describing small amplitude motions
and suitably represented with a rectilinear system of coordinates. A Gauss-Hermite quadrature grid representation of the
anharmonic potential is used for all the benchmark examples presented. Results for a set of molecules with linear and nonlinear
configurations, i.e., CO2, H2O, and formyl fluoride (HFCO), illustrate the performance of the method and the versatility of our
implementation.

’ INTRODUCTION

The use of perturbation theory in second and higher orders
has a long tradition in the theoretical prediction and interpreta-
tion of vibrational spectra1,2 and is still extensively applied with
new variations and extensions.3-8 Nevertheless, variational
methods constitute a more robust approach for solving the
vibrational Schr€odinger equation; they overcome the multiple
degeneracy or resonance problems associated with the perturba-
tional approach and provide an exact solution to the problem
within the constraints imposed by the basis and the potential
energy surface (PES) used. The earliest variational developments
used a direct-product representation of the wave function in
terms of an orthonormal set of basis functions (e.g., harmonic,
Morse oscillators, etc.), which has been referred to as finite basis
representation (FBR). Pioneer studies in this direction were
carried out by Whitehead and Handy,9,10 Carney et al.,11-13 and
others.14-15 Other methods applying the FBR approach ap-
peared later, for example, the vibrational self-consistent field
(VSCF) method and different ‘CI’ schemes16-21 as well as some
modifications such as parallel vibrational multiple window con-
figuration interaction (P-VMWCI) and the vibrational mean
field configuration interaction (VMFCI) approaches.23 In varia-
tional or pseudovariational methods it is also possible to con-
struct a grid-based representation of the wave function, the so-
called discrete variable representation (DVR).23-28 After Light
et al.26-28 had shown the equivalence between FBR and DVR
approaches, the latter soon started to be used extensively in
almost all fields of nuclear motion theory.28,29

The definition and computation of the two components of the
nuclear motionHamiltonian, the kinetic energy and the potential
energy operators, are aspects to consider in the theoretical
prediction and analysis of vibrational spectra. A choice for

representing the potential energy is a Taylor expansion around
a reference configuration (usually the equilibrium structure).
This has proven especially suitable for describing regions of the
PES near minima, and it is well-suited to the framework of
perturbational approaches.1-5 This representation of the poten-
tial can be computed by fitting energy points to an analytic
function or alternatively by numerical or analytical calculation of
derivatives of the electronic energy.30,31 Another possibility is to
define the potential by a (semi)global PES; this idea provides a
better description of areas of the PES other than those close to
stationary points. Examples are the work of Braams and co-
workers32-35 as well as the so-called n-mode36-38 and product39

representations as well as a direct quadrature. The latter has the
advantage of providing a diagonal form of the potential energy
reducing significantly the computational demand. The choice of
coordinates determines the form of the kinetic-energy operator
(KEO) and consequently the total Hamiltonian, (assuming that
if the coordinate system of the KEO and the potential are
different, the transformation between them is known40). One
option is to express the KEO in curvilinear internal coordinates,
(e.g., valence, Jacobi, Radau, or polyspherical coordinates). Some
of these coordinates can describe the complete range of eigen-
states of a molecule and are suitable for ‘floppy’molecules and in
general for large amplitude vibrational motions. General formu-
lations of the KEO in curvilinear coordinates leading to particu-
larly simple structures have existed for a long time,41,42 and
research in this direction continues.43-53 However, explicit
algebraic expressions of KEOs for some choices of curvilinear
coordinates may involve some complexity, especially when

Received: December 11, 2010
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increasing the molecular size. In these cases, it has been more
common to build specific KEOs for molecules with a particular
number of atoms (from three to five) and/or atomic
arrangements.54-69 A further possibility is to use rectilinear
coordinates, in particular, normal coordinates. Even though they
provide a poor description of large amplitude motion, the
resulting KEO is unique and can be represented by a compact
form.70,71 These two features make the rectilinear representation
attractive when dealing with (semirigid) medium- and large-size
molecules and, in general, when attention is placed on low-lying
vibrational energy levels and zero-point energy (ZPE), as is the
usual case in thermochemical studies as well as the analysis of
most infrared spectra. Because of these advantages several
investigations have been devoted to Watson’s simplified form
of the nuclear Hamiltonian in rectilinear normal coordinates, for
carrying out either a perturbative treatment2-5,8 or a variational
approach with finite basis72-83 or discrete variable40,84-88 re-
presentations. Nevertheless, because of complications in factor-
izing the KEO, the completeWatson Hamiltonian has not always
been considered. In the past, this problem has been circumvented
by including only the harmonic contribution of the kinetic
energy8,85,86,89-91 or by incorporating only some terms of the
KEO beyond the harmonic approximation.72-75,80-82 So far, the
exact KEO has only been considered with numerical integration
in the FBR or in the DVR, some examples of the use of these two
representations can be found in refs 9-13 and 16-21 (FBR) as
well as in refs 40, 84, and 88 (DVR).

In this work, we return to the original work of Whitehead and
Handy10 and describe a vibrational full configuration interaction
(VFCI) method in a FBR to calculate energy levels using the
complete vibrational Hamiltonian as given by Watson.70,71 A
quadrature grid representation of the anharmonic potential is
combined with a quasi-analytic integration of the kinetic energy.
The KEO beyond the harmonic oscillator treatment is repre-
sented by a Taylor series in rectilinear normal coordinates. We
present a formulation of the KEO that allows the expansion to be
extended to arbitrary order. Given a highly accurate PES, the
applicability of our approach extends to the determination of
accurate zero-point energies (ZPE) and low-lying vibrational
energy levels. Results for a set of molecules with linear and
nonlinear configuration, i.e., CO2, H2O, and HFCO are pre-
sented to illustrate the accuracy of the approach and the
applicability of our implementation.

’THEORY

Vibrational Hamiltonian for Nonlinear and Linear Config-
urations. The pure vibrational Hamiltonian (rotational angular
momentum equal to zero, J = 0) in rectilinear dimensionless
normal coordinates (q) for a nonlinear molecular system with N
nuclei can be expressed in the following compact form and in
units of cm-1:70,92,93

Ĥ ¼ p2

2
∑
x, y, z

Rβ
π̂RμRβπ̂β -

p2

8
∑
x, y, z

R
μRR þ

1
2
∑

3N - 6

k¼ 1
ωkp̂

2
k þ V̂ðqÞ

ð1Þ
The three first terms of the Hamiltonian define the nuclear
kinetic energy, T̂(q, p̂). The first represents the vibrational
Coriolis term, and the second is the kinetic pseudopotential
term (traditionally called Watson or Û term). The latter has a
quantum-mechanical origin and is a small mass-dependent

correction to the vibrational energy that is essentially constant
and therefore of little spectroscopic relevance. It can be, however,
essential for predicting accurate ZPE necessary, for example,
in thermochemical studies.94 V̂(q) represents the potential
energy surface as a function of the rectilinear dimensionless
normal coordinates,ωk is the harmonic frequency for the normal
mode k, R and β denote the principal rotational axes (A, B, and
C). The R-th component of the effective vibrational angular
momentum operator, π̂R, is defined by

π̂R ¼ ∑
3N - 6

kl
ζRkl

ωl

ωk

� �1=2

qkp̂l ð2Þ

The Coriolis constant, ζkl
R, describes the coupling between the

rectilinear normal coordinates k and l along the R axis, and p̂k is
the linear vibrational momentum conjugate to the reduced
dimensionless normal coordinate qk and given by p̂k =-i(∂/∂qk).
The Rβ-component of the modified reciprocal inertia tensor μ is
defined by μRβ � (I0-1)Rβ. Amat and Henry95,96 derived an
expression for I0 which takes the following form for the Rβ-
component:

I
0
Rβ ¼ IeRβ þ ∑

3N - 6

k
aRβk γ-1=2

k qk

þ 1
4
∑

3N - 6

kl
∑
x, y, z

γδ
aRγk Ie - 1

γδ aδβl γ-1=2
k γ-1=2

l qkql ð3Þ

where

aRβk ¼ DIRβ
DQk

� �
e

ð4Þ

Qk denotes the mass-weighted rectilinear normal coordinate
associated with the normal mode k and is related to qk by Qk =
(2πcωk/p)

-1/2qk, (γk = 2πcωk/p). Here, I
e is the moment of

inertia at the reference configuration (equilibrium geometry in
the present case).
Watson also derived a similar quantum-mechanical expression

for linear molecules71 and avoided the difficulties with the
relations between the angular momentum components by trans-
forming the Hamiltonian to the isomorphic form introduced
earlier by Hougen.97 Assuming that the molecular reference
configuration lies along the z axis, the resulting pure vibrational
Hamiltonian for linear systems can be written as

Ĥ ¼ p2

2
μðπ̂2x þ π̂ 2

y Þ þ
1
2
∑

3N - 5

k¼ 1
ωkp̂

2
k þ V̂ðqÞ ð5Þ

where, μ = (I0)-1. For simplicity, the notation is based on:
μ = μxx = μyy and I0 = Ixx0 = Iyy0 . The components of I0 are
defined by

I0 ¼ Ie - 1 Ie þ 1
2
∑

3N - 5

k
akγ

1=2
k qk

 !2

ð6Þ

where the relations ak = ak
xx = ak

yy have been exploited. The
vibrational Hamiltonian of eqs 1 and 5 can be regrouped in
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two parts: the harmonic-oscillator Hamiltonian and the
remaining terms. For nonlinear molecules this is

Ĥ ¼ Ĥ harm þ p2

2
∑
x, y, z

Rβ
π̂RμRβπ̂β -

p2

8
∑
x, y, z

R
μRR þ V̂ anhðqÞ

¼ Ĥ harm þ Ĉnonlinearðq, p̂Þ þ ÛðqÞ þ V̂ anhðqÞ
¼ Ĥ harm þ K̂nonlinearðq, p̂Þ þ V̂ anhðqÞ ð7Þ

where K̂nonlinear contains the vibrational Coriolis and the
Watson terms. Similarly, for linear configurations:

Ĥ ¼ Ĥ harm þ p2

2
μðπ̂ 2

x þ π̂ 2
y Þ þ V̂ anhðqÞ

¼ Ĥ harm þ Ĉlinearðq, p̂Þ þ V̂ anhðqÞ

¼ Ĥ harm þ K̂ linearðq, p̂Þ þ V̂ anhðqÞ ð8Þ
In both cases, linear andnonlinear configurations, Ĥ harm is definedby

Ĥ harm ¼ Ĥ o ¼ 1
2

∑
3N - 6ð5Þ

k¼ 1
ωkðq2k þ p̂2kÞ ð9Þ

The eigenfunctions of Ĥ harm are one-dimensional harmonic
oscillator wave functions,98 φni [φni = Nie

-q
i
2/2Hni(qi), where Hni is

the Hermite polynomial associated to the i-th normal mode], and
the total vibrational molecular wave function, Ψ, is given by a
multidimensional product of harmonic oscillators basis functions
(FBR). Use of this ansatz leads to an eigenvalue equation;
elements of the correspondingHamiltonianmatrixH are given by:

where εK represents the harmonic energy of the vibrational state
K, and the second and third terms account for the anharmonic
contribution and the remaining part of the kinetic energy, respec-
tively. The anharmonic contribution is calculated by multidimen-
sional numerical integration employingGauss-Hermite quadratures
in the FBR,9-14 and the evaluation of the integrals associatedwith the
kinetic energy operator is discussed in the next section.

Quasi-Analytic Integration of K̂(q,p̂). The KEO beyond the
harmonic contribution, i.e., K̂nonlinear(q,̂p) and K̂ linear(q,̂p), is defined
in eqs 7 and 8 for nonlinear and linear configurations, respectively.
These equations are a function of μ, the reciprocal of I0, which is
quadratic in the rectilinear normal coordinates, see eqs 3 and 6.
However I0 can also be written as a product of three terms, two of
them linear in the rectilinear normal coordinate (q),70 and for which
Watson proposed the following general formulation:

μ ¼ I-1=2
e 1þ 1

2
b

� �-2

I-1=2
e with b � ∑

k
I-1=2
e akI

-1=2
e γ-1=2

k qk

ð11Þ
with the elements of ak defined via eq 4. With the expansion of the
binomial (1 þ 1/2b)-2,99 the expression of μRβ derived earlier by
Amat and Henry95,96 is now reformulated as follows:

μ ¼ I-1=2
e 1- bþ 3

4
b2 -

1
2
b3 þ :::

� �
I-1=2
e

¼ I-1
e - I-1

e aI-1
e þ 3

4
I-1
e aI-1

e aI-1
e -

1
2
I-1
e aI-1

e aI-1
e aI-1

e þ :::

ð12Þ
where

a ¼ ∑
3N - 6ð5Þ

k¼ 1
akγ

-1=2
k qk ð13Þ

For semirigid molecules, vibrations are small amplitude mo-
tions, and this allows the components of the reciprocal modified
moment of inertia, μRβ, to be represented by a Taylor expansion
with respect to the rectilinear normal coordinates,100 viz.:

μRβ ¼ μRβe δRβ þ ∑
k
μð1ÞRβðkÞ qk þ 1

2
∑
kl
μð2ÞRβðk, lÞ qkql

þ 1
6
∑
klm

μð3ÞRβðk, l,mÞqkqlqm þ 1
24
∑
klmn

μð4ÞRβðk, l,m, nÞqkqlqmqn þ ::: ð14Þ

and μe
Rβ is defined by μe

Rβ = δRβ(Ie
-1)Rβ. In the reduced dimension-

less normal-coordinate representation derivatives of μRβ to all orders
[μ(k)

(1)Rβ, μ(k,l)
(2)Rβ, μ(k,l,m)

(3)Rβ, ...] can be associated with the terms of eq 12
and expressed entirely in terms of the first derivatives of the inertia
tensor with respect to the rectilinear normal coordinates, i.e.:

μð1ÞðkÞ ¼ Dμ
DQk

� �
e

¼ I-1
e aI-1

e w μð1ÞRβðkÞ
DμRβ
DQk

� �
e

¼ -
aRβk

IRe I
β
e γ

1=2
k

μð2Þðk, lÞ ¼
D2μ

DQkDQl

 !
e

¼ 3
4
I-1
e aI-1

e aI-1
e w μð2ÞRβðk, lÞ ¼ D2μRβ

DQkDQl

 !
e

¼ 3
4
∑
γ

aRγk aγβl þ aRγl aγβk
IRe I

γ
e I

β
e ðγkγlÞ1=2

μð3Þðk, l,mÞ ¼
D3μ

DQkDQlDQm

 !
e

¼ -
1
2
I-1
e aI-1

e aI-1
e aI-1

e w μð3ÞRβðk, l,mÞ ¼
D3μRβ

DQkDQlDQm

 !
e

¼ -
1
2
∑
γδ

aRγk aγδl aδβm þ aRγk aγδm aδβl þ aRγm aγδl aδβk þ aRγl aγδk aδβm þ aRγm aγδk aδβl þ aRγl aγδm aδβk
IRe I

γ
e I

δ
e I

β
e ðγkγlγmÞ1=2

" #

3 3 3
3 3 3
3 3 3

ð15Þ

The first step in the quasi-analytic evaluation of the kinetic energy
is the calculation of the set of derivatives of μRβ. Fortunately, this is

easily affordable as only products of ak
Rβ are involved, i.e., derivatives

of the Rβ-component of the inertia tensor, IRβ, with respect to the
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rectilinear normal coordinate Qk, see eq 4. Although the evaluation
of integrals involving the coordinate and momentum operators is a
trivial matter,98 the processing and bookkeeping associated with
sorting and linking these integrals and these contributions to the
Hamiltonian is the most complicated and tedious element of the
present approach particularly in the case of the Coriolis term.101

When this difficulty is overcome, an accurate and efficient computa-
tion of the kinetic energy can be achieved.
The complexity associated with computing K̂(q,p̂) can be

reduced by a formulation in terms of ladder operators. Initial work
in this direction was carried out for nonlinear triatomic systems by
Huber102 and continued and extended by others in the context of
variational and perturbational approaches.6,7,83,103 Details of the
ladder operator formalism are described in the next section.
Ladder Operator Formalism. Normalized raising, L þ

k , and
lowering, L -

k , operators for the vibrational normal mode k can
be defined as

L þ
k ¼ N ð-ip̂k þ qkÞ; L -

k ¼ N ðip̂k þ qkÞ ð16Þ
The two ladder operators, L þ

k and L -
k , act only on the part of

the total vibrational wave function, Ψ = φni(q1)φnj(q2)φnk(qk) ... =
|n1, n2, ..., nk, ...æ, which depends on the k-th rectilinear normal
coordinate, i.e.,φnk(qk) = |nkæ. The normalization constant is chosen
in such a way that:

L þ
k j:::, nk, :::æ ¼ nk þ 1

2

� �1=2

j:::, nk þ 1, :::æ

L -
k j:::, nk, :::æ ¼ nk

2

� �1=2

j:::, nk - 1, :::æ
ð17Þ

The vibrational quantum number associated with normal
mode k is represented by nk. Solving eqs 16 for p̂k and qk yields

qk ¼ ðL þ
k þ L -

k Þ; p̂k ¼ iðL þ
k - L -

k Þ ð18Þ
Using eq 18, the terms of the operator K̂(q,̂p) can be written in a

ladderoperator formalism.Thecomponentsof themodified reciprocal
moment of inertia are functions of the rectilinear normal coordinates
and are thus also easily expressed in terms of ladder operators as

μRβ ¼ I-1
e þ ∑

k
μð1ÞRβðkÞ ðL þ

k þ L -
k Þ

þ 1
2
∑
kl
μð2ÞRβðk, lÞ ðL þ

k þ L -
k ÞðL þ

l þ L -
l Þ

þ 1
6
∑
klm

μð3ÞRβðk, l,mÞðL þ
k þ L -

k ÞðL þ
l þ L -

l ÞðL þ
m þ L -

mÞ

þ 1
24
∑
klmn

μð4ÞRβðk, l,m, nÞðL þ
k þ L -

k ÞðL þ
l þ L -

l ÞðL þ
m þ L -

mÞ
ðL þ

n þ L -
n Þ þ 3 3 3 ð19Þ

The effective vibrational angular momentum π̂R defined in
eq 2 involves the product qkp̂k and has a more complicated
structure.102 This operator is given by

π̂R ¼ i ∑
k < l

ζRkl½Rkl
-ðL þ

k L
þ
l - L -

k L
-
l Þ

þ Rkl
þðL -

k L
þ
l - L þ

k L
-
l Þ� ð20Þ

where the coefficients R-
kl and Rþ

kl are defined by

Rkl
- ¼ ωl

ωk

� �1=2

-
ωk

ωl

� �1=2

;

Rkl
þ ¼ ωl

ωk

� �1=2

þ ωk

ωl

� �1=2

ð21Þ

Based on the Taylor expansion of μRβ, the Watson term for
nonlinear configurations (Û(q)) and the vibrational Coriolis
term (Ĉ(q,̂p)) for both linear and nonlinear systems can be written
in terms of a hierarchy of contributions or “orders” as follows:

Ô ¼ ∑
¥

i¼ 0
Ô
ðiÞ

¼ Ô
ð0Þ þ Ô

ð1Þ þ Ô
ð2Þ þ Ô

ð3Þ þ Ô
ð4Þ þ 3 3 3 ð22Þ

where Ô = Û(q),Ĉ(q,p̂) and Ô(i) = Û(i)(q),Ĉ(i)(q,p̂).
For Û the specific terms in the expansion are:

Û
ð0Þ ¼ -

p2

8
Ie - 1

Ûð1Þ ¼ -
p2

8
∑
k
μð1ÞRRðkÞ ðL þ

k þ L -
k Þ

Û
ð2Þ¼ -

p2

16
∑
kl
μð2ÞRRðk, lÞ ðL þ

k L
þ
l þ L þ

k L
-
l þ L -

k L
þ
l þ L -

k L
-
l Þ

Û
ð3Þ ¼ -

p2

48
∑
klm

μð3ÞRRðk, l,mÞðL þ
k L

þ
l L

þ
m þ L -

k L
þ
l L

þ
m þ L þ

k L
-
l L

þ
m

þ L þ
k L

þ
l L

-
mþL þ

k L
-
l L

-
m þ L -

k L
þ
l L

-
m þ L -

k L
-
l L

þ
m

þ L -
k L

-
l L

-
mÞ

3 3 3
3 3 3
3 3 3

ð23Þ

Considering the commutation relation between π̂R and μ, i.e.,
∑R[π̂R,μRβ] = 0, terms in the expansion of the Coriolis term,
Ĉ(q,p̂), (eqs 7, 8, and 22) take the following general form:

Ĉ
ð0Þ ¼ - ∑

r < s
∑
t < u

∑
Rβ

BRe ζ
R
rsζ

β
tuðR-

rsR
-
tuĈ

ð0Þ
a, ðrstuÞ þ Rþ

rsR
-
tuĈ

ð0Þ
b, ðrstuÞ

þ R-
rsR

þ
tuĈ

ð0Þ
c, ðrstuÞ þ Rþ

rsR
þ
tuĈ

ð0Þ
d, ðrstuÞÞ

Ĉ
ð1Þ ¼ - ∑

r < s
∑
t < u
∑
k
∑
Rβ

μð1ÞRβðkÞ ζRrsζ
β
tuðR-

rsR
-
tuĈ

ð1Þ
a, ðk;rstuÞ þ Rþ

rsR
-
tuĈ

ð1Þ
b, ðk;rstuÞ

þ R-
rsR

þ
tuĈ

ð1Þ
c, ðk;rstuÞþ Rþ

rsR
þ
tuĈ

ð1Þ
d, ðk;rstuÞÞ

Ĉ
ð2Þ ¼ - ∑

r < s
∑
t < u
∑
kl
∑
Rβ

μð2ÞRβðk, lÞ ζ
R
rsζ

β
tuðR-

rsR
-
tuĈ

ð2Þ
a, ðkl;rstuÞ þ Rþ

rsR
-
tuĈ

ð2Þ
b, ðkl;rstuÞ

þ R-
rsR

þ
tuĈ

ð2Þ
c, ðkl;rstuÞþ Rþ

rsR
þ
tuĈ

ð2Þ
d, ðkl;rstuÞÞ ... ð24Þ

The operators Ĉa
(i), Ĉb

(i), Ĉc
(i), and Ĉd

(i) (i = 0, 1, 2, ..., ¥)
represent sums of products of ladder operators. Explicit expres-
sions for the two first sets of the series are given next:
i = 0

Ĉ
ð0Þ
a, ðrstuÞ ¼ L þ

r L
þ
s L

þ
t L

þ
u - L þ

r L
þ
s L

-
t L

-
u

- L -
r L

-
s L

þ
t L

þ
u þ L -

r L
-
s L

-
t L

-
u

Ĉð0Þ
b, ðrstuÞ ¼ L þ

r L
þ
s L

-
t L

þ
u - L þ

r L
þ
s L

þ
t L

-
u

- L -
r L

-
s L

-
t L

þ
u þ L -

r L
-
s L

þ
t L

-
u

Ĉð0Þ
c, ðrstuÞ ¼ L -

r L
þ
s L

þ
t L

þ
u - L -

r L
þ
s L

-
t L

-
u

- L þ
r L

-
s L

þ
t L

þ
u þ L þ

r L
-
s L

-
t L

-
u

Ĉð0Þ
d, ðrstuÞ ¼ L -

r L
þ
s L

-
t L

þ
u - L -

r L
þ
s L

þ
t L

-
u

- L þ
r L

-
s L

-
t L

þ
u þ L þ

r L
-
s L

þ
t L

-
u ð25Þ
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i = 1

Ĉ
ð1Þ
a, ðk;rstuÞ ¼ L þ

k L
þ
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þ
t L

þ
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þ
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þ
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þ
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þ
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þ
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þ
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’ IMPLEMENTATION

The implementation follows the algebraic expressions out-
lined here and keeps the number of basis functions per degree of
freedom independent from the number of sampling points used
for the quadrature grid. Three main features characterize the
present implementation: (a) determination of the prefactors
resulting from the expansion of the modified reciprocal moment
of inertia tensor, μ; (b) evaluation of the associated integrals
(matrix elements); and (c) the procedure used to obtain
eigenvalues of the Hamiltonian matrix. These are discussed in
the following paragraphs.

First, the prefactors in eqs 14 and 19 are calculated by an
efficient permutation matrix multiplication algorithm where it is
essential to use loop unrolling as well as tomake full use of restricted
summations. Regarding the second point, the integrals depend only
on a sum of ladder operator products (see, for example eqs 25 and
26). These integrals are represented by lists of integers where 1 and
0 identify raising and lowering operators, respectively. The latter lists
are regrouped by normal modes and written as a string of bits. Each
string can be processed in a recursive scheme. By systematically
applying the commutation relations

½L þ
i , L

þ
j �- ¼ 0; ½L -

i ,L
-
j �- ¼ 0; ½L -

i ,L
þ
j �- ¼ δij ð27Þ

where i, j, ... represent normal modes or vibrational degrees of
freedom, and following Wick’s theorem for bosons,104 the raising
operators can be clustered on the left (normal ordering) or the right
(antinormal ordering).105 For example, in the case of the sum
products of three ladder operators associated with the vibrational
mode i, an antinormal ordering leads the next results:

L þ
i L

þ
i L

þ
i þ L -

i L
þ
i L

þ
i þ L þ

i L
-
i L

þ
i þ L þ

i L
þ
i L

-
i þ L -

i L
-
i L

þ
i

þ L -
i L

þ
i L

-
i þ L þ

i L
-
i L

-
i þ L -

i L
-
i L

-
i

¼ 2ðL -
i L

þ
i L

þ
i þ L -

i L
-
i L

þ
i Þ- 3ðL þ

i þ L -
i Þ ð28Þ

According to the relations above, the eight possible sequences
of three lowering and raising operators are reduced to four
combinations of three operators, a contribution from L -

i and
another from L þ

i . Within this framework, and for a given order n
(see Section II), the number of integrals involving a product of n
operators, [n(n- 1)þ2], is reduced by expressing them in terms
of normal- or antinormal-ordered products of n, n - 2, n - 4,
n- 6, ..., p operators, where p = 1 or 0 for n odd or even, respec-
tively. In the present work we have chosen an antinormal
ordering, but we note that the choice of normal or antinormal
ordering is arbitrary.106

For an odd order n, all contributions of antinormal products of
n, n- 2, n- 4, ..., 1 operators associated with a vibrational mode
i, Ωodd,i, are obtained by the expression:

Ωodd, i w ∑
n

l¼ 0

n
l

 !
ðL -

i ÞlðL þ
i Þn - l

þ ∑
ðn - 1Þ=2

m¼ 1
ΘmðL -

i ÞlðL þ
i Þn - 2m - l

n o
ð29Þ

and in the case of an even order n, Ωeven,i, the corresponding
expression is

Ωeven, i w ∑
n

l¼ 0

n
l

 !
ðL -

i ÞlðL þ
i Þn - l

þ ∑
ðn - 2Þ=2

m¼ 1
ΘmðL -

i ÞlðL þ
i Þn - 2m - l

n o
þ ð- 1Þr þ nðn- 1Þ!!

ð30Þ
where

Θm ¼ ð- 1Þm
m!2m

Ym
k¼ 1

ðn- 2kþ 2Þ!
ðn- 2kÞ!

" #
∑

n - 2m

l¼ 0
n- 2m

n- 2m
l

 !" #

ð31Þ
and

r ¼ 1 for n ¼ 2, 6, 10, 14 , ...

and r ¼ 0 for n ¼ 4, 8, 12, 16 , ...

Figure 1. Schematic structure of the Hamiltonian matrix, H, for a
XY2 molecule (C2v symmetry) in the FBR including only the
anharmonic potential energy and harmonic oscillator, i.e., Ĥo þ V̂anh.
(Two basis functions were used per vibrational degree of freedom).
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Thus, the n(n - 1) þ 2 combinations of products of n
raising (L þ

i ) and lowering (L -
i ) operators that appear at

n-th order can be reduced to only (n þ 1) combinations
of products of n operators, (n - 1) products of (n - 2)
operators, (n - 3) products of (n - 4) operators, etc. In

order to maintain the antinormal ordering and exploit
eqs 29-31 computing the vibrational Coriolis term, the
following relations were taken into account for a particular
vibration i and for each order of the expansions defined by
eqs 22 and 24:

L -
i ðL -

i ÞlðL þ
i Þn - l ¼ ðL -

i Þl þ 1ðL þ
i Þn - l

L þ
i ðL -

i ÞlðL þ
i Þn - l ¼ ðL -

i ÞlðL þ
i Þn - l þ 1 - lðL -

i Þl - 1ðL þ
i Þn - l

L -
i L

-
i ðL -

i ÞlðL þ
i Þn - l ¼ ðL -

i Þl þ 2ðL þ
i Þn - l

L -
i L

þ
i ðL -

i ÞlðL þ
i Þn - l ¼ ðL -

i Þl þ 1ðL þ
i Þn - l þ 1 - lðL -

i ÞlðL þ
i Þn - l

L þ
i L

-
i ðL -

i ÞlðL þ
i Þn - l ¼ ðL -

i Þl þ 1ðL þ
i Þn - l þ 1 - ðlþ 1ÞðL -

i ÞlðL þ
i Þn - l

L þ
i L

þ
i ðL -

i ÞlðL þ
i Þn - l ¼ ðL -

i ÞlðL þ
i Þn - l þ 2 - 2lðL -

i Þl - 1ðL þ
i Þn - l þ 1 þ lðl- 1ÞðL -

i Þl - 2ðL þ
i Þn - l

ð32Þ

where l is an integer and its values ranges over the interval 1e le
n - 1. This scheme allows the analytic solution of integrals
involving an arbitrary number of ladder operators. This kernel for
evaluating theHamiltonianmatrix elements resulting from the K̂(q,
p̂) operator was checked by implementing the lower-order Hamil-
tonian contributions explicitly in terms of dimensionless rectilinear
normal coordinates (q) and its conjugate momentum (p̂).

Finally, concerning the diagonalization procedure, a few re-
marks should be made in relation to the structure of the
Hamiltonian matrix,H=ÆΨ|Ĥ |Ψæ. In FBR the matrix elements
ofH can be schematically represented by distinguishing positive,
negative and zero values (Figures 1 and 2). In particular, Figure 1
illustrates the structure ofH for a XY2 molecule (C2v symmetry)
using two basis functions per degree of freedom and ordering the
vibrational modes by increasing value of their harmonic fre-
quency, i.e., first the two totally symmetric vibrations (a1
symmetry) and next the asymmetric stretching mode (b2
symmetry). Only the harmonic oscillator operator and the
anharmonic potential were included as part of Ĥ , i.e., Ĥ o þ
V̂ anh(q). The matrix is block diagonal due to symmetry con-
straints, all diagonal contributions are positive, and about half of
the elements have values larger than 1 cm-1. Increasing the
number of basis functions per vibrational degree of freedom
preserves the block diagonal profile but obviously increases the
density of nonzero matrix elements (see first column of
Figure 2). The structure of H due to the contributions from
different orders of the pseudopotential term (Û) is presented in
Figure SI of the Supporting Information. As in the case of V̂(q), Û
is a function of the coordinate operator, and consequently the
structure of the contributions to H is similar to that of ÆΨ|
V̂harmþV̂anh|Ψæ (second column of Figure 2,107 with the proviso
that at zeroth-order (Û(0)) only about 1% of them have a value
larger than 1 cm-1 and at tenth-order (Û(10)) no contribution is
larger than 1 cm-1 and only 2% of them have values larger than
10-2 cm-1. The nonzero contributions to H resulting from the
vibrational Coriolis term, Ĉ, have amore peculiar structure, in the
present example, mostly because of symmetry considerations,108

(Figure SII, Supporting Information and third column of
Figure 2). Nevertheless, at zeroth-order (Ĉ(0)) only 5% of these
contributions have values larger than 1 cm-1, while at tenth-
order (Ĉ(10)) there are no elements larger than 1 cm-1 and only
2% of them are larger than 10-5 cm-1. For Coriolis and
pseudopotential contributions, the number of nonzero matrix
elements increases rapidly with order, see Figure SIII of the
Supporting Information. The complete structure of the Hamil-
tonian matrix, including all terms, is illustrated in the last column

of Figure 2. The sequence of orders in this Figure shows a dense
H, which is characterized by two aspects. First, the contribution
from the potential energy quantitatively dominates the rest, and
second the scarcity of zero matrix elements becomes larger with
the increase of basis functions per degree of freedom and with the
increase of order in the Û and Ĉ contributions. These character-
istics had to be considered in the implementation.

For triatomic molecules the eigenvalue problem is solved by
direct diagonalization of H, however for larger systems, a
complete or partial diagonalization is prohibitively expensive
(even if the Hamiltonian matrix still can be kept in main
memory), and an iterative Lanczos procedure109,110 is applied.
Here, the key step is the multiplication of the Hamiltonian matrix
with the Lanczos vector, VL: H does not need to be constructed
and stored explicitly, and only its product with VL is required. In
order to construct the resulting product-vector, VT, a process of
sequential additions of the different contributions from the
Hamiltonian matrix is performed, i.e., first the harmonic oscilla-
tor energies are multiplied with the trial vector and added to VT.
This is followed by an efficient contraction of the vector matrix
multiplication and the numerical integration of the anharmonic
potential. The anharmonic potential is multiplied point-wise with
the corresponding weights, while VL is sequentially contracted
with the normalized Hermite polynomials from the right side
(this step has been implemented using matrix-matrix multi-
plications). The transformed vector is then contracted with
Hermite polynomials from the left side where each of these
operations yields the complete contribution from the anharmo-
nic potential to VT. Next, the contributions from the Û and Ĉ
terms to VT are constructed by multiplication of VL with the
corresponding one mode integrals, for Û, and the one and two
mode integrals, for Ĉ. These steps are repeated several times
depending on the order of the expansion and the number of
vibrational degrees of freedom. An additional complication arises
with the Ĉ term as the resulting combinations of integrals have to
be multiplied with different elements of VL and contribute to
several elements ofVT. Once the matrix-vector multiplication is
done, the algorithm continues. After the new Lanczos vector is
constructed every other iteration, a complete reorthogonaliza-
tion of the Lanczos vectors is carried out111,112 in order to avoid
spurious eigenvalues.113

’RESULTS AND DISCUSSION

The approach outlined here has been tested for two triatomic
molecules, the normal isotopic species of H2O and CO2. For the
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Table 1. Convergence of the Anharmonic Contribution to the Zero-Point Energy and the Low-Lying Vibrational Energy Levels of
H2

16O as Function of Number of Grid Points Used in the Numerical Integration (in cm-1)a,b

statesc number of grid points per mode

(n1 n2 n3) 7 11 17 20 25 27 29 31 33 35 37d ref 40

(0 0 0) 4657.55 4649.22 4649.22 4649.22 4629.22 4629.22 4629.22 4629.22 4629.22 4629.22 4649.22 4649.22

(0 1 0) 1593.01 1582.46 1582.46 1582.46 1582.46 1582.46 1582.46 1582.46 1582.46 1582.46 1582.46 1582.46

(0 2 0) 3127.22 3126.71 3126.70 3126.70 3126.70 3126.70 3126.70 3126.70 3126.70 3126.70 3126.70 3126.70

(1 0 0) 3657.86 3656.95 3656.95 3656.95 3656.95 3656.95 3656.95 3656.95 3656.95 3656.95 3656.95 3656.95

(0 0 1) 3742.66 3742.57 3742.57 3742.57 3742.57 3742.57 3742.57 3742.57 3742.57 3742.57 3742.57 3742.57

(0 3 0) 4636.84 4628.87 4628.80 4628.80 4628.80 4628.80 4628.80 4628.80 4628.80 4628.80 4628.80 4628.80

(1 1 0) 5224.42 5223.39 5223.38 5223.38 5223.38 5223.38 5223.38 5223.38 5223.38 5223.38 5223.38 5223.39

(0 1 1) 5281.41 5281.31 5281.31 5281.31 5281.31 5281.31 5281.31 5281.31 5281.31 5281.31 5281.31 5281.31

(0 4 0) 6147.68 6083.88 6082.54 6082.54 6082.53 6082.53 6082.53 6082.53 6082.53 6082.53 6082.53 6082.54

(1 2 0) 6756.61 6751.64 6751.55 6751.55 6751.55 6751.55 6751.55 6751.55 6751.55 6751.55 6751.55 6751.56

(0 2 1) 6784.44 6783.89 6783.89 6783.89 6783.89 6783.89 6783.89 6783.89 6783.89 6783.89 6783.89 6783.89

(2 0 0) 7218.12 7198.30 7198.09 7198.09 7198.09 7198.09 7198.09 7198.09 7198.09 7198.09 7198.09 7198.09

(1 0 1) 7241.67 7236.36 7236.31 7236.31 7236.31 7236.31 7236.31 7236.31 7236.31 7236.31 7236.31 7236.32

(0 0 2) 7425.65 7421.14 7421.10 7421.10 7421.10 7421.10 7421.10 7421.10 7421.10 7421.10 7421.10 7421.10

(0 5 0) 7774.51 7492.79 7477.54 7477.42 7477.37 7477.37 7477.37 7477.36 7477.37 7477.36 7477.37 7477.38e

(1 3 0) 8253.40 8239.20 8237.88 8237.86 8237.85 8237.85 8237.85 8237.89 8237.85 8237.86 8237.85 8237.86

(0 3 1) 8273.14 8246.75 8246.69 8246.69 8246.69 8246.69 8246.69 8246.69 8246.69 8246.69 8246.69 8246.69

(2 1 0) 8756.47 8740.00 8739.74 8739.73 8739.73 8739.73 8739.73 8739.73 8739.73 8739.73 8739.73 8739.73

(1 1 1) 8764.15 8758.91 8758.87 8758.87 8758.87 8758.87 8758.87 8758.87 8758.87 8758.87 8758.87 8758.87

(0 6 0) 9893.84 8892.33 8796.29 8793.26 8792.19 8791.95 8791.34 8792.55 8791.65 8792.40 8791.84 8792.77e

(0 1 2) 8930.91 8925.12 8925.07 8925.07 8925.07 8925.07 8925.07 8925.07 8925.07 8925.07 8925.07 8925.07
aResults obtained using the CVRQDpotential energy surface of refs 40, 115, and 116. bBold font was used when two digits convergence (in cm-1) was reached.
cThe ordering of the vibrational modes is consistent with the standard spectroscopic criteria174 i.e., v1: symmetric stretching; v2: bending; v3: asymmetric
stretching. d Bold font was used in this column with states that converge with 37 or less number of grid points. Italic underlined refers to those
states whose converged values were slightly different from ref 40 or were unconverged in the present study as well. e Eigenvalues with low
convergence rates in the discrete variable representation approach of M�atyus et al.40 Problems of convergence in this numerical method are
underlined. Compare footnote of Table 1 in ref 40.

Figure 2. Structure of the full Hamiltonian matrix in the FBR for a XY2 (C2v symmetry) molecule adding different contributions to Ĥ . (All the data was
obtained using five basis functions per vibrational mode, and all the pictorial representations contain the contribution from the harmonic oscillator
operator in their diagonal).
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first, a high-accuracy potential energy surface is available, and
its vibrational level structure has been extensively studied (a starting
point in the literature can be found in ref 114), while the second,
CO2, represents a prototype for linear systems. Additionally,
the applicability for four-atom and low-symmetry molecules is
illustrated by the prediction of the low-lying vibrational spectrumof
the normal isotopic species of formyl fluoride (HFCO).
Water. The investigation of the low-lying vibrational structure

of the most abundant isotopologue of water, H2
16O, was carried

out with the semiglobal PES developed by Polyansky et al.
(CVRQD).115,116 The convergence of the ZPE and the 20 lowest
vibrational transitions as a function of the number of quadrature
points per degree of freedom used to describe the anharmonic
contribution is shown in Table 1. As expected, fast convergence is
observed for the ZPE and for the three fundamental vibrations.
The ZPE and fundamentals converge using only 9-11 grid points
per degree of freedom. Transitions involving higher excitation of
the bending mode (v2, 102n30, n = 3, 4, 5, ...) were more difficult to
converge due to the somewhat large amplitude character of this
motion. With 19-20 grid points per degree of freedom all states
are converged except for the third, fourth, and fifth overtones of v2,
i.e., (0,4,0), (0,5,0), and (0,6,0). The first, (0,4,0), required 27 basis
functions per degree of freedom to converge, and the other two
[(0,5,0) and (0,6,0)] could not be converged even with 37 basis
functions permode. The (0,6,0) state still shows a final uncertainty
of 0.28 cm-1 (see Table 1). Our results compare well with those
obtained in a DVR by M�atyus et al.40 The largest discrepancy is
observed for the (0,6,0) transition with a difference between the
DEWE approach,40,117 and our results of the order of 1.5 cm-1

using the same number of basis functions asM�atyus et al.,40 i.e., 20
quadrature points per degree of freedom (see Table 1).
Table 2 shows the corrections to the harmonic ZPE and

vibrational transitions resulting from the different expansion
orders of Û (i.e.; Û

(0),Û
(2),Û

(4), ...), see eqs 22 and 23. It can
be observed that all corrections decrease the energies and, as
expected, that the zeroth-order contribution (Û(0)) is a constant
correction to all the vibrational levels with a quantitatively
relevant effect on the ZPE and, of course, no impact for transition
energies. The correction to the ZPE due to the Û term converges
at sixth-order (Û(n), n = 0-6) and differs by only -0.46 cm-1

from the corresponding zeroth-order correction usually applied
in VPT2.94,118-120 The corrections to the fundamentals also con-
verge at sixth-order and their magnitudes range between -0.60
and -0.17 cm-1. States involving two and higher quanta
excitations of the bending motion exhibit the largest corrections,
i.e., 2-5 cm-1 and require higher orders in the expansions
because of the slow convergence (which is caused, in part, by both
the large amplitude character of these states and the incipient
singularity in μ at linear geometries).121-123 This behavior is
typical for vibrations with large amplitude character124,125 and
can be used to identify this type of motion. The kinetic energy
contributions resulting from Ĉ are presented in Table 3; these
corrections are characterized by positive contributions to the
energies and relatively fast convergence. The Ĉ(i) corrections to
the ZPE are significantly smaller than those due to Û. However,
their quantitative influence on the vibrational states in general
gains importance with increasing level of excitation. As expected,
the zeroth-order correction, Ĉ(0), is the leading contribution.

Table 2. Corrections to the Harmonic ZPE and Low-Lying Vibrational Transitions of H2
16O Resulting from Different Orders of

the Expansion of the Û term (in cm-1)a

statesb order of the Û term contributionc,d

(n1 n2 n3) harm Û(0) þÛ(2) þÛ
(4) þÛ

(6) þÛ
(8) þÛ

(10) þÛ
(12) þÛ

(14)

(0 0 0) 4714.58 -12.88 -13.31 -13.33 -13.34 -13.34 -13.34 -13.34 -13.34

(0 1 0) 1649.20 - -0.52 -0.59 -0.60 -0.60 -0.60 -0.60 -0.60

(0 2 0) 3298.40 - -1.04 -1.23 -1.26 -1.27 -1.27 -1.27 -1.27

(1 0 0) 3834.44 - -0.19 -0.21 -0.21 -0.21 -0.21 -0.21 -0.21

(0 0 1) 3945.53 - -0.15 -0.16 -0.17 -0.17 -0.17 -0.17 -0.17

(0 3 0) 4947.59 - -1.55 -1.92 -2.00 -2.02 -2.02 -2.02 -2.02

(1 1 0) 5483.63 - -0.71 -0.82 -0.84 -0.85 -0.85 -0.85 -0.85

(0 1 1) 5594.73 - -0.67 -0.76 -0.77 -0.78 -0.78 -0.78 -0.78

(0 4 0) 6596.79 - -2.07 -2.66 -2.82 -2.86 -2.88 -2.88 -2.88

(1 2 0) 7132.83 - -1.23 -1.49 -1.54 -1.54 -1.56 -1.56 -1.56

(0 2 1) 7243.93 - -1.19 -1.41 -1.45 -1.46 -1.46 -1.46 -1.46

(2 0 0) 7668.87 - -0.38 -0.43 -0.43 -0.43 -0.43 -0.43 -0.43

(1 0 1) 7779.97 - -0.34 -0.38 -0.39 -0.39 -0.39 -0.39 -0.39

(0 0 2) 7891.07 - -0.30 -0.33 -0.33 -0.34 -0.34 -0.34 -0.34

(0 5 0) 8245.99 - -2.59 -3.45 -3.73 -3.82 -3.85 -3.86 -3.86

(1 3 0) 8782.03 - -1.74 -2.20 -2.32 -2.36 -2.37 -2.37 -2.37

(0 3 1) 8893.13 - -1.70 -2.11 -2.20 -2.23 -2.23 -2.23 -2.23

(2 1 0) 9318.07 - -0.90 -1.06 -1.10 -1.10 -1.10 -1.10 -1.10

(1 1 1) 9429.17 - -0.86 -1.00 -1.03 -1.03 -1.04 -1.04 -1.04

(0 6 0) 9895.19 - -3.11 -4.30 -4.74 -4.90 -4.97 -5.00 -5.00

(0 1 2) 9540.26 - -0.82 -0.94 -0.96 -0.96 -0.96 -0.96 -0.96
aResults obtained using 20 grid points and basis functions per degree of freedom. bThe ordering of the vibrational modes is consistent with the standard
spectroscopic criteria,174 i.e., v1: symmetric stretching; v2: bending; v3: asymmetric stretching. cOdd orders have been omitted because their
contributions are almost negligible. dBold font was used when two digits convergence (in cm-1) was reached.
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Fundamentals and ZPE converge at fourth order (Ĉ(4)) and all the
20 states at sixth order (Ĉ(6)). When both contributions to the
kinetic energy (K̂(q,p̂)), i.e., the pseudopotential, Û(i), and the
Coriolis terms, Ĉ(i), i = 1, 2, 3, ..., are simultaneously taken into
account the quantitative results are dominated by the Ĉ(i) correc-
tions, while the convergence is slower for the Û(i) contributions (see
Table 4).Once the convergence of the kinetic energy contribution is
achieved by reaching an appropriate order in the expansions, which
is expected always for small amplitude motions, it can be used in
conjunction with the contribution from the anharmonic potential to
estimate the final vibrational levels, see Table 5. Our results agree
well with those from the numerical procedure of M�atyus et al.,40

with the exception of the states (0,5,0) and (0,6,0), for which
numerical results show a very slow convergence and are affected by
singularities in the pseudopotential contribution.121-123

CO2. Since the resonance between the symmetric stretching
mode (v1) of carbon dioxide and the first overtone of its
degenerate bending motion (2v2) was identified by Fermi,126

this molecule became a famous problem in molecular spectros-
copy. The isotopologue 12C16O2 and some others were exten-
sively studied experimentally; as a result of that it was possible
to experimentally infer quartic127 and sextic128-132 force fields
for this species. Ab initio calculations of the quartic force field
of 12C16O2 have been carried out at different levels of
theory.133-139 Recently, Rodriguez-Garcia et al.139 calculated

the PES of 12C16O2 from a set of energy points computed using
coupled-cluster methods with partial and full inclusion of triple
excitation effects together with correlation-consistent basis sets and
an extrapolation technique to converge to the basis set limit. They
presented the PES in terms of a fourth-order Taylor expansion and
bymeans of numerical values on aGauss-Hermite quadrature grid.
Concerning the prediction of the vibrational spectrum, most

theoretical studies were based on vibrational perturbation
theory in second order (VPT2),133-137 and fundamental tran-
sitions were the main focus of interest. ZPE and 13 vibrational
states in the range of 2000-4900 cm-1 were calculated within
DVR using different quartic and sextic force fields131,132,138 and
a Hamiltonian expressed in terms of orthogonal Jacobi and
Radau coordinates.140 DVRwas also used with a Hamiltonian in
rectilinear normal coordinates,40 and in this occasion, the ZPE
and a total of 13 states between 600 and 2800 cm-1 were
predicted using the experimental sextic force field of Ch�edin.131

Rodriguez-Garcia et al.140 applied the VSCF and VCI ap-
proaches with their extrapolated PES computing the lowest
eight states of 12C16O2 and analyzed the classic resonance
v1 ≈ 2v2.
In the present work we use Ch�edin’s experimental quartic force

field expressed in rectilinear normal coordinates.131 Quintic and
sextic force fields were excluded for two reasons: First, inconsisten-
cies were previously found in the sign of some force constants in
internal coordinates,138 which have been confirmed in this research
when expressing the force field in rectilinear normal coordinates;141

and second, it has been demonstrated that the influence of the
quintic and sextic potential in the low-energy region of the vibra-
tional spectrum of 12C16O2 is essentially negligible.

140 Considering
the truncation of the potential expansion at the fourth order, we
restrict our analysis to the ZPE and the eight lowest energy levels
(see Table 6). The present results are compared with experimental
values, fromwhich the PESwas derived and to results obtained with
the VCI approach and the extrapolated PES,139 as well as with the
values calculated within DVR using Ch�edin’s sextic force field in
internal coordinates.131 The third column of Table 6 contains the
contribution from the vibrationalCoriolis term, Ĉlinear =∑iĈlinear

(i) (i=
1, 2, 3, ...). In contrast to H2

16O, the Coriolis contribution converges
quickly and is essentially converged at zeroth-order (Ĉlinear

(0) ).142 It is
also noteworthy that the first and higher excitations of the sym-
metric stretch, v1 [(n 0

0; 0), n = 1,2, ...] do not have contributions
from this part of the KEO due to the fact that the Coriolis constants
involving this mode (ζv1v(2,3)

x ,ζv1v(2,3)
y ) vanish. Our results are close to

the experimental values (mean deviation of about 1.0 cm-1); the
largest difference of about 3.0 cm-1 for the (1 11 0) state probably is
due to an insufficient inclusion of anharmonic effects and the
computation of only “pure” vibrational states. Comparing with other
theoretical predictions, the DVR calculations ofM�atyus et al.40 have
a mean deviation of 1.1 cm-1 with respect to experiment which,
together with our results, confirms the small influence of higher-
order force fields on the low-lying vibrational levels; Rodriguez-
Garcia et al.139 obtained values with a mean deviation of about
3.0 cm-1 from experiment usingVCI and an extrapolated PES; their
larger discrepancies might be partially due to the neglect of the
vibrational Coriolis term in the kinetic energy operator. These
contributions amount to 0.75-2.24 cm-1.
HFCO. Several theoretical studies on the unimolecular dissocia-

tion and rearrangement reactions of HFCO have been carried
out over the years,143-149 although to the best of our knowl-
edge only two analytic representations of its global PES were
constructed.148,149 The first148 was obtained by fitting 3855 energy

Table 3. Corrections to the Harmonic ZPE and Low-Lying
Vibrational Transitions of H2

16O Resulting from Different
Orders of the Expansion of the Ĉ Term (in cm-1)a

statesb order of the Ĉ term contributionc,d

(n1 n2 n3) harm Ĉ(0) þĈ(0) þĈ(4) þĈ(6)

(0 0 0) 4714.58 1.91 1.91 1.92 1.92

(0 1 0) 1649.20 13.30 13.40 13.40 13.40

(0 2 0) 3298.40 26.45 26.64 26.64 26.64

(1 0 0) 3834.44 0.00 0.00 0.00 0.00

(0 0 1) 3945.53 13.26 13.36 13.36 13.36

(0 3 0) 4947.59 39.45 39.73 39.73 39.73

(1 1 0) 5483.63 13.31 13.63 13.64 13.64

(0 1 1) 5594.73 53.02 53.40 53.41 53.41

(0 4 0) 6596.79 52.30 52.66 52.67 52.67

(1 2 0) 7132.83 26.45 27.05 27.07 27.07

(0 2 1) 7243.93 92.32 92.96 92.97 92.97

(2 0 0) 7668.87 0.00 0.06 0.06 0.06

(1 0 1) 7779.97 13.26 13.59 13.60 13.60

(0 0 2) 7891.07 26.53 26.73 26.73 26.73

(0 5 0) 8245.99 65.01 65.46 65.46 65.46

(1 3 0) 8782.03 39.45 40.31 40.33 40.33

(0 3 1) 8893.13 131.16 132.04 132.05 132.05

(2 1 0) 9318.07 13.31 13.86 13.87 13.87

(1 1 1) 9429.17 53.02 54.23 54.26 54.26

(0 6 0) 9895.19 77.59 78.11 78.12 78.12

(0 1 2) 9540.26 92.77 93.45 93.46 93.46
aResults obtained using 20 grid points and basis functions per degree of
freedom. bThe ordering of the vibrational modes is consistent with the
standard spectroscopic criteria,174 i.e., v1: symmetric stretching; v2:
bending; v3: asymmetric stretching. cOdd orders have been omitted
because their contributions are almost negligible. dBold font was used
when two digits convergence (in cm-1) was reached.
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points calculated at the MP4150 level of theory, and the second149

was based on approximately 4000 energy points calculated at the
MP2 level151 using a (10s5p2d/5s2p)/[4s3p2d/3s2p] and a

correlation consistent polarized valence triple-ζ (cc-pVTZ) basis
sets.152 The MP2 PES was constructed by splitting and treating the
energy surface in three different parts, each one describing a

Table 4. Corrections to the Harmonic ZPE and Low-Lying Vibrational Transitions of H2
16O Resulting from Different Orders of

the Expansion of the Û and Ĉ Terms (in cm-1)a

statesb order of the Ô= Ûþ Ĉ contributionc,d

(n1 n2 n3) harm Ô(0) þÔ(2) þÔ(4) þÔ(6) þÔ(8) þÔ(10) þÔ(12) þÔ(14)

(0 0 0) 4714.58 -10.97 -11.38 -11.41 -11.41 -11.41 -11.41 -11.41 -11.41
(0 1 0) 1649.20 13.30 12.89 12.82 12.81 12.81 12.81 12.81 12.81
(0 2 0) 3298.40 26.45 25.61 25.43 25.39 25.39 25.39 25.39 25.39
(1 0 0) 3834.44 0.00 -0.16 -0.18 -0.18 -0.18 -0.18 -0.18 -0.18
(0 0 1) 3945.53 13.26 13.21 13.20 13.20 13.20 13.20 13.20 13.20
(0 3 0) 4947.59 39.45 38.19 37.83 37.75 37.73 37.73 37.73 37.73
(1 1 0) 5483.63 13.31 12.92 12.82 12.80 12.79 12.79 12.79 12.79
(0 1 1) 5594.73 53.02 52.75 52.66 52.65 52.65 52.65 52.65 52.65
(0 4 0) 6596.79 52.30 50.61 50.03 49.87 49.83 49.82 49.81 49.81
(1 2 0) 7132.83 26.45 25.84 25.59 25.53 25.52 25.52 25.51 25.51
(0 2 1) 7243.93 92.32 91.79 91.59 91.55 91.54 91.54 91.54 91.54
(2 0 0) 7668.87 0.00 -0.32 -0.37 -0.37 -0.37 -0.37 -0.37 -0.37
(1 0 1) 7779.97 13.26 13.25 13.22 13.21 13.21 13.21 14.21 14.21
(0 0 2) 7891.07 26.53 26.43 26.41 26.41 26.41 26.41 26.41 26.41
(0 5 0) 8245.99 65.01 62.89 62.04 61.77 61.68 61.65 61.64 61.64
(1 3 0) 8782.03 39.45 38.58 38.14 38.02 37.99 37.98 37.97 37.97
(0 3 1) 8893.13 131.16 130.37 129.99 129.90 129.88 129.88 129.87 129.87
(2 1 0) 9318.07 13.31 12.96 12.81 12.78 12.78 12.77 12.77 12.77
(1 1 1) 9429.17 53.02 53.39 53.27 53.25 53.24 53.24 54.24 54.24
(0 6 0) 9895.19 77.59 75.03 73.86 73.43 73.26 73.20 73.18 73.18
(0 1 2) 9540.26 92.77 92.65 92.55 92.53 92.53 92.53 92.53 92.53

aResults obtained using 20 grid points and basis functions per degree of freedom. bThe ordering of the vibrational modes is consistent with the standard
spectroscopic criteria,174 i.e., v1: symmetric stretching; v2: bending; v3: asymmetric stretching. cOdd orders have been omitted because their
contributions are almost negligible. dBold font was used when two digits convergence (in cm-1) was reached.

Table 5. Corrections to the ZPE and Low-Lying Vibrational Transitions of H2
16O Resulting from the Û and Ĉ Contributions

(in cm-1)a,b

statesc Ĥo þ V̂anh Ĥo þ V̂anh þ Ûconv Ĥo þ V̂anh þ Ûconv Ĥo þ V̂anh þ (Û þ Ĉ)conv

(n1 n2 n3) this work ref 40 this work ref 40 this work ref 40 this work ref 40

(0 0 0) 4649.22 4629.22 4636.30 4636.30 4651.23 4651.23 4638.21 4638.21
(0 1 0) 1582.46 1582.46 1581.58 1581.58 1595.94 1595.94 1595.08 1595.08
(0 2 0) 3126.70 3126.70 3124.64 3124.64 3154.22 3154.22 3152.20 3152.20
(1 0 0) 3656.95 3656.95 3657.23 3657.23 3656.77 3656.77 3657.05 3657.05
(0 0 1) 3742.57 3742.57 3742.97 3742.98 3755.32 3755.32 3755.73 3755.73
(0 3 0) 4628.80 4628.80 4625.02 4625.02 4671.26 4671.26 4667.58f 4667.57
(1 1 0) 5223.38 5223.39 5222.82 5222.82 5236.05 5236.05 5235.49 5235.49
(0 1 1) 5281.31 5281.31 5280.90 5280.90 5331.88 5331.88 5331.51 5331.51
(0 4 0) 6082.53 6082.54 6075.99 6075.94e 6141.44 6141.44 6135.16f 6135.10e

(1 2 0) 6751.55 6751.56 6749.85 6749.85 6777.62 6777.63 6775.96f 6775.97
(0 2 1) 6783.89 6783.89 6782.41 6782.41 6873.53 6873.53 6872.15 6872.15
(2 0 0) 7198.09 7198.09 7198.67 7198.68 7200.62 7200.62 7201.19 7201.19
(1 0 1) 7236.31 7236.32 7236.99 7236.99 7248.54 7248.55 7249.22 7249.22
(0 0 2) 7421.10 7421.10 7421.86 7321.86 7444.12 7444.12 7444.88 7444.88
(0 5 0) 7477.37 7477.38d 7465.45 7465.40e 7555.49 7555.48d 7544.40f 7444.19e

(1 3 0) 8237.85 8237.86 8234.43 8234.43e 8278.39 8278.39 8275.10f 8275.10e

(0 3 1) 8246.69 8246.69 8243.69 8243.69 8377.55 8377.55 8374.77 8374.77
(2 1 0) 8739.73 8739.73 8739.41 8739.45 8762.14 8762.14 8761.92 8761.92
(1 1 1) 8758.87 8758.87 8758.77 8758.77 8807.10 8807.10 8807.03 8807.03
(0 6 0) 8793.26 8792.77d 8767.57 8771.13e 8896.33 8896.06d 8873.56f 8875.62e

(0 1 2) 8925.07 8925.07 8925.06 8925.06 9000.34 9000.34 9000.39 9000.40
aResults obtained using 20 grid points and basis functions per degree of freedom and with the expansion of the Û and Ĉ terms up to the twelfth-order, i.e.,
conv = 12. bDigits underlined present problems of convergence when using 20 sampling points per degree of freedom in the anharmonic potential. cThe
ordering of the vibrational modes is consistent with the standard spectroscopic criteria,174 i.e., v1: symmetric stretching; v2: bending; v3: asymmetric
stretching. dEigenvalues with low convergence rate in ref 40. eDigits underlined and extracted from ref 40 (third, fifth, seventh, and ninth columns) did
not converge due to the singularity present in the operator Û. fUsing 37 grid points/basis functions per degree of freedom these transitions are predicted
at 4667.58, 6135.16, 6775.96, 7544.37, 8275.10, and 8870.99 cm-1 for (0,3,0), (0,4,0), (1,2,0), (0,5,0), and (0,6,0), respectively.
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particular region of the PES, i.e., equilibrium, transition state, and
asymptotic regions. In the present study, we use Yamamoto and
Kato’s PES149 which enables comparison of our results with those
obtained by other methods153-160 that employed the same
potential.
Theoretical predictions of the bound region of the vibrational

spectrum of HFCO have been carried out using both perturba-

tional161,162 and variational or pseudovariational153,154,158-160

methods. However, the studies applying vibrational perturbation
theory in second order (VPT2)163 calculated only fundamen-
tals161,162 and a few two-quanta transitions (2v2, 2v4, and v4 þ
v5).

161 Leforestier et al.153,154 were probably among the first who
applied other types of approaches for computing vibrational
states of HFCO up to 5000 cm-1. Their initial study153 was

Table 6. Final Results for the Prediction of the ZPE and Low-Lying Vibrational Transitions of 12C16O2 (in cm-1)a

statesb this workc,d exp. calcdc

(n1 n2
|l| n3) Ĥ o Ĥ o þ V̂anh total ref 131 ref 40 ref 139

(0 00 0) 2548.05 2535.80 2536.15 2535.45
(0 11 0) 672.89 666.73 667.47 (-0.09) 667.38 667.68 (-0.30) 669.1 (-1.72)
(0 11 0) 672.89 666.73 667.47 (-0.09) 667.38 667.68 (-0.30) 669.1 (-1.72)
(1 00 0) 1353.78 1284.30 1285.10 (-0.93) 1284.17 1284.98 (-0.81) 1288.9 (-4.73)
(0 22 0) 1345.79 1334.48 1335.95 (-0.82) 1335.13 1336.48 (-1.35) 1339.6 (-4.47)
(0 22 0) 1345.79 1334.48 1335.95 (-0.82) 1335.13 1336.48 (-1.35) 1339.6 (-4.47)
(0 20 0) 1345.79 1387.29 1387.93 (0.26) 1388.19 1387.46 (0.73) 1389.3 (-1.11)
(1 11 0) 2026.67 1928.03 1929.56 (2.91) 1932.47 1932.37 (0.10) 1938.0 (-5.53)
(1 11 0) 2026.67 1928.03 1929.56 (2.91) 1932.47 1932.37 (0.10) 1938.0 (-5.53)
(0 33 0) 2018.68 2003.07 2005.25 (-1.97) 2003.28 2006.43 (-3.15) 2011.4 (-8.12)
(0 33 0) 2018.68 2003.07 2005.25 (-1.97) 2003.28 2006.43 (-3.15) 2011.4 (-8.12)
(0 31 0) 2018.68 2076.81 2078.15 (-1.29) 2076.86 2076.27 (0.59) 2080.0 (-3.14)
(0 31 0) 2018.68 2076.81 2078.15 (-1.29) 2076.86 2076.27 (0.59) 2080.0 (-3.14)
(0 00 1) 2396.53 2347.87 2349.38 (-0.18) 2349.20 2347.32 (1.88) 2349.2 (0.00)

aResults obtained with 14 grid points and basis functions per degree of freedom. bThe ordering of the normal modes is: symmetric stretching, v1;
degenerate bending motion, v2; asymmetric stretching, v3.

cNumbers in parentheses and italic are the differences from the experimental values.
dAccording to eqs 10, 11, and 15, the total pure vibrational Hamiltonian can be written as a sum of three terms, i.e., Ĥ = Ĥ oþ Ĉlinear þ V̂ anh. “Total”
denotes the complete Hamiltonian including all three contributions. The Ĉlinear term was converged in zeroth-order.

Table 7. Corrections to the ZPE and Low-Lying Vibrational Transitions of HFCO Resulting from the Û and Ĉ Contributions
(in cm-1)a,b

statesc Ĥo þ V̂anh statesc Ĥo þ V̂anh

(n1 n2 n3 n4 n5 n6) þÛ
conv þĈ

conv þ (Ûþ Ĉ)conv (n1 n2 n3 n4 n5 n6) þÛ conv þĈ conv þ (Û þ Ĉ)conv

(0 0 0 0 0 0) 4541.5 4540.6 4542.6 4541.7
(0 0 0 0 1 0) 657.7 657.7 658.1 658.1 (0 1 0 1 0 0) 2862.4 2862.4 2863.9 2863.9
(0 0 0 0 0 1) 1014.2 1014.2 1019.2 1019.2 (0 0 0 0 3 1) 2979.3 2979.3 2986.7 2986.7
(0 0 0 1 0 0) 1048.9 1048.9 1049.5 1049.5 (1 0 0 0 0 0) 2999.4 2999.4 3003.2 3003.2
(0 0 0 0 2 0) 1314.0 1313.9 1314.8 1314.8 (0 0 0 1 3 0) 2994.1 2994.1 2996.4 2996.4
(0 0 1 0 0 0) 1369.5 1369.5 1370.3 1370.3 (0 0 0 0 0 3) 3021.5 3021.5 3036.8 3036.8
(0 0 0 0 1 1) 1670.7 1670.7 1676.5 1676.5 (0 0 1 0 1 1) 3042.3 3042.3 3049.5 3049.5
(0 0 0 1 1 0) 1698.8 1698.8 1699.9 1699.9 (0 0 1 1 1 0) 3060.8 3060.8 3063.2 3063.2
(0 1 0 0 0 0) 1820.7 1820.8 1821.3 1821.3 (0 0 0 1 0 2) 3062.7 3062.7 3074.4 3074.4
(0 0 0 0 3 0) 1968.7 1968.7 1970.0 1970.0 (0 0 0 2 0 1) 3090.4 3090.4 3098.0 3098.0
(0 0 1 0 1 0) 2027.3 2027.3 2028.3 2028.3 (0 0 0 3 0 0) 3107.8 3107.9 3109.6 3109.6
(0 0 0 0 0 2) 2021.2 2021.2 2031.4 2031.5 (0 1 0 0 2 0) 3124.1 3124.1 3126.2 3126.2
(0 0 0 1 0 1) 2059.1 2059.1 2065.4 2065.4 (0 1 1 0 0 0) 3189.3 3189.3 3190.7 3190.7
(0 0 0 2 0 0) 2084.2 2084.2 2085.3 2085.3 (0 0 0 0 5 0) 3273.8 3273.8 3275.9 3275.9
(0 0 0 0 2 1) 2325.8 2325.7 2332.4 2332.4 (0 0 0 0 2 2) 3330.2 3330.2 3343.3 3343.3
(0 0 0 1 2 0) 2347.2 2347.2 2349.0 2348.9 (0 0 1 0 3 0) 3337.1 3337.1 3338.6 3338.6
(0 0 1 0 0 1) 2385.8 2385.8 2392.2 2392.2 (0 0 0 1 2 1) 3354.9 3354.9 3363.2 3363.2
(0 0 1 1 0 0) 2411.5 2411.5 2412.9 2412.9 (0 0 0 2 2 0) 3367.1 3367.1 3369.7 3369.7
(0 1 0 0 1 0) 2473.1 2473.1 2474.4 2474.4 (0 0 2 0 1 0) 3373.0 3373.0 3375.3 3375.3
(0 0 0 0 4 0) 2621.7 2621.8 2623.5 2623.5 (0 0 1 0 0 2) 3394.6 3394.6 3406.4 3406.4
(0 0 1 0 2 0) 2683.1 2683.1 2684.4 2684.4 (0 0 1 1 0 1) 3423.6 3423.6 3431.4 3431.4
(0 0 0 0 1 2) 2676.4 2676.4 2688.1 2688.1 (0 0 1 2 0 0) 3440.0 3440.1 3441.9 3442.0
(0 0 0 1 1 1) 2707.7 2707.7 2715.0 2715.0 (0 1 0 0 1 1) 3478.4 3478.4 3485.6 3485.6
(0 0 2 0 0 0) 2715.0 2715.0 2716.7 2716.7 (0 1 0 1 1 0) 3507.2 3507.2 3509.6 3509.6
(0 0 0 2 1 0) 2726.4 2726.3 2728.2 2728.2 (0 2 0 0 0 0) 3622.4 3622.4 3623.7 3623.7
(0 1 0 0 0 1) 2827.1 2827.1 2833.3 2833.3 (0 0 0 0 4 1) 3631.1 3631.1 3639.3 3639.3

aResults obtained using 10 grid points and basis functions per degree of freedom and with expansion of the Û and Ĉ terms up to second order, i.e.,
conv = 2. Digits underlined present problems of convergence. b Potential energy surface from ref 149. cThe ordering of the vibrational normal modes
follow the standard spectroscopic criteria,174 i.e., the first five vibrations are those with a0 symmetry and the last one is the out-of-plane bending motion
(a00 symmetry). The vibrational characterization is: v1(CH-str); v2(CO-str); v3(CH bend); v4(CF-str); v5(FCO bend).
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based on a six-dimensional Hamiltonian expressed in Jacobi
coordinates using a DVR of the Hamiltonian matrix contracted
by a pseudospectral method.164 In a second paper, they proposed
the Jacobi-Wilson (JW)method154 usingHFCOas a testmolecule.
Later, the same authors employed the JW approach in combination
with amodifiedDavidson algorithm based on a prediagonalization-
perturbation step and calculated the lowest 350 vibrational states of a0
symmetry158 and the high-energy overtones of the out-of-plane
mode (v6) (6400-10 900 cm-1).157 The latter spectral region
was also investigated by means of the multiconfiguration time-
dependentHartree (MCTDH)method.159By contrast, the approach
presented here is expected to provide a suitable description of the low
energy range, and its compact form facilitates its usewithmediumand
large molecules as well as different bonding arrangements.
Results obtained in the present research for the ZPE and the 50

lowest vibrational transitions of formyl fluoride are presented in
Table 7. For this molecule, expansions of the pseudopotential and
Coriolis terms converge very rapidly; both contributions are
already converged at the second order of the Taylor expansion.142

It can also be observed that the effect of the Û term is essentially
negligible, except for the zero-point energy which is lowered by
0.9 cm-1 by this correction. This indicates that HFCO is a quite
rigid molecule. By contrast, the Coriolis term has a larger
quantitative influence; for most of the states its contribution
ranges from 1 to 10 cm-1 and for some higher quanta transitions
involving the out-of-plane mode, v6, the Coriolis term contributes
10-15 cm-1; see in Table 7 cases as, for example, 2v6, v5 þ 2v6,
3v6, v4 þ 2v6, 2v5 þ 2v6, and v3 þ 2v6.
The transition energies calculated in this work were compared

with results obtainedusing other theoretical approaches, seeTable 8.
Nevertheless the earliest studies153,154 have been omitted because
some problems have subsequently been found in those
calculations.158,160 Thus, Table 8 contains the ZPE and transition
energies calculated by the JW method coupled to a modified
Davidson scheme,158 those obtained with the MCTDH
approach,159 and finally the values recently computed by Wang
et al.160 in their rovibrational study of HFCO based on a direct
product of rotationalWigner functions and aDVR of the vibrational
part. In references 158 and 160 the KEO was expressed in terms of
Jacobi vectors, while valence polyspherical coordinates were used
with the MCTDH method.159 Our results agree well with those
obtained for the a0-transitions calculated by the JW approach158 and
with the fundamental frequencies estimated with the MCTDH
method;159 the largest discrepancies are 1.0 and 1.7 cm-1 for the
CH stretching and the ZPE, respectively. The fundamental vibra-
tions predicted byDVR and FBR in the rovibrational study ofWang
et al.160 are slightly higher than the results of this work; these
differences might be related with the constraints on the bond angles
made in ref 160 in order to eliminate artifacts of the Yamamoto
et al.’s surface.149 Concerning the experimental values, although
several experiments were devoted to the highly excited vibrational
levels of HFCO (above 14 000 cm-1),165-167 no intensive research
has been carried out on the low-energy region of the vibrational
spectrum of this molecule. The earliest and almost only infrared and
Raman experimental studies assigned the five a0 fundamentals and a
few higher quanta transitions (2v2, 2v4, 3v4, 4v4, v3þ v4, v3þ v5, and
v4þ v5) but could only provide tentative assignments of the out-of-
plane bending mode, v6.

168-170 It was not until 1978,171 and later
confirmed by stimulated emission pumping spectroscopy,165-167

that this a00-symmetry motion was assigned to a wavenumber of
1011.2 cm-1. Beside these experiments, some high-resolution laser
Stark measurements of v2 (CdO stretch) were done,172 and the

only new experimental data for two and higher quanta transitions
come from indirect sources.153,154 Thus, comparing our results with
the scarce experimental information in the spectral range of 0-
3650 cm-1 (see Table 8), it can be seen that the calculated CO and
CF stretchings (v2 and v4, respectively) are about 15 cm-1 lower
than the observed frequencies, and the CH bend (v3) and stretch
(v1) are overestimated by 28 and 23 cm-1, respectively. The
differences in comparison with experiment become even larger for
most of the nine two-quanta transition energies included in Table 8.
These large discrepancies to experiments are essentially
due of deficiencies in the MP2 PES.173 Nevertheless the consistent
level of agreement of our results with a wide variety of theoretical
approaches confirms the reliability of our implementation.

’SUMMARY

In this paper we have presented a full configuration interaction
method for calculating low-lying vibrational energy levels of
semirigid molecules based on Watson’s pure vibrational Hamil-
tonian that is suitable for small amplitude motions. It is char-
acterized by a finite basis representation in conjunction with a
general quasi-analytic scheme for the evaluation of the kinetic
energy terms, Û and Ĉ, expressed as Taylor expansions with
respect to the rectilinear normal coordinates around the equilibrium
configuration. The generality of this vibrational Hamiltonian allows
application to a large range of molecules, and the quasi-analytic
treatment, although being restricted to small amplitude motions,
avoids the explicit use of geometries close to linearity and problems
associated with that region by the singularity of the Watson term.
Our approach has been tested for a set of prototype molecules, i.e.,

Table 8. Calculated ZPE and Experimental and Calculated
Low-Lying Vibrational Transitions of HFCO in the Spectral
Range Between 0 and 3660 cm-1 (in cm-1)a

statesb calcd

no.c (n1 n2 n3 n4 n5 n6) JWd MCTDHe DVRf FBRf This workg exp.h

0 (0 0 0 0 0 0) 4540.0 4542.58 4542.56 4541.7
1 (0 0 0 0 1 0) 658.1 658.1 659.39 659.37 658.1 662.6
2 (0 0 0 0 0 1) 1019.1 1019.43 1019.43 1019.2 1011.2
3 (0 0 0 1 0 0) 1049.5 1049.5 1050.45 1050.42 1049.5 1064.9
4 (0 0 0 0 2 0) 1314.8 1314.8 1324.1
5 (0 0 1 0 0 0) 1370.2 1370.3 1370.34 1370.33 1370.3 1342.3
7 (0 0 0 1 1 0) 1699.9 1699.9 1719.3
8 (0 1 0 0 0 0) 1821.3 1821.4 1822.17 1822.14 1821.4 1836.8
13 (0 0 0 2 0 0) 2085.4 2085.3 2115.6
17 (0 0 1 1 0 0) 2412.8 2412.9 2412.0
18 (0 1 0 0 1 0) 2474.3 2474.4 2494.2
25 (0 1 0 0 0 1) 2833.3 2841.0
26 (0 1 0 1 0 0) 2863.8 2863.9 2895.0
28 (1 0 0 0 0 0) 3003.1 3003.2 3004.97 3005.08 3003.2 2981.2
37 (0 1 0 0 2 0) 3126.1 3126.2 3150.6
49 (0 2 0 0 0 0) 3623.5 3623.6 3652.8

aResults obtained using 10 grid points per degree of freedom and with
expansion of the Û and Ĉ terms up to second order, i.e., conv = 2. bThe
ordering of the vibrational normal modes follows the standard spectro-
scopic criteria,174 i.e., the first five vibrations are those with a0 symmetry
and the last one is the out-of-plane bending motion (a0 0 symmetry). The
vibrational characterization is: v1(CH-str); v2(CO-str); v3(CH bend);
v4(CF-str); v5(FCO bend). cOrdering of the transitions in increasing
value of energy. d JW stands for Jacobi-Wilson method used in ref 158.
eMCTDH stands for multiconfiguration time-dependent Hartree meth-
od used in ref 159. fRef 160. gThe potential energy surface from ref 149
was employed. h Experimental values extracted from refs 153 and 154.
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H2O, CO2, and HFCO; the results confirm the applicability and
accuracy of the presented method, for example, for determining
accurate ZPEs, which are of importance to thermochemistry.94 In
addition, our code also offers a mechanism for analyzing the perfor-
mance of perturbational approaches based on Taylor expansions of
the potential and kinetic energy operators up to arbitrary order.
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ABSTRACT:We show that first principles hybrid functional (PBE0) simulations of the infrared spectrum of liquid water yields a
much better agreement with experimental results than a semilocal functional description; in particular, the quantitative accord with
measured stretching and bending bands is very good. Such an improved description stems from two effects: a more accurate account,
at the PBE0 level of theory, of the vibrational properties of the monomer and dimer and an underlying structural model for the liquid
with a smaller number of hydrogen bonds and oxygen coordination than those obtained with semilocal functionals. The average
electronic gap of the liquid is increased by 60% with respect to the PBE value, when computed at the PBE0 level of theory, and is in
fair agreement with experimental results.

1. INTRODUCTION

Providing a theoretical description of the properties of liquid
water and acquiring the ability to simulate them have been central
topics in physical chemistry and the subject of intense activities
for many decades. However, a description of hydrogen bonding
in liquid water is still the subject of debate,1�3 with controversies
recently stirred, for example, by spectroscopic measurements1

pointing at an oxygen coordination and the number of hydrogen
bonds substantially smaller than those in ice.

Building on the pioneering work of Rahman and Stillinger,4

molecular dynamics (MD) and Monte Carlo (MC) techniques
have been extensively used to simulate water in different thermo-
dynamic states, by using classical interatomic potentials fitted to
specific sets of experimental data. A number of force fields has
been employed, including simple point charge (SPC) models5

(either rigid6 or flexible7�9) or more sophisticated parametriza-
tions such as TIP4P10 and TIP5P.11 Although useful and
successful in describing a number of structural and dynamical
properties of aqueous systems, classical potentials often lack
transferability to thermodynamic conditions and environments
different from those for which they were fitted; in addition, they
cannot describe processes where bond breaking and formation
occur, and they may not be used to analyze spectroscopic
measurements where electronic effects play an important role,
for example, vibrational spectra.12 Developing theoretical frame-
works capable of accounting not only for structural and thermo-
dynamic properties but also for spectroscopic data is of the
greatest importance to interpreting complex measurements and
thus gaining insight into hydrogen bonding in the liquid.

The ability to account for electronic effects and carry out MD
simulations where the electronic structure of liquid water, treated
as a condensed system, is computed at each step of the dynamics
came with the advent of the Car�Parrinello (CP) method.13

This framework also opened the way to addressing spectroscopic
properties from first principles. Within this approach, the elec-
tronic structure of the liquid is described with density functional
theory (DFT), and different levels of approximations for the
exchange correlation functional have been used. Among semi-
local functionals, the most widely adopted are the gradient
corrected functionals BLYP14,15 and PBE.16,17 The first simula-
tion using BLYP appeared in 1993,18 and it gave important,
qualitative information about a DFT-based description of the
structure of liquid water under ambient conditions. It has now
been established by several authors19�24 that if the electronic
structure of the liquid is properly converged (that is, numerical
inaccuracies present in some early simulations are eliminated),
both PBE and BLYP functionals yield overstructured pair
correlation functions gOO(r) under ambient conditions, as
compared to experimental results, a self-diffusion constant that
is greatly underestimated, and a number of hydrogen bonds that
is most likely overestimated. The errors of PBE and BLYP on
both structural and self-diffusion properties can be artificially
“corrected” by a temperature shift of ∼50 to 100 K, depending
on whether rigid or flexible water models25,26 are employed.27

Therefore, a DFT description with BLYP and PBE gradient
corrected functionals can give a reasonably good, qualitative
account of water structure, although the accord with experi-
mental results is not fully quantitative. In addition, both PBE and
BLYP functionals yield a reasonably good description of the
vibrational properties of the liquid,28�33 although a quantitative
discrepancy with experimental results remains, for example, a
sizable red shift of about 200 cm�1 of the infrared (IR) stretching
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band, indicating that improvements in the description of hydro-
gen bonds in the liquid are necessary.

Such improvements may come from the use of a higher level of
theory than provided by local and semilocal density functionals.
Hybrid functionals have been used by several authors34�38 to
investigate the structural properties of the liquid. Substantial
differences have been found between the PBE and BLYP
descriptions and that provided by empirical functionals such as
HCTH.34 Two studies using approximate forms of the hybrid
functionals PBE039 and B3LYP40 have also appeared in the
literature.35,36 Todorova et al.35 found a more diffusive and less
structured liquid, at the PBE0 level of theory, than with PBE, in
qualitative agreement with the report of Li et al.;37 Guidon et al.36

reported instead negligible differences between pair correlation
functions computed with PBE and PBE0, indicating negligible
changes in the number and character of hydrogen bonds found in
the system. The study of water clusters reported in refs 41 and 42
is consistent with the findings of a less structured liquid within
PBE0; indeed it was shown that PBE0 yields smaller binding
energies41,42 and smaller polarizabilities43 than PBE. However,
in ref 35, larger binding energies are reported when using PBE0.
We note that approximations in the implementation of the
exact exchange operator have been adopted in both refs 35 and
ref 36 and that the two studies were carried out in different
ensembles.44

The great majority of first principles simulations have so far
neglected the quantum nature of the proton. The significance of
treating the proton as a quantum mechanical particle has been
recently investigated by Morrone and Car45 using path integral
(PI) simulations and a DFT description of the electronic
structure with the BLYP functional. These authors showed that
the agreement with experimental results for the liquid structural
properties is improved when proton quantum effects are in-
cluded, consistent with the results obtained with PI calculations
and empirical potentials.46 PI simulations have also been carried
out using ab initio based potentials, finding an effect similar
to that reported in ref 45, that is a softening of the oxygen�
oxygen pair correlation function corresponding to less structured
hydrogen bonded networks, when treating protons quantum
mechanically.47,48

Most of the theoretical investigations at the DFT level (and
all of those using nonlocal functionals) have focused on the
structural properties of the liquid, with few studies of
vibrational22,29,31�33 and electronic2,3,49�52 properties appear-
ing in the past several years. In order to gain a better under-
standing of water and in particular of hydrogen bonding, it is
important to develop tools to compute accurate spectroscopic
quantities and thus compare directly with a wealth of available
measurements, in addition to structure factors and pair corre-
lation functions. The IR spectra of water were first studied at
the PBE level by Sharma et al.,29 yielding a qualitative agree-
ment with experimental results. Subsequent studies32,33 out-
lined the importance of intermolecular dipolar correlations in
shaping the IR spectrum of the liquid, and in particular of the
complex stretching band. However quantitative discrepancies
between theory and experiments remain, for example, on the
position of the IR stretching band, and the origin of these
discrepancies is not well understood. For example, it is yet
unknown how the inaccuracies in the description of the liquid
structural properties and thus of hydrogen bonding found in
first principles simulations impact our understanding of vibra-
tional measurements.

In this paper, we focus on the vibrational spectroscopy of the
liquid,53 and we report IR spectra computed using the nonlocal
functional PBE0. So far, no vibrational study of liquid water or ice
using nonlocal functionals has appeared in the literature. We find
a much better agreement with experimental results, especially in
the description of the stretching and bending bands, than
obtained with semilocal functionals (at the GGA level); two
main reasons are responsible for our improved description: a
better account of the vibrational properties of the monomer and
dimer and an underlying structural model for the liquid with a
smaller number of hydrogen bonds and a smaller effective
molecular dipole than those obtained at the GGA level. These
results have important implications for the study of vibrational
properties of water in contact with surfaces. The rest of the paper
is organized as follows: our methodological approach is pre-
sented in section 2, and our results are discussed in section 3, for
both structural and vibrational properties. Section 4 contains our
conclusions.

2. METHODS

We performed first principles molecular dynamics simulations
of heavy water D2O using the Qbox code,54 with cubic
cells containing 32 molecules, and all of our results for vibra-
tional spectra have been obtained at a fixed density of 1.108
g/cm3. We employed both semilocal (PBE) and hybrid (PBE0)
exchange and correlation functionals. In the case of simulations
using PBE, we compared our results with those obtained with a
96 molecule cell. The equilibrium density of water using PBE has
been predicted to be 0.85�0.90 g/cm3,55,56 that is, =10�15%
smaller than in experiments. We carried out simulations at this
lower density with the PBE functional at∼400 K, and we found a
worse agreement with neutron diffraction data than at the
experimental density. In particular, the liquid turned out to be
more structured than at higher density, as indicated, e.g., by an
analysis of the pair correlation function gOO(r) (see Figure 1 in
the Supporting Information). Given these results and given that
the equilibrium density of water at the PBE0 level of theory has
not yet been determined, we carried out simulations of vibra-
tional spectra at the experimental equilibrium density of deuter-
ated water, and we defer investigations as a function of density to
a later study. Although it is in principle possible to compute the
equilibrium density of the liquid using the PBE0 functional, this
would be computationally very intensive, as PBE0 calculations
are substantially heavier, from a computational standpoint, than
those using PBE.57

In all liquid simulations, we adopted a plane wave (PW) basis
set and norm-conserving pseudopotentials (PP)58 with a kinetic
energy cutoff of 85 Ry. The computation of the Hartree�Fock
exchange operator included in the PBE0 functional was carried
out without truncation of the range of the Coulomb interaction,
unlike in previous studies,35,36 and in such a way to ensure
quadratic convergence with respect to Brillouin zone integration.
In particular, calculations performed at the Γ point of the
Brillouin zone correctly include divergent terms stemming from
the long range of the Coulomb potential. An efficient paralleliza-
tion scheme implemented in Qbox mitigates the high computa-
tional cost of the Hartree�Fock exchange energy when using
PW basis sets.59 Simulations were carried out with a time step of
10 a.u. in the NVE ensemble at several temperatures (T) ranging
from 370 to 470 K, within a Born�Oppenheimer (BO) frame-
work. At eachT, the systemwas equilibrated for at least 10 ps and
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up to 20 ps, and trajectories were collected for 17 ps. The
electronic contributions to the molecular dipole moment were
computed using maximally localized Wannier functions60

(MLWFs), evaluated at each MD step with the algorithm
proposed in ref 61. The IR absorption coefficient per unit length
was obtained within linear response theory from the Fourier
transform of the time correlation function of the system’s dipole
moment:62

RðωÞ ¼ 2πω2β

3cVnðωÞ
Z ¥

�¥
dte�iωtÆ∑

ij
μi
!ð0Þ 3 μj!ðtÞæ ð1Þ

where n(ω) is the refractive index, V is the volume, β = 1/kBT is
the inverse temperature, and μBi is the molecular dipole moment.
Before discussing the IR spectra of liquid water, we present
results obtained for the vibrational properties of the water
monomer and dimer using the PBE and PBE0 functionals, and
we discuss the effect of the basis set (energy cutoff) and PP on
our results.

3. RESULTS AND DISCUSSION

3.1. Vibrational Properties of the Water Molecule and the
Water Dimer.We first analyzed the effect of the PP used in our
calculations by comparing results at the PBE and PBE0 levels of
theory with all electron (AE) and experimental results for the
H2Omolecule and the H2O dimer (see details of the calculations

in the Supporting Information). AE results are not available for
the deuterated water molecule and dimer. We found that for
converged basis sets (200 Ry) at the PBE level, PP and AE results
differ by a few wavenumbers, showing the excellent performance
of converged PP calculations. Deviation from AE results appears
to be bigger in the case of PBE0 (up to 34 cm�1), most likely
because we have used PP generated within PBE.
In Tables 1 and 2, we show calculated vibrational frequencies

of the D2O molecule and the dimer obtained with two different
norm-conserving PPs: Hamann58 and Hamann�Schl€uter�
Chiang�Vanderbilt (HSCV).63,64 As for H2O, we compare
our results to experimental harmonic frequencies, because cal-
culations of vibrational frequencies at T = 0 by, e.g., finite
differences, do not include anharmonic effects, unlike our MD
simulation results at finite T, which account for classical anhar-
monic effects. For converged basis sets (200 Ry), all of the modes
of the monomer are underestimated, with respect to experi-
mental results, by up to 5.4% with the PBE functional, while
converged PBE0 results are in excellent agreement with harmo-
nic frequencies extracted frommeasured spectra.65 Experimental
harmonic frequencies are not available for low frequency modes
of the dimers; however, from a comparison with anharmonic
frequencies, and given the shape of the potential energy curve of
the dimer, it is likely that both PBE and PBE0 slightly over-
estimate the low frequency modes (see Tables 3 and 4 in the
Supporting Information).
In the case of intramolecular frequencies of (D2O)2 within

PBE0, the comparison with harmonic frequencies extracted from
experimental data66 shows that stretching frequencies are slightly
underestimated when using Hamann PP with a converged basis
set (200 Ry), with the errors on the donor being slightly larger
than those on the acceptor. HSCV PP yields instead a slight
overestimate of the stretching frequencies. Bending frequencies
are consistently underestimated by 9�10 cm�1 with either
type of PP.
The computed binding energy of the dimer is 5.12 kcal/mol

with PBE0 and 5.24 kcal/mol with PBE, in good agreement with
the data obtained with AE calculations and Gaussian basis sets.68

We find that the difference between the binding energies
obtained with the two functionals,ΔEbinding = Ebinding

PBE � Ebinding
PBE0 ,

is 0.12 kcal/mol, to be compared with 0.15 kcal/mol from ref 68.
Overall, our results for the vibrational frequencies of the water
monomer and dimer show that the PBE0 functional very much
improves the description obtained at the PBE level, and thus it
appears to be a promising exchange correlation functional to

Table 1. Vibrational Frequencies (cm�1) of the Deuterated
Water Monomer D2O

a,b

Ecut (Ry) pseudopotentials ν1 ν2 ν3

PBE 85 Hamann 2605 1164 2735

PBE 200 Hamann 2616 1165 2746

PBE 85 HSCV 2655 1164 2779

PBE 200 HSCV 2656 1165 2780

PBE0 85 Hamann 2717 1195 2850

PBE0 200 Hamann 2719 1199 2851

PBE0 85 HSCV 2763 1197 2890

PBE0 200 HSCV 2758 1199 2885

expt. harm.65 2764 1206 2889

expt. anharm.65 2671 1178 2788
a Simulations of the water molecule were carried out in a cubic cell with
L = 30 Bohr. b ν1, symmetric stretching; ν2, bending; ν3, asymmetric
stretching.

Table 2. Vibrational Frequencies (cm�1) of the Deuterated Water Dimer (D2O)2
a,b

Ecut (Ry) pseudopotentials ν1 ν2 ν3 ν4 ν5 ν6

PBE 85 Hamann 2601 1164 2698 2492 1176 2729

PBE 200 Hamann 2613 1165 2710 2510 1177 2741

PBE 85 HSCV 2650 1164 2772 2549 1175 2744

PBE 200 HSCV 2652 1165 2774 2549 1176 2745

PBE0 85 Hamann 2714 1196 2845 2624 1208 2817

PBE0 200 Hamann 2716 1199 2846 2631 1212 2819

PBE0 85 HSCV 2759 1196 2885 2673 1207 2859

PBE0 200 HSCV 2754 1199 2879 2666 1211 2853

expt. harm.66 2738 1209 2857 2689 1221 2838

expt. anharm.67 2650 1182 2757 2599 1193 2738
a Simulations of the water dimer were carried out in a cubic cell with L = 30 Bohr. b ν1, symmetric stretching of acceptor; ν2, bending of acceptor; ν3,
asymmetric stretching of acceptor; ν4, symmetric stretching of donor; ν5, bending of donor; ν6, asymmetric stretching of donor.
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study the vibrational properties of liquid water. Our results for
the liquid are presented in the next section using an 85 Ry cutoff
and the Hamann PP,69 after comparing structural properties
obtained with PBE and PBE0 functionals.
3.2. Vibrational Properties and Hydrogen Bonding of

Liquid Deuterated Water. Figure 1 shows the oxygen�oxygen
pair correlation functions gOO(r) at two different temperatures
slightly below and above 400 K, obtained with the PBE and PBE0
functionals. (We recall that within PBE, at the experimental
density, we obtain a good agreement with the measured pair
correlation function at room temperature by shifting the simula-
tion temperature to about 400 K). The result of PBE calculations
carried out with the cell containing 96 molecules yields a pair
correlation function gOO(r) which, within error bars,20 is the
same as that obtained with 32 molecules (see Figure 2 in the
Supporting Information). Pair correlation functions computed
using the Hamann and HSCV PPs and 32 molecule cells are also
the same, within error bars (see Figure 3 in the Supporting
Information). A comparison between PBE and PBE0 results at
the two temperatures reported in Figure 1 clearly shows that the
PBE0 functional improves over the PBE description, yielding a
much less structured pair correlation function. Our findings are
consistent (though not in close agreement) with those of ref 35,
showing differences between PBE and PBE0 results for gOO(r),
but they are at variance with the results of ref 36, which found
hardly any change when carrying out calculations of structural
properties at the PBE and PBE0 levels of theory.71 The structural
differences found here are consistent with a decrease of the
molecular dipole moment found when using PBE0 (see Figure 2,
upper panel). The calculated average molecular dipole moments
with PBE0 are 2.88 ( 0.30 D (at 471 K), 2.94 ( 0.30 D (at 438
K), and 3.06 ( 0.29 D (at 374 K), and the corresponding ones
with PBE are 3.03( 0.35 D (at 470 K), 3.09( 0.34 D (at 439 K),
and 3.24( 0.32 D (at 367 K). An effective dipole moment of 2.9
( 0.6 D has been derived from X-ray measurements,72 which is
consistent with both our calculations and the value of the dipole
extracted for water clusters with six molecules (2.7 D).73 Our
findings for the liquid are also consistent with our results on
the binding energy of the dimer, which is smaller with PBE0
than PBE.

The calculated structural differences between PBE0 and PBE
stem from a decrease in the average number of hydrogen bonds
when using the hybrid functional: 3.26 vs 3.43 at ∼438 K and
3.60 vs 3.79 at ∼374 K. Hydrogen bonds are defined using a
geometrical criterion: two molecules are regarded as hydrogen
bonded if the OO distance is less than 3.35 Å, and the O�OD
angle is less than 30� (see Table 5 in the Supporting Information
for further details). Differences in hydrogen bonding are also
shown by the distribution of distances between oxygen and the
centers of the MLWFs, displayed in Figure 2, lower panel. Two
MLWFs are centered along OD bonds, and we call them bond
pair (BP) orbitals. The other two are approximately centered on
symmetric tetrahedral sites, and we call these lone pair (LP)
orbitals. The four centers of the MLWFs of a water molecule are
shown in the inset of Figure 2, lower panel. It is seen that the
distributions of Oxy�BP distances are very similar when using
PBE and PBE0, while those of Oxy�LP distances show marked
differences.
In particular, the average distance between oxygen atoms and

Wannier centers of the LP orbitals is shorter when computed
with PBE0 than with PBE; in addition, the shoulder on the left-
hand side of the Oxy�LP distance distribution, associated with
single acceptor hydrogen bonds, is more pronounced. This
indicates that at the PBE0 level, liquid water exhibits a more
distorted hydrogen bonded network, with a larger number of
broken hydrogen bonds. We also note that in addition to
improving structural properties, calculations with the PBE0
functional yield differences in the electronic structure of the
fluid, with an average electronic band gap of 6.73 eV, to be
compared with the PBE value of 4.23 eV. However, also within
PBE0, we obtain a value which is underestimated compared with
experimental results (8.7 eV).74

We now turn to discussing our results for the vibrational
spectrum of the liquid, as a function of temperature. The IR
spectra of liquid deuterated water computed with the PBE and
PBE0 functionals are compared with experimental results in
Figure 3. The improvement of the PBE0 description with respect

Figure 2. Distributions of molecular dipole moments and distances
between oxygen and maximally localized Wannier centers (MLWCs),
obtained with the PBE0 functional at 438( 29 K (solid red) and 374(
27 K (solid blue), and the PBE functional at 439( 29 K (dash red) and
367( 25 K (dash blue). The inset shows the positions of the centers of
maximally localized Wannier functions in a water molecule. The two
orbitals centered close to the OD bonds are bond pair (BP) orbitals; the
other two are lone pair (LP) orbitals.

Figure 1. Comparison of oxygen�oxygen pair correlation functions for
systems consisting of 32 water molecules, obtained with the PBE0
functional at 438 ( 29 K (solid red) and 374 ( 27 K (solid blue), and
the PBE functional at 439 ( 29 K (dash red) and 367 ( 25 K (dash
blue). The experimental result at room temperature is displayed by the
black line.70
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to PBE over the entire spectrum is apparent, especially so for the
positions of the stretching and bending bands (see inset in
Figure 3). This improvement comes from the combined effect
of a better description of the frequencies of the monomer and
dimer (see section 3.1) and an improved description of the
structure of the liquid, with a smaller average molecular dipole
moment corresponding to reduced strength of the hydrogen
bonds. Weaker hydrogen bonding leads to stiffer intramolecular
covalent bonds and higher stretching and bending frequencies.
The positions of band maxima corresponding to hindered
translations, librations, bending, and stretching modes computed
with the PBE0 functional at 438 K are 180 (186, 246), 503 (486,
497), 1219 (1209, 1179), and 2426 (2498, 2322) cm�1, respec-
tively, where wavenumbers in parentheses are experimental
values at room temperature75 and results calculated with the
PBE functional at 439 K, respectively. The corresponding values
with PBE0 at 374 K are are 211 (186, 219), 579 (486, 549), 1211
(1209, 1179), and 2388 (2498, 2192) cm�1, respectively, where
wavenumbers in parentheses have the same meaning as those at
438 K. With the PBE0 functional, the red shift of the calculated
stretching band with respect to experimental results is reduced to
72 cm�1 at ∼438 K and 110 cm�1 at ∼374 K, compared with
176 cm�1 and 306 cm�1 obtained with the PBE functional,
respectively. We expect that the use of a PBE0 PP would bring
our PBE0 results in closer agreement with experimental results,
based on the comparison shown in Tables 1 and 2 in the
Supporting Information. The comparison of our results to
experimental ones for the low frequency band is more delicate
as our sample is rather small. We note that a comparison of
calculations at the PBE level of theory carried out with 32 and 96
molecules (see Figure 4) shows modest size effects for the
stretching and bending bands.
The intensity of the stretching band calculated with the PBE0

functional is significantly smaller compared to the one computed
at the PBE level. The ratio between the experimental intensities
of ice76 and water75 stretching bands, after rescaling T, is
approximately 1.3, suggesting that the less hydrogen bonded
the system, the less intense the IR stretching band. This is
consistent with the PBE0 intensity being smaller than the PBE
one, at the same T. In addition to a blue-shifted main peak, the

stretching band obtained with PBE0 shows a more pronounced
shoulder at higher frequencies, compared with the spectrum
obtained with PBE at the same temperature. This is again due to
the increased number of broken hydrogen bonds in the liquid. As
discussed in ref 33, within PBE, the contribution to the IR
stretching band frommolecules with broken hydrogen bonds gives
rise to a shoulder at higher frequencies but not to a distinctive peak.
This shoulder is more pronounced when using the hybrid func-
tional, as expected from a less structured and less hydrogen bonded
fluid. However, we emphasize that in the liquid, irrespective of
which description is used (semilocal or hybrid functionals),
hydrogen bonds are broken only for a short time, thus a clear IR
signal associated to steadily broken bonds is not present in
vibrational spectra. Also, the line shape of the bending modes is
significantly improved within PBE0, consistent with the improved
description of bending modes in the water molecule and dimer.
Finally, we note that the analysis of the relative contributions of
inter- and intramolecular correlations to the IR stretching band
reported in ref 33 holds at the PBE0 level as well.
The results reported in Figure 3 show that the positions of the

bending and stretching peaks are both blue-shifted when T is
increased. An increase of temperature may mimic, to some
extent, the effect one would find by including a quantum
mechanical description of the deuterons. More delocalized
deuterons may weaken hydrogen bonds and thus enhance the
signature of molecules with broken or distorted hydrogen bonds,
which yield a blue-shifted IR signal, compared to that of perfectly
hydrogen bonded molecules. The centroid MD simulations
reported in refs 47 and 77 found instead a red shift in the
position of the stretching band, with respect to classical MD.
However, these results appear to be controversial;78,79 indeed, it
was recently pointed out that the observed red shift may be an
artifact of the centroid MD technique.

4. CONCLUSIONS

We have shown that when using the PBE0 functional to
describe the electronic structure of liquid water within DFT, one
obtains structural and vibrational properties in better agreement
with experimental results than calculations done with PBE and, in
general, with semilocal functionals. In particular, we find a less
structured fluid, with a lower dipole moment associated with

Figure 3. Calculated IR spectra of liquid D2O with the PBE0 functional
at 438( 29 K (solid red) and 374 ( 27 K (solid blue), compared with
the ones calculated with the PBE functional at 439 ( 29 K (dash red)
and 367 ( 25 K (dash blue). The experimental spectrum at room
temperature is displayed by the black line.75 The inset shows the spectra
in the range 1000 cm�1 to 1500 cm�1.

Figure 4. Calculated IR spectra of liquid D2O with the PBE functional
for systems consisting of 32 water molecules at 408( 27 K (red) and 96
water molecules at 407 ( 16K (blue), compared with the experimental
spectrum at room temperature75 (black).
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each molecule and a higher number of fleetingly broken or
distorted hydrogen bonds. We also find the IR spectrum to be in
closer agreement with recent measurements,75 showing a more
pronounced shoulder corresponding to temporarily broken
hydrogen bonds. The improved agreement with experimental
results found for the spectrum stems from an improved descrip-
tion of both the structure of the liquid and the monomer and
dimer vibrational frequencies. We believe that our findings
represent a significant step forward in the theoretical modeling
of water from first principles, as one may now extend the
framework adopted here to other aqueous environments, such
as water in contact with surfaces and simple aqueous solutions,
thus opening the way to complement and interpret many
spectroscopic measurements in an accurate fashion. In addition,
encouraging results were found for electronic properties as well,
and work is in progress to investigate in detail the electronic
structure of the liquid using hybrid functionals.

However, several issues in the description of both structural
and vibrational properties of water remain to be addressed,
including the determination of the equilibrium density of water
and its melting temperature when using hybrid functionals. In
addition, it would be interesting to quantitatively assess the
significance of proton quantum effects on vibrational spectra,
when using a DFT-PBE0 description of the fluid. On the basis of
the findings of ref 45, we expect the inclusion of proton quantum
effects on our PBE0 results would lead to a less structured fluid,
bringing the pair correlation function in even better agreement
with experimental results. Our results on changes of IR spectra as
a function of T, showing a blue shift of bending and stretching
peaks as T is increased, indicate that the inclusion of proton
quantum effects may improve the description of vibrations as
well, although a detailed analysis is clearly needed to draw any
firm conclusion.

While the qualitative effect on structural properties of treating
the proton quantum mechanically is relatively straightforward to
predict, an understanding of the influence of a more accurate
description of van der Waals and dispersion forces is still under
debate. Investigations of water clusters have so far shown critical
dependence of results (e.g., order of energetically favored con-
figurations) on the so-called dispersion corrections used42,80 on
top of simulations within DFT-PBE. Although no firm conclu-
sion has yet been reported for liquid water, it appears that adding
dispersion contributions to semilocal density functionals leads to
a less structured liquid;55,56,81 however, several open problems
remain, e.g., in the description of the second solvation shell (next-
nearest neighbor structural properties).
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ABSTRACT:Here, we discuss a newmethod for predicting the hydration free energy (HFE) of organic pollutants and illustrate the
efficiency of the method on a set of 220 chlorinated aromatic hydrocarbons. The new model is computationally inexpensive, with
one HFE calculation taking less than a minute on a PC. The method is based on a combination of a molecular integral equations
theory, one-dimensional reference interaction site model (1D RISM), with the cheminformatics approach. We correct HFEs
obtained by the 1D RISM with a set of empirical corrections. The corrections are associated with the partial molar volume and
structural descriptors of the molecules. We show that the introduced corrections can significantly improve the quality of the 1D
RISM HFE predictions obtained by the partial wave free energy expression [Ten-no, S. J. Chem. Phys. 2001, 115, 3724] and the
Kovalenko�Hirata closure [Kovalenko, A.; Hirata, F. J. Chem. Phys. 1999, 110, 10095]. We also show that the quality of the model
can be further improved by the reparametrization using QM-derived partial charges instead of the originally used OPLS-AA partial
charges. The final model gives good results for polychlorinated benzenes (the mean and standard deviation of the error are 0.02 and
0.36 kcal/mol, correspondingly). At the same time, the model gives somewhat worse results for polychlorobiphenyls (PCBs) with a
systematic bias of�0.72 kcal/mol but a small standard deviation equal to 0.55 kcal/mol. We note that the error remains the same
for the whole set of PCBs, whereas errors of HFEs predicted with continuum solvation models (data were taken from Phillips, K. L.
et al. Environ. Sci. Technol. 2008, 42, 8412) increase significantly for higher chlorinated PCB congeners. In conclusion, we discuss
potential future applications of the model and several avenues for its further improvement.

’ INTRODUCTION

Chlorinated aromatic hydrocarbons (CAHs) are a group of
compounds that belong to the category of “persistent organic
pollutants” (POPs). This class of pollutants is characterized by
(i) long-term persistence, (ii) long-range atmospheric transport
and deposition, (iii) bioaccumulation, and (iv) adverse effects
on biota.1,2 For a long time, in many countries, CAHs (such as
polychlorobiphenyls, hexachlorobenzene, etc.) were used in
agriculture as pesticides, fungicides, and agents controlling
arthropods.1 Although CAHs have been banned from further
use and production,3 their persistence in biological compart-
ments (e.g., soil, water, plants, and sediment) means that they
still pose a significant environmental hazard. Understanding and
clarifying the global fate of CAHs is one of the most important
environmental and ecological problems.1,2,4,5 The semivolatile
nature of CAHs allows them to evaporate from soil and water
into the atmosphere, where they can exist both in gaseous and
particle-absorbed forms (these can be atmospheric aerosol
particles, e.g., cloud droplets, as well as dust particles). Several
dominant mechanisms that determine the distribution of CAHs
between atmosphere and water are shown in Figure 1.

There are several physical/chemical properties of CAHs that
determine their global fate: vapor pressure; aqueous solubility;
partition coefficients between different media; and half-lives in
the air, solids, and water. These parameters are intensively used in
mathematical models describing the global fate and long-range
transport of CAHs.6�10One of themost important parameters in

these models is the flux of a compound across surfaces, which
characterizes the exchange of the compound between the
corresponding compartments.2,11 As an example, the flux of
molecules i between two compartments 1 and 2 can be modeled
as

F1 f 2 ¼ K1=2ðiÞ C1ðiÞ �
C2ðiÞ
Pi, eq

 !
ð1Þ

where F1f2 is the flux from compartment 1 to compartment 2,
K1/2(i) is the kinetic parameter represented by the mass transfer
coefficient on the molecules i, C1(i) and C2(i) are equilibrium
molecular concentrations of the molecules i in compartments 1
and 2, respectively, and Pi,eq is the equilibrium partition coeffi-
cient of the molecules i between the two compartments.

Thus, accurate data for the partition coefficients are of a high
importance for modeling CAH exchange between compart-
ments. In the case of the air�water flux, the widely used partition
coefficient is the Henry’s law constant (KH), which shows the
distribution of a compound between gaseous and aqueous
phases:

KH ¼ CaqðiÞ
CgðiÞ ð2Þ
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where Caq(i) and Cg(i) are equilibrium molecular concentrations
of the molecules i in aqueous and gaseous phases, respectively.

We note that the Henry’s law constant is closely related with
the HFE as12

ΔGhyd ¼ � RT lnðKHÞ ð3Þ

where ΔGhyd is the hydration free energy, KH is the Henry’s law
constant, R is the ideal gas constant, and T is the temperature.

Recently, we reported a novel computational method for
accurate estimations of the HFEs of organic molecules—the
structural descriptors correction (SDC) model.13 The method is
based on a combination of the computationally inexpensive one-
dimensional RISM (1D RISM) with several corrections that can
be obtained in a straightforward manner from the molecular struc-
ture. Themain advantage of themodel is a small number of chemical
descriptors associated with main structural features of solutes:
partial molar volume (PMV), aromatic rings, electron-donating/
withdrawing substituents, etc. We have shown that the 1D RISM-
SDC model with the OPLS-AA partial charges14,15—1D RISM-
SDC(OPLSq) model—allows one to obtain HFEs for monofrag-
ment solutes with high accuracy.13 In the case of polyfragment
solutes, the 1D RISM-SDC(OPLSq) model is more sensitive to
the chemical nature of solutes. Thus, the model allows one to
predict HFEs with an accuracy of about 1 kcal/mol for chlorinated
benzenes with fewer than three chlorine atoms, but it provides
worse results for chlorinated benzenes with a larger number of
chlorine atoms.13 Themain reason for this deviation is the fact that
OPLS-AA partial charges are not sensitive to the mesomeric effect
of aromatic polyfragment solutes.13

Here, we show that the quality of the 1D RISM-SDC model
can be further improved by the model reparametrization using
QM-derived partial charges (1D RISM-SDC(QMq) model)
instead of the originally used OPLS-AA partial charges. In this
paper, we would like to demonstrate the efficiency of the 1D
RISM-SDC(QMq) model for two classes of CAHs: (i) poly-
chlorinated benzenes and (ii) polychlorobiphenyls. Other classes
of CAHs will be considered in our forthcoming publications.

’METHODS

1D RISM Approach. We use here the 1D RISM approach,16

where the solute and solvent molecules are modeled as sets of sites
(atoms) interacting via pairwise spherically symmetric potentials
(Figure 2).16We use the common formof the interaction potential
represented by the long-range electrostatic term and short-range
Lennard-Jones (LJ) term.17 The 1DRISM operates with site�site
correlation functions: intramolecular correlation functionsωss0(r),
ωRξ
solv(r), total correlation functions hsR(r), and direct correlation

functions csR(r) (where s and s0 are solute atoms, and R and ξ are
solvent atoms; Figure 2).16 In general, these are 3D-functions, but
due to the spherical symmetry, we consider only their 1D-radial
partsωss0(r),ωRξ

solv(r), hsR(r), and csR(r), which depend only on the
radial distance r. Direct correlation functions are connected with
the total correlation functions via the set of 1D RISM integral
equations:16

hsRðjr1 � r2jÞ ¼

∑
Nsolute

s0 ¼ 1
∑

Nsolvent

ξ¼ 1

Z
R3

Z
R3
ωss0 ðjr1 � r0jÞ cs0ξðjr0 � r00jÞ χRξðjr00 � r2jÞ dr0 dr00

ð4Þ
where χRξ(r) = ωRξ

solv(r) þ FhRξ
solv(r) are the bulk solvent suscept-

ibility functions andNsolute andNsolvent are the numbers of sites in
the solute and solvent, correspondingly. We note that in the
current work we expressed the intramolecular correlation func-
tions in terms of Dirac δ functions considering molecules as rigid
objects. However, molecules under investigation are almost rigid,
and this simplification does not lead to considerable changes in the
description of the hydration process. In general, for more flexible
compounds, the changes in molecular conformations upon hydra-
tion have to be taken into account (e.g., with a coupled RISM/MD
or RISM/MC simulation methodology18�20).
To make eq 4 complete, Nsolute � Nsolvent site�site closure

relations are introduced:

hsRðrÞ ¼ expð � βusRðrÞ þ hsRðrÞ � csRðrÞ þ BsRðrÞÞ � 1
s ¼ 1, :::,Nsolute;R ¼ 1, :::,Nsolvent

ð5Þ
where usR(r) is a pair interaction potential between the sites s and
R, BsR(r) are site�site bridge functions, and β = 1/kBT, where kB
is the Boltzmann constant and T is the temperature. In general,
the exact bridge functions are practically uncomputable, and one
needs to use some approximation.16,21,22 The most straightfor-
ward and widely used model is the HNC approximation, which

Figure 1. Dominant mechanisms that determine the distribution of
CAHs between atmosphere andwater. Hydration free energy (ΔGhyd) is
an important thermodynamic parameter used to describe the main
processes of CAH distribution between atmosphere and water. It is
closely related to the Henry’s law constant (KH) as ΔGhyd = �RT
ln(KH). In turn, KH is widely used to model the flux of a molecule from
air to water, Fairfwater (see the inset equation and eq 1 for the notation).

Figure 2. Representations of solute and solvent molecules and correla-
tion functions in the 1DRISM approach. Bothmolecules are modeled as
sets of sites (atoms). The molecules structures are described with
site�site intramolecular correlation functions: ωss0(r) and ωRξ

solv(r).
Solvent density distributions around the solute molecule are described
with intermolecular total hsR(r) and direct csR(r) correlation functions.
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sets the bridge functional BsR(r) to zero.
23 However, due to the

uncontrolled growth of the argument of the exponent (eq 5), use
of the HNC closure can lead to a slow convergence rate, and in
many cases even divergence of the numerical solution of 1D
RISM equations. One way to overcome this problem is to
linearize the exponent when its argument is larger than a certain
threshold constant C:

hsRðrÞ ¼ expðΞsRðrÞÞ � 1 when ΞsRðrÞ < C
ΞsRðrÞ þ expðCÞ � C� 1 when ΞsRðrÞ > C

(

ð6Þ
where ΞsR(r) =� βusR(r) þ hsR(r) � csR(r).
The linearized HNC closure for the caseC = 0 was proposed by

Hirata and Kovalenko in ref 24, where it has been called KH
closure. More details of the theoretical and computational back-
ground behind the 1DRISM equations can be found in refs 16, 25,
and 26. In the current work, we performed 1D RISM calculations
with the KH closure. Previously, we showed27,28 that the efficiency
of HFE calculations with a set of semiempirical corrections is
almost not sensitive to the choice of closure relation (KH, HNC).
However, the KH closure allows one to perform the quickest and
the most stable RISM calculations. That is why we used the KH
closure in this work rather than the HNC.
Within the framework of the 1D RISM theory, there are several

free energy expressions which allow one to obtain values of the
HFE from the total and direct correlation functions: HNC,16,23

GF,29 KH,30 PW,31 HNCB,32 and PWC.33 Comparisons of these
expressions13,31,33�38 show that the PW free energy expression has
better performance than the KH, HNC, and HNCB free energy
expressions. Therefore, as in our previous work,13 we use here the
PW free energy expression to calculate HFE values:

ΔGPW
hyd ¼

2πFkBT ∑
Nsolute

s¼ 1
∑

Nsolvent

R¼ 1

Z ¥

0
½�2csRðrÞ � csRðrÞ hsRðrÞ þ ~hsRðrÞ hsRðrÞ�r2 dr

ð7Þ
where r = |r1 � r2| and

~hsRðjr1 � r2jÞ ¼

∑
Nsolute

s0 ¼1
∑

Nsolvent

ξ¼ 1

Z
R3

Z
R3

~ωss0 ðjr1 � r0jÞ hs0ξðjr0 � r00jÞ ~ωsolv
Rξ ðjr00 � r2jÞ dr0 dr00

ω~ss0 and ω~Rξ
solv(r) are the elements of matrices W�1 and Wsolv

�1 ,
which are inverses to the matrices W = [ωss0(r)]Nsolute�Nsolute

and
Wsolv = [ωRξ

solv(r)]Nsolvent�Nsolvent
built from the solute and solvent

intramolecular correlation functions, respectively.
SDC Model. We define the modeling error (ε) of the RISM-

based HFEs calculations for a solute as the difference between
the calculated and experimental values:

ε ¼ ΔGmodel
hyd �ΔGexp

hyd ð8Þ
whereΔGhyd

exp is the experimental value ofHFE andΔGhyd
model is the

HFE calculated by the RISM approach (superscript model
denotes the RISM-based HFE expression, e.g., PW).
The main idea behind the SDC model is that we parametrize

themodeling error εwith a set of descriptors {Di} associated with
specific features of the chemical structure of solutes such as
partial molar volume (PMV), aromatic rings, electron-donating/
withdrawing substituents, etc. (Figure 3). The model contains

the assumption that different structural properties of the solute
molecule contribute independently to the error in HFE calcula-
tions. We use here the multilinear regression model where the
impact of the selected chemical properties on the HFE is linearly
proportional to the values of the corresponding descriptors {Di}
with empirical coefficients {ai

model}:

ΔGSDC
hyd ¼ ΔGmodel

hyd þ ∑
i
amodeli Di þ amodel0 ð9Þ

where the second term is the set of structural corrections and
a0
model is a systematic error.13

Training and Test Sets. Another basic idea behind the SDC
model is to calibrate the empirical coefficients {ai

model} on a set of
“simple” solutes. They can be represented as an alkyl chain
(linear or branched) which can contain only one substituent (e.g.,
benzene ring or chlorine atom). In the present work for the 1D
RISM-SDC(QMq) model, we used a training set of 46 small
neutral organic solutes: 22 alkanes, 17 alkylbenzenes, and 7
monochloroalkanes (see the Supporting Information). The mod-
eling error for alkanes can be parametrized with corrections on
PMV and branches. The set of alkylbenzenes requires an additional
correction on the benzene ring; in turn, the modeling error for
chloroalkanes can be parametrized with a linear combination of
corrections on PMV, branches, and chlorine atoms. Experimental
HFEs for all solutes from the training set were taken from ref 13,
whereHFEs were collected from several literature sources and then
averaged.
We tested the calibrated 1D RISM-SDCmodel on a set of 220

chlorinated aromatic hydrocarbons (CAHs): 11 polychlorinated
benzenes (from chlorobenzene to hexachlorobenzene, Table 2)
and 209 polychlorinated biphenyls, PCBs (see the Supporting
Information). The set of experimental HFEs for CAHs was
compiled from different literature sources: (i) HFEs were taken
from ref 13; (ii) log P(water/gas) values were collected from ref
39 and recalculated to HFEs with eq 10 ; (iii) KH constants were
taken from refs 40�44 and recalculated to HFEs with eq 3.

ΔGhyd ¼ � ðln 10ÞRT log Pðwater=gasÞ ð10Þ

whereΔGhyd is the hydration free energy, log P(water/gas) is the
logarithm of the partition coefficient between the gaseous phase
and water, R is the ideal gas constant, and T is the temperature.

Figure 3. Schematic representation of a molecule (3,30,5,50-tetra-
chlorobiphenyl) as a combination of fragment counts. The SDC model
equation as a linear combination of the corresponding structural
corrections: a1D1 is the correction on dimensionless partial molar
volume, a2D2 is the correction on branches, a3D3 is the correction on
the benzene ring, a4D4 is the correction on the halogen atom, and a0 is a
constant (solute-independent systematic error; see eq 9).



1453 dx.doi.org/10.1021/ct100654h |J. Chem. Theory Comput. 2011, 7, 1450–1457

Journal of Chemical Theory and Computation ARTICLE

Computational Details. The HFEs were calculated with the
1D RISM method using the collection of numerical routines
developed by our group.45�47 Calculations were performed for
the case of infinitely diluted aqueous solutions at T = 300 K. We
used the Lue and Blankschtein version of the modified SPC/E
model of water (MSPC/E),48 proposed earlier by Pettitt and
Rossky.49 It differs from the original SPC/Ewater model50 by the
addition of Lennard-Jones (LJ) potential parameters for the
water hydrogen (σHw

LJ = 0.8 Å and εHw
LJ = 0.046 kcal/mol). We

took the MSPC/E bulk solvent correlation functions hRβ
solv(r)

from ref 37.
To perform the calculations, one needs three sets of input

solute data: (1) coordinates of atoms, (2) partial charges on
atoms, and (3) atom LJ potential parameters. Coordinates of
atoms for each molecule were optimized using the Gaussian 03
quantum chemistry software51 at the B3LYP/6-31G(d,p) level of
theory. The initial configurations for the solutes from the training
set were taken from ref 13. In the case of the test set, atomic
coordinates for several PCBzs and PCBs were taken from the
Cambridge Structural Database.52 Due to the fact that the
hydrogen positions determined by standard X-ray methods can
be inadequate,53 we optimized the length of the C�H bonds
with constrained C�C and C�Cl bonds. The geometrical
parameters of all other CAHs (not presented in the Cambridge
Structural Database) were found by structural optimization at the
same level of theory without constrained bonds. Partial charges
for all molecules were obtained by with the CHELPG
procedure54 at the B3LYP/6-31G(d,p) level of theory using
the Gaussian 03 software.51 We modeled all compounds with
OPLS-AA (optimized potential for liquid simulations�all atom)
LJ potential parameters14,15,55 which were assigned to each atom
automatically by the Maestro software (Schroedinger Inc.). The
set of structural descriptors (eq 9) was assigned to each molecule
automatically by the computer program “checkmol”56 with the
use of Python scripts.

’RESULTS AND DISCUSSION

The 1D RISM-SDC(QMq) Model Calibration. Values of coeffi-
cients {ai

PW} of 1D RISM-SDC(QMq) model eq 9 with the
considered set of descriptors were obtained using multilinear
regression57 against a training set of 46 solutes. The regression
analysis was performed with the function regress from the Matlab
Statistics Toolbox (MATLAB, version 7.8.0.347(R2009a), The
MathWorks Inc., 2009). As one can see (Table 1), coefficients
a2
PW, a3

PW, and a4
PWhave the sameorder ofmagnitude, indicating that

each structural descriptor from the considered set is significant.
HFEs calculated by the 1D RISM-SDC(QMq) model for the

training set of solutes are shown in Figure 4. Correlation coefficient

r between the calculated and experimental HFEs was obtained
with the function corrcoef from the same Matlab Statistics Tool-
box and equals 0.92. It shows that the 1D RISM-SDC(QMq)
model with four structural descriptors describes HFEs of 46 solutes
from different chemical classes with high accuracy (the standard
deviation of the error is 0.64 kcal/mol).
Predictive Ability of the 1D RISM-SDC(QMq) Model for

CAHs.The predictive ability of the 1DRISM-SDC(QMq)model
for HFE calculations was analyzed on the test set of 220 CAHs
(see the section Training and Test Sets) and the same set of
coefficients from Table 1 as for the training set. A comparison of
the predicted and experimental HFEs is discussed below. We
note that the reliable experimental data are very important for
estimations of the accuracy of predicted results. Due to that,
before the analysis of calculated data, we performed an estima-
tion of reliability of experimentally obtained HFE values for each
class of compounds from the test set.
Polychlorinated Benzenes (PCBzs). First of all, we analyzed the

difference between the experimental HFEs for PCBzs obtained by
different sources (see Table 2). Despite the fact that for several
solutes (1,2,3-trichlorobenzene, 1,3,5-trichlorobenzene, and hexa-
chlorobenzene) the HFE values differ by 0.5�0.6 kcal/mol (see
Table 2), on average, HFE values obtainedwith different techniques
deviate from the mean value by 0.2�0.3 kcal/mol. Thus, we
concluded that experimental data for polychlorinated benzenes
are sufficiently accurate and can be used for the estimation of the
accuracy of the predicted data.
The comparison of the predicted and experimental HFE

values is shown in Figure 5. To quantify the accuracy, we
calculated statistical parameters of the error ε = ΔGhyd

1DRISM�SDC

� ΔGhyd
exp for the test set of polychlorinated benzenes (Figure 5,

inset data). As one can see, results obtained with the 1D RISM-
SDC(QMq)model are nonbiased (mean of the difference equals
0.02( 0.11 kcal/mol), and the standard deviation of the error is
in the range of the deviation between different sources of the
corresponding experimental data (∼0.4 kcal/mol).
Polychlorobiphenyls (PCBs). For PCBs, experimental values of

neither hydration free energy nor log P(water/gas) are available
in the literature. However, since the 1980s, there have been

Table 1. Descriptors and Corresponding Multilinear Re-
gression Coefficients of the 1D RISM-SDC(QMq) Model for
the Training Set of Solutes

descriptor coefficient (kcal/mol)

a0
PW = �4.19

dimensionless partial molar volume (D1 = FV)a a1
PW = �1.48

number of branches (D2 = Nbr) a2
PW = 0.98

number of benzene rings (D3 = Nbenz) a3
PW = �3.11

number of halogen atoms (D4 = Nhal) a4
PW = �1.30

a V is the partial molar volume of the solute; F = 0.0337 Å�3.

Figure 4. Correlation between the calculated and experimental HFEs
for the training sets of solutes (gray circles are alkanes, orange triangles
are alkylbenzenes, green triangles are chlorinated alkanes). The inset
data show the statistical profile of the error ε =ΔGhyd

1DRISM-SDC�ΔGhyd
exp .

Solid line illustrates the ideal correlation. Dashed lines indicate the
standard deviation of the error.
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several experimental investigations of KH values of PCBs re-
ported, where the experiments were carried out with two
dynamic techniques: (i) the gas stripping method (GSM)58�61

and (ii) the “wetted-wall column” (WWC) or the concurrent
flow technique.44,62,63 All values are presented in Figure 6a;
corresponding HFEs recalculated with eq 3 are presented in
Figure 6b. One can see that the experimental KH values are
presented mainly by two sets of data obtained by the GSM
(Bamford59) and the WWC technique (Brunner et al.44). Other
sets of KH values are not very large and contain about 20�30
values from 209 possible. Figure 6 shows that, for the same
solutes, experimental KH values from the GSM and WWC sets
can differ considerably. The difference increases with the increase
in the number of chlorine atoms in a solute. In terms of HFE, the
difference varies from 1 kcal/mol for lighter PCB congeners
(PCB with 4�5 chlorine atoms) to up to 3 kcal/mol for heavier
congeners (higher chlorinated PCBs) (Figure 6b).

Recently, it was found that the GSM overestimates KH values
for highly chlorinated biphenyls .64,65 The problem is hidden in
the technical implementation of the GSM. Within the method,
the KH of a compound is determined as a ratio of the equilibrium

Table 2. Descriptors of the 1D RISM-SDC Model (eq 9) and Hydration Free Energies (ΔGhyd) for Polychlorinated Benzenesa

ΔGhyd (kcal mol �1)

name D1 (FV) D2 (Nbr) D3 (Nbenz) D4 (Nhal) 1D RISM-PW 1D RISM-SDC expaverage exp|max|�|min|

1,2,3,4-tetrachlorobenzene 5.24 4 1 4 14.75 �1.83 �1.3239,40,43 0.07

1,2,3-trichlorobenzene 4.85 3 1 3 13.77 �1.79 �1.4939,43 0.50

1,2,4,5-tetrachlorobenzene 5.30 4 1 4 15.40 �1.27 �1.3439,43 0.00

1,2,4-trichlorobenzene 4.89 3 1 3 14.23 �1.40 �1.2239,40,43 0.29

1,2-dichlorobenzene 4.45 2 1 2 12.85 �1.69 �1.4713,39�41,43 0.27

1,3,5-trichlorobenzene 4.93 3 1 3 14.71 �1.97 �1.0939,43 0.63

1,3-dichlorobenzene 4.48 2 1 2 13.24 �1.34 �1.1339,41,43 0.29

1,4-dichlorobenzene 4.49 2 1 2 13.15 �1.44 �1.1539,41,43 0.21

2-chlorotoluene 4.52 2 1 1 12.76 �0.55 �1.1439

chlorobenzene 4.04 1 1 1 11.98 �1.51 �1.0713,39�41,43 0.22

hexachlorobenzene 5.95 6 1 6 16.33 �2.17 �2.2643,42 0.50
aHydration free energies (ΔGhyd) predicted by the uncorrected PW free energy expression and the 1D RISM-SDC model with QM-derived partial
charges. Experimental values were averaged over different sources (expaverage); exp|max|�|min| shows the difference between the maximum and minimum
values from different literature sources.

Figure 5. Correlation between the experimental HFE and values
predicted by the 1D RISM-SDC(QMq) model for the test set of
polychlorinated benzenes. The inset data show the statistical profile of
the error ε = ΔGhyd

calc � ΔGhyd
exp . Solid line illustrates the ideal correlation.

Dashed lines indicate the std(ε).

Figure 6. Experimental data for PCB congeners: (a) Henry’s law
constants, KH, obtained with wetted-wall column (WWC), gas stripping
method (GSM), or modified GSM (MGSM). (b) Hydration free
energies (ΔGhyd) recalculated fromKH. Black arrows show the deviation
of experimental data obtained by the different techniques. Dashed lines
show the separation of the whole set of PCBs with respect to the number
of chlorine atoms (shown on the top).
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concentrations of the compound in aqueous solution and vapor,
accordingly. The compound is stripped from the aqueous phase
into a gaseous phase using a bubble column apparatus (see the
Supporting Information).66 It was found that the sorption of the
solute molecules to the surface of gas bubbles leads to a higher
compound concentration in the gaseous phase, which, in turn,
results in the overestimated KH value. With theWWC technique,
one can avoid this drawback. The technical implementation of
the method consists of the equilibration of a compound between
a thin layer of water and a concurrent flow of gas within the
contact region.66 Due to that, we accepted the experimental data
obtained by the WWC method44 as the most reliable set.
Unfortunately, the total number of experimental values pub-
lished in ref 44 is only 57 from 209 possible.
A comparison of HFEs, predicted by the 1D RISM-SDC-

(QMq) model, with the experimental data (Table 3) shows that
the calculated values are biased with respect to experimental
ones, mean(ε) = �0.72 ( 0.07 kcal/mol, but have a small
standard deviation of error. Figure 7 shows that the error remains
the same for the whole set of PCBs and does not increase for the
heavier PCB congeners.

Also, we performed a comparison of our results with HFEs
obtained by other implicit models, SM6 and COSMO-SAC (the
data were taken from ref 67). Both of them treat the solvent as a
homogeneous medium characterized by its dielectric constant
(continuum solvent methods). Statistical analysis of the litera-
ture results is shown in Table 3. As one can see (Figure 7), HFEs
obtained by these models are in good agreement with each other.
However, the models allow predictions of HFE with high
accuracy only for light congeners, whereas for the heavier PCBs,
the error of HFE increases with the increase in the number of
chlorine atoms. In the case of the highly chlorinated biphenyls
(NCl = 8�9), the error is ∼3 kcal/mol. We explain these results
as follows. In the case of lighter PCB congeners, the chlorine
atoms are well-separated from each other. Thus, the total effect of
chlorine atoms interactions with the solvent molecules can be
presented as a sum of single chlorine atoms’ contributions.
Increasing the number of chlorine atoms in biphenyl leads to
the interference of the chlorine atoms’ interactions with the
solvent molecules and, as a result, to a nonlinearity of the solvent
response in the process of hydration. We underline that the 1D
RISM approach considers these effects in a proper way, even in
the case of highly chlorinated compounds. In turn, the continuum
solvent models (SM6 and COSMO-SAC) are not sensitive to the
nonlinear solvent response.We note that using the RISMmodel for
solvent is essential for the efficiency of the SDCmodel. As such, we
tested our correction scheme with the use of the PBSA solvent
model instead of the 1D RISM (see the Supporting Information).
The results show that the RISM-based SDCmodel is superior to the
PBSA-based model. Thus, for the test set of polychlorinated
benzenes, the mean of error and the standard deviation of error
of the PBSA-SDC model are∼11.3 kcal/mol and ∼6.7 kcal/mol,
accordingly; that is much worse than the 1D RISM-SDC results.
The results of this work show the potential of the 1D RISM-

SDC(QMq) approach for the description of a hydration/solva-
tion process for a wide range of chemical solutes. It makes the
model a good candidate for use in large-scale environmental
modeling of hydration pathways of organic pollutants.

Table 3. Statistical Profiles of Errors for Results Obtained by
the Implicit Solvent Models for the Test Set of Polychlor-
obiphenyls (N = 57): Mean Value, Standard Deviation (std),
and Root Mean Square (rms) of the Error ε =ΔGhyd

calc�ΔGhyd
exp

(kcal/mol)a

model

1D RISM-PW 1D RISM-SDC SM6
67 COSMO-SAC67

mean(ε) 20.35 �0.72 1.28 1.15

std(ε) 1.62 0.55 0.78 0.94

rms(ε) 20.42 0.91 1.50 1.49

r �0.80 0.65 �0.35 �0.70
a r is the correlation coefficient. Results obtained by the SM6 and
COSMO-SAC methods were collected from ref 67.

Figure 7. Errors for HFE predictions by the 1D RISM-SDC(QMq) model proposed in this work for the test set of polychlorobiphenyls (PCBs). The
errors are compared with the corresponding literature data for SM6 and COSMO-SAC (taken from ref 67). The HFE prediction error increases for SM6

and COSMO-SAC with the increase in IUPAC number. At the same time, the 1D RISM-SDC(QMq) error remains the same for all PCBs. Dashed lines
show the separation of the whole set of PCBs with respect to the number of chlorine atoms (shown on the top).
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’CONCLUSIONS

Here, we discussed a new method for predicting the hydration
free energy (HFE) of organic pollutants and illustrated the
efficiency of the method on a set of 220 chlorinated aromatic
hydrocarbons that are in the list of persistent organic pollutants.
The model is computationally inexpensive, and one HFE calcu-
lation takes only a minute on a standard PC (3.3 GHz). The
method provides good accuracy for the test set of organic
pollutant molecules. However, analysis of the results shows that
the model performs better for polychlorinated benzenes than for
polychlorobiphenyls. On one hand, that means that the SDC
model might still require some improvement. That can be done
in two directions: (i) one can use more sophisticated molecular
theories, such as 3D RISM16,68,69 [we note, however, that the 3D
approach is significantly more computationally expensive than
the 1D RISM approach used here (roughly by 2 orders of
magnitude) and that might limit its application for large-scale
screening of pollutants]; (ii) one can also work on the improve-
ment of the theoretical part of the model by developing new,
more efficient forms of the HFE functional. This is the subject of
our future research.

On the other hand, the observed∼1 kcal/mol bias of the model
results from experimental data for PCBs may be attributed to the
differences in the quality of experimental data for polychlorinated
benzenes and polychlorobiphenyls. We note that the sources of
experimental data for these two classes of pollutants are different.
However, as shown in Figure 6, the PCB congeners HFEs obtained
from different sources can vary by several kilocalories per mole. We
note that the problem of the lack of reliable experimental data for
pollutants was highlighted in refs 2 and 65. Computational and
theoretical scientists can do very little to improve the situation in
that respect, but we hope that our results and analysis of the available
experimental data will provoke experimentalists to revisit the
question and, hopefully, to make additional independent measure-
ments ofHFE forCAHs. Such new experimental datawould be very
valuable in creating and testing new models for environmental
modeling with high predictive ability.
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ABSTRACT: A fundamental challenge in computational drug design is the availability of reliable and validated experimental
binding and structural data against which theoretical calculations can be compared. In this work a combination of molecular
dynamics (MD) simulations and free energy calculations has been used to analyze the structural and thermodynamic basis of ligand
recognition by phenylethanolamine N-methyltransferase (PNMT) in an attempt to resolve uncertainties in the available binding
and structural data. PNMT catalyzes the conversion of norepinephrine into epinephrine (adrenaline), and inhibitors of PNMT are
of potential therapeutic importance in Alzheimer’s and Parkinson’s disease. Excellent agreement between the calculated and recently
revised relative binding free energies to human PNMT was obtained with the average deviation between the calculated and the
experimentally determined values being only 0.8 kJ/mol. In this case, the variation in the experimental data over time is much greater
than the uncertainties in the theoretical estimates. The calculations have also enabled the refinement of structure�activity
relationships in this system, to understand the basis of enantiomeric selectivity of substitution at position three of tetrahydroiso-
quinoline and to identify the role of specific structural waters. Finally, the calculations suggest that the preferred binding mode of
trans-(1S,2S)-2-amino-1-tetralol is similar to that of its epimer cis-(1R,2S)-2-amino-1-tetralol and that the ligand does not adopt the
novel bindingmode proposed in the pdb entry 2AN5. The work demonstrates howMD simulations and free energy calculations can
be used to resolve uncertainties in experimental binding affinities, binding modes, and other aspects related to X-ray refinement and
computational drug design.

’ INTRODUCTION

The primary challenge in rational drug design is to understand
how a protein recognizes a specific ligand. X-ray structures of
protein�ligand complexes can provide detailed information
regarding the location of the ligand within the complex and
information on specific ligand-protein interactions. They do not,
however, provide information on how these interactions may
contribute to the net binding free energy. Thus, the question of
why a specific ligand binds better than another is frequently open
to speculation.1�3 An additional difficulty is that the binding
mode (the position, the orientation, and the conformation) of
small ligands can be uncertain in medium-(0.2�0.3 nm) to low-
(>0.3 nm) resolution structures where alternative bindingmodes
cannot be distinguished based solely on the electron density.4,5

In such cases the combined use of molecular dynamics (MD)
simulations and free energy calculations (FE) has proved to be a
powerful approach to identify the thermodynamically stable
binding mode. For example, Malde andMark5 recently discussed
a number of examples where the stereochemistry, conformation,
and orientation and the protonation and tautomeric states of
specific ligand structures were ambiguous and where the pub-
lished structures were possibly inappropriate. A case in point was
the binding of noradrenochrome and tetrahydroisoquinoline-7-
sulphonamide to phenyl ethanolamine N-methyltransferase
(PNMT). In particular, the novel binding mode proposed in
the case of noradrenochrome and the proposed orientation of the
sulphonamide group in the ligand tetrahydroisoquinoline-7-
sulphonamide were unstable, suggesting that the crystallographic
models represented high-energy states.

PNMT catalyzes the formation of epinephrine (adrenaline) from
norepinephrine.6 In the central nervous system (CNS) epinephrine
is linked to the control of blood pressure and respiration as well as
the secretion of pituitary hormones.7,8 CNS specific PNMT in-
hibitors are of potential therapeutic importance as the progression of
diseases, such as Alzheimer’s and Parkinson’s diseases, is associated
with increased levels of epinephrine in the CNS.9�12 Several classes
of PNMT inhibitors have been identified. These include derivatives
of phenylethylamine andR-methylphenethylamine (amphetamine)
as well as sulfhydryl-binding agents and benzamidine-based com-
pounds.9,10Whilemany of these compounds are potent inhibitors of
PNMT in vitro, the design of inhibitors that are active in vivo and
in particular within the CNS remains a significant challenge. For
example, phenylethylamine- and benzamidine-based PMNT inhibi-
tors are of little use clinically as they show cross reactivity with the
R-adrenergic receptor.13 Tetrahydroisoquinoline (THIQ) (Figure 1,
molecule 1) derivatives are also potent inhibitors of PNMT in vitro
and exhibit good selectivity.14,15 It has also been claimed that
derivatives of THIQ should be active within the CNS.14,16 THIQ
is a structural analog of norepinephrine, the main substrate of
PMNT. Based on structure�activity relationships (SAR), it has
been reported that the combination of an electron-withdrawing
substituent at position 7 and an alkyl substituent at position 3 on the
THIQ scaffold (see Figure 1) leads to enhanced PNMT inhibition
with good selectivity over theR-adrenergic receptor.17�19Anumber
of X-ray crystal structures of PNMT:THIQ complexes have been
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reported. In these structures the bulkier substituents at position 7 of
the THIQ ring were found to bind within a pocket which is not
evident in the ligand-free protein, suggesting that the protein has a
high degree of conformational plasticity complicating structure-
based ligand design.20,21 Detailed analysis of this system is further
complicated by the fact that there is uncertainty regarding the
experimental binding data.21�24 This is illustrated in Table 1, which
lists experimental binding data for the PNMT inhibitors shown in
Figure 1. As can be seen, differences of between 10- and a 1000-fold
in the value ofKi, which corresponds to an uncertainty of between 5
and 11 kJ/mol in the free energy of binding, have been reported by
the same authors using different assay conditions.23 In addition,
binding data is only available for racemic mixtures in several cases or
only for one of the potential isomers in others.

In the present study a combination of MD simulations and FE
calculations have been used in order to understand in detail the
structural and thermodynamic basis of ligand recognition by
PNMT. A series of THIQ derivatives with substitutions at
positions three, seven, and eight that shows a wide range of
binding free energies (�48 to > �15 kJ/mol) and the potential
enantiomeric selectivity have been examined.19,21,23�27 Excellent
agreement between the calculated and the recent experimental
values for the FE of binding of these THIQ derivatives to human
PNMT was obtained with the variation in the experimental data
over time being much greater than the uncertainties in the
theoretical estimates. In addition, alternative binding modes of
trans-(1S,2S)-2-amino-1-tetralol (Figure 1, 13S) to human
PNMT have been considered and the role specific water mole-
cules play in stabilizing the binding of cis-(1R,2S)-2-amino-1-
tetralol (Figure 1, 13R) to PNMT was examined.

’METHODS

MD Simulations. All MD simulations were performed using
the GROMOS96 simulation package in conjunction with the
GROMOS 53A6 force field.28,29 The initial structure of human
PNMT complexed with the cofactor S-adenosyl-L-homocysteine
(SAH) and 1,2,3,4-tetrahydro-isoquinoline-7-sulphonamide (in-
hibitor 7) taken from the pdb entry 1HNN was used for all
studies involving THIQ derivatives. The initial structures for the
studies involving the binding of 13R and 13S were taken from
pdb entries 2AN3 and 2AN5, respectively. The topologies of the

ligands (Figure 1) were generated using the ‘Automated Topo-
logy Builder’ (ATB, http://compbio.biosci.uq.edu.au/atb/),
version 2009-06-10.30 Missing parameters were manually
assigned where possible based on comparable groups within
the GROMOS force field.29 The parameters used for the�NO2

and �SO2NH2 groups are shown in Tables 2a and 2b. Simula-
tions of the ligands free in solution were performed by placing the
ligand in a periodic rectangular box containing 975 simple point
charge (SPC) water molecules.31 For the systems in which the
ligand was bound to the protein, the configuration of the solvent
was relaxed by performing a steepest descent minimization in
which the protein and ligand atoms were positionally restrained
to their initial positions using a harmonic interaction potential
with a force constant of 2 � 103 kJ/mol/nm2. The system was
then further equilibrated by performing a 200 ps simulation, with
the heavy atoms of the protein positionally restrained, before a
series of unrestrained MD simulations were commenced. All the
simulations were performed at constant temperature (298 K)
and pressure (1 atm). This was achieved using a Berendsen
thermostat32 with a coupling time of 0.1 ps and a Berendsen
barostat with a coupling time of 0.5 ps. The isothermal compres-
sibility was set to 4.575 � 10�4 kJ/mol/nm3. Nonbonded interac-
tions were calculated using a twin-range cutoff. Interactions
within the short-range cutoff of 0.8 nm were updated every time
step. Interactions within the longer-range cutoff of 1.4 nm were
updated every 5 time steps together with the pairlist. To correct
for the truncation of electrostatic interactions beyond the 1.4 nm
long-range cutoff, a reaction field correction was applied using an
effective dielectric (ε) of 54.28 The equations of motion were
integrated using the leapfrog scheme with a 2 fs time step. Initial
velocities at a given temperature were taken from a Maxwell�
Boltzmann distribution. The lengths of all bonds were constrained
to ideal values using the SHAKE algorithm with a geometric
tolerance of 0.0001.33

System Setup. The initial structure of the different protein:
ligand complexes were derived from the crystal structure of
PNMT complexed with 1,2,3,4-tetrahydroisoquinoline-7- sul-
phonamide (inhibitor 7) and the cofactor S-adenosyl-L-homo-
cysteine, pdb code 1HNN.34 The GROMOS force field treats
aliphatic hydrogen atoms as united atoms together with the
carbon atom to which they are attached. The coordinates of polar
hydrogen atoms (bound to nitrogen, oxygen, or sulfur atoms)

Figure 1. Three-, seven-, and eight-substituted tetrahydroisoquinoline (THIQ) derivatives and 2-amino-1-tetralol used in the study. The numbering
scheme for THIQ and 2-amino-1-tetralol is given for ligands 1 and 13, respectively; * indicates the chiral center.
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and aromatic hydrogen atoms were generated based on ideal
geometries. In the chain A of pdb 1HNN, the first 21 N-terminal
residues were not resolved. In addition atoms were missing
in seven other residues. The missing N-terminal residues were
not included in the model as they lie far from the active site.
The coordinates for the missing atoms in residues Arg33,
Lys136, Arg145, Gln163, Glu241, Arg245, and Leu282 were
generated as follows: All atoms in the protein for which the
coordinates were available were positionally restrained using a
harmonic restraining potential and a force constant of 2� 103

kJ/mol/nm2. The coordinates for the other atoms were
arbitrarily set to zero. A series of minimizations were then
performed in which the bond length, the bond angle, the
dihedral, the improper dihedral, and finally the nonbonded
terms for the missing atoms were added progressively. After
that the restraints were removed, and the whole protein was
minimized. The charges of the ionizable groups were chosen
to correspond to a pH of 7, resulting in a net charge of�2e. No

counterions were added. The histidine residues were assigned
appropriate tautomeric configurations based on the local environ-
ment of these residues. The protein was placed at the center of a
periodic truncated octahedral box, which was filled with 7239 SPC
water molecules. In this procedure, the minimum distance between
water oxygen atoms and nonhydrogen protein atoms was 0.23 nm,
and the minimum distance between the protein and the wall of the
box was 0.9 nm.
Free Energy Calculations. The change in Gibbs FE (ΔG),

associated with different mutations of the ligand in water and
in the protein was determined using the coupling para-
meter approach in conjunction with the thermodynamic integra-
tion eq 1:

ΔG0 f 1 ¼
Zλ¼ 1

λ¼ 0

DHðλÞ
Dλ

� �
λ

dλ ð1Þ

Table 1. Experimental (Human and/or Bovine) and Calculated (Human) Relative Gibbs Free Energies of Binding (Calculated
Relative to Inhibitor 5) with PNMTa

inhibitor Ki (μM) ref ΔGexpt (kJ/mol) relative ΔΔGexpt (kJ/mol) relative ΔΔGcalcd (kJ/mol) d ΔΔGexpt � ΔΔGcalcd (kJ/mol)

1 1 15.0 ( 1 22 �27.8 ( 0.2 13.1 ( 0.6 9.7 ( 1.8 3.4

2 5.8 ( 0.5 24 �30.1 ( 0.2 10.8 ( 0.6 9.7 ( 1.8 1.1

3 1b 10.0 ( 0.9 19, 25 �28.8 ( 0.2 12.1 ( 0.6 9.7 ( 1.8 2.4

4 2b,c >2000 25 >�15.5 >25.4 � �
5 2R � � � � 66.9 ( 2.5 �
6 2S � � � � 99.5 ( 1.6 �
7 3Rb 38.0 ( 2 19 �25.4 ( 0.1 15.5 ( 0.5 14.0 ( 2.4 1.5

8 3Sb 1.0 ( 0.1 19 �34.5 ( 0.2 6.4 ( 0.6 4.8 ( 2.0 1.6

9 4b,c 24.0 ( 1 19, 25 �26.6 ( 0.1 14.3 ( 0.5 � �
10 4R � � � � 8.6 ( 2.6 �
11 4S � � � � 4.2 ( 2.1 �
12 5 0.078 ( 0.014 21 �40.9 ( 0.4 0.0 0.0 0.0

13 6R 0.017 ( 0.01 21 �44.7 ( 0.1 �3.8 ( 0.5 �4.6 ( 2.2 0.8

14 6Rb 0.24 ( 0.04 19 �38.1 ( 0.4 2.8 ( 0.8 �4.6 ( 2.2 7.4

15 6Sb 0.9 ( 0.03 19 �34.8 ( 0.1 6.1 ( 0.5 3.1 ( 2.1 3.0

16 7 0.58 ( 0.04 22 �35.9 ( 0.2 5.0 ( 0.6 �1.8 ( 2.5 6.8

17 0.28 ( 0.02 23, 27 �37.7 ( 0.1 3.2 ( 0.5 �1.8 ( 2.5 5.0

18 0.12 ( 0.02 21, 26 �39.8 ( 0.3 1.1 ( 0.7 �1.8 ( 2.5 2.9

19 7b 0.56 ( 0.04 22 �35.8 ( 0.1 4.9 ( 0.5 �1.8 ( 2.5 6.7

20 8R 2.1 ( 0.1 22 �32.7 ( 0.1 8.2 ( 0.5 �0.8 ( 2.3 9.0

21 0.052 ( 0.004 24 �41.9 ( 0.1 �1.0 ( 0.5 �0.8 ( 2.3 �0.2

22 8Rb 0.34 ( 0.06 22 �37.2 ( 0.3 3.7 ( 0.7 �0.8 ( 2.3 4.5

23 8S � � � � 1.0 ( 2.9 �
24 9Rb 1.3 ( 0.1 19 �33.9 ( 0.2 7.0 ( 0.6 10.2 ( 2.1 �3.2

25 9Sb 0.25 ( 0.02 19 �38.0 ( 0.2 2.9 ( 0.6 �2.1 ( 1.3 5.0

26 10b,c 69.5 ( 6 19, 25 �24.0 ( 0.3 16.9 ( 0.7 � �
27 10R � � � � 12.7 ( 2.8 �
28 10S � � � � 22.3 ( 2.8 �
29 11 0.3 ( 0.04 22 �37.5 ( 0.2 3.4 ( 0.6 �8.3 ( 2.2 11.7

30 0.0031 ( 0.0006 16, 23 �48.9 ( 0.3 �8.0 ( 0.7 �8.3 ( 2.2 0.3

31 11b 0.22 ( 0.05 22 �38.3 ( 0.5 2.6 ( 0.9 �8.3 ( 2.2 10.9

32 12Rb 0.15 ( 0.01 16 �39.3 ( 0.2 1.6 ( 0.6 �1.7 ( 2.5 3.3

33 12S � � � � 9.3 ( 2.3 �
aThe values in the bold italics correspond to themost recent experimental data for binding to human PNMTat the time of publication. bData for binding
to bovine PNMT. cRacemic mixture. dThe standard error for the relative free energy involving two legs were calculated by formula [(s1)

2 þ (s2)
2]1/2,

where s1and s2 are standard errors of two different legs.
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where λ = 0 corresponded to the initial state of the system, and
λ = 1 corresponded to the final state of the system. H is the
Hamiltonian of the system, and the brackets <...>λ correspond to
an average over an equilibrium ensemble at λ. The relative FE of
binding ΔΔG was determined from the difference in the change
in FE of performing the same mutation free in solution and
bound to the protein. Equation 1 was integrated by performing
separate simulations at a series of 15 (0.0, 0.1, 0.2, ..., 0.8, 0.9, 1.0)
λ points, including 0.025, 0.05, 0.95, 0.975 (to smooth the
integrand) in both the bound and unbound states. For the
mutations in water, a 1 ns simulation was performed at each λ
value. For the mutations in the protein, the system was first
equilibrated for 0.2 ns, and 1.8 ns of sampling used to provide
an initial estimate of <∂H/∂λ>λ. In cases where the value of
<∂H/∂λ>λ had not converged, the simulations were extended to
3 ns. To determine the degree of convergence, thermodynamic
cycles wherein the molecules were transformed from one to
another in circular path in water, and when bound to the protein,
were constructed. The mutations were chosen in order to maxi-
mize the number of closed thermodynamic cycles that could be

generated with a limited number of mutations. The degree of
convergence was also checked by performing the forward and
backward mutations. To prevent numerical instabilities as atoms
were created or destroyed, the soft-core potential as described by
Beutler et al.35,36 was used with RLJ = 0.5 and RC = 0.5 nm2. The
area beneath the curve in (1) was estimated using a trapezoidal
approximation. The error in <∂H/∂λ>λ was estimated using a
block averaging procedure at each λ-point.37 The individual
errors were then integrated to yield an estimate of the error in
ΔG. All mutations performed as part of this work are summarized
in Table 3. All possible thermodynamic cycles that could be
constructed from these mutations are shown diagrammatically in
Figure 2.

Table 2a. Bonded and Nonbonded Parameters for the
Functional Group �NO2

atoma

atom

type

[C6(i,i)]1/2

[(kJ/mol nm6)1/2]b
[C12(i,i)]1/2 [10�3

(kJ/mol nm12)1/2]b
partial atomic

charge (e)

N 7 0.04936 1.523, 2.250 0.700

O1 1 0.04756 1.000, 1.130 0.350

O2 1 0.04756 1.000, 1.130 0.350

C1 12 0.04838 2.222 0.000

bond bond type bond length

b0 (nm)

force constant Kb

(106kJ/mol/nm4)

C1�N 21 0.147 8.71

N�O1, N�O2 5 0.123 16.6

angle angle type bond angle

θ0 (�)
force constant

Kθ (kJ/mol)

C1�N�O1, C1�N�O2 22 117 635

O1�N�O2 36 126 575

dihedral dihedral type phase shift

cos(δ)

force constant

Kj (kJ/mol)

multiplicity

m

C2�C1�N�O1 14 �1 33.5 2

improper

dihedral angle

improper

dihedral type

improper dihedral

angle ξ0 (deg)

force constant Kξ

(kJ/mol/deg2)

N�O1�O2�C1 1 0.0 0.0510
aThe carbon C2 and C3 have standard parameters for aromatic carbons
in the GROMOS 53A6 parameter set. b Lennard-Jones parameters C6-
(i,j) and C12(i,j) were obtained using the following combination rules:
C6(i,j) = [C6(i,i)

1/2 C6(j,j)
1/2] and C12(i,j) = [C12(i,i)

1/2 C12(j,j)
1/2].

The atom, bond, angle, and dihedral types are from the GROMOS 53A6
parameter set.29

Table 2b. Bonded and Nonbonded Parameters for the
Functional Group �SO2NH2

atoma

atom

type

[C6(i,i)]1/2

[(kJ/mol nm6)1/2]b
[C12(i,i)]1/2 [10�3

(kJ/mol nm12)1/2]b
partial atomic

charge (e)

S 42 0.10277 4.6366 1.157

O1 44 0.047652 0.86686, 1.1250 �0.550

O2 44 0.047652 0.86686, 1.1250 �0.561

N 6 0.04936 1.523, 1.943 �0.832

H1 21 0.0 0.0 0.393

H2 21 0.0 0.0 0.393

C1 12 0.04838 2.222 0.000

bond bond type bond length

b0 (nm)

force constant

Kb (10
6 kJ/mol/nm4)

C1�S 31 0.178 5.94

S�O 25 0.150 8.37

S�N 41 0.153 8.04

angle angle type bond angle

θ0 (�)
force constant

Kθ (kJ/mol)

C1�S�N, C1�S�O1,

O1�S�O2, O1�S�N

13 109.5 520

dihedral dihedral type phase shift

cos(δ)

force constant

Kj (kJ/mol)

multiplicity

m

C2�C1�S�N 43c þ1 0.75 2

C1�S�N�H1 40 þ1 1.0 6

improper

dihedral angle

improper

dihedral type

improper dihedral

angle ξ0 (�)
force constant Kξ

(kJ/mol/deg2)

N�H1�H2-S 1 0.0 0.0510
aThe carbon C2 and C3 have standard parameters for aromatic carbons
in the GROMOS 53A6 parameter set. b Lennard-Jones parameters C6-
(i,j) and C12(i,j) were obtained using the following combination rules:
C6(i,j) = [C6(i,i)

1/2 C6(j,j)
1/2] and C12(i,j) = [C12(i,i)

1/2 C12(j,j)
1/2].

The atom, bond, angle, and dihedral types are from the GROMOS 53A6
parameter set.29 cNonstandard dihedral type derived by fitting the
molecular mechanics (MM) dihedral profile to the one obtained from
quantum mechanical (QM) calculations (data not shown).
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’RESULTS AND DISCUSSION

MD Simulation of Ligand�PNMT Complexes. To examine
if the system was equilibrated and if the ligand�PNMT com-
plexes were stable in the force field used, the atomic positional
root-mean-square deviation (rmsd) of the protein bound to
inhibitor 7 with respect to initial X-ray crystal structure (pdb
code 1HNN) was calculated. The average rmsd value with
respect to the starting structure equilibrates after approximately
2 ns of simulation at 0.2 nm for the backbone atoms and 0.25 nm
for all atoms, respectively, with the interactions between ligand
and binding site remaining essentially the same as that proposed
in the X-ray crystal structure. The aromatic ring of the THIQ
nucleus is involved in a π-stacking arrangement with the side
chain of Phe181. The ring N of THIQ formed a salt bridge with
the side chain carboxylate of Glu219 and the water-mediated
hydrogen bond with the side chain O of Asn39 and side chain O
of Asp267. Almost all of the other ligands showed a similar
degree of stability and similar interactions with PNMT. The
exceptions were the molecules 2R and 2S. Molecules 2R and 2S,

which are very weak inhibitors (>2000 μM), cannot adopt the
same binding mode as the other ligands due to the fact molecule
2 has a charged carboxylate group and will be discussed in
detail later.
Convergence of the Free Energy Calculations in Water

and Bound to PNMT. The degree of convergence in the FE
calculations was monitored in two ways. Out of the 33 pairs of
mutations investigated, 28 pairs were performed in both the
forward and the backward directions (Table 3). In addition,
thermodynamic cycles in water and in the protein were con-
structed as described in the Methods Section. As the FE is a state
function, the FE for the forward and backward mutations should
be identical except for the sign. In addition, the FE for any closed
cycle should be zero. Figure 2 shows all possible thermodynamic
cycles for the different mutations performed in water and
PNMT. All possible three-membered thermodynamic cycles that
can be constructed from Table 3 are listed in Table 4. Using the
mean of the FE in the forward and backward directions all three-
membered cycles in water close to within 1.1 kJ/mol. The
convergence of the forward and backward transformations in

Table 3. Change in the Gibbs FE for Mutations of Pairs of Inhibitors Listed in Figure 1 in Water and in PNMT

ΔG(kJ/mol) ΔG(kJ/mol) ΔΔG (kJ/mol)

water PNMT PNMT�water

mutation forwarda backwarda |hysteresis| averageb forwarda backwarda |hysteresis| averageb ΔΔGcalcd
c ΔΔGexp

d
ΔΔGexpt �
ΔΔGcalcd

1�2R �372.4(1.2) 371.7(1.4) 0.7 �372.1 ( 1.4 �255.2(2.5) 268.1(2.2) 12.9 �261.7 ( 2.4 110.4 ( 2.8 � �
1�2S �371.9(1.6) 371.3(2.3) 0.6 �371.6 ( 2.0 �288.1(2.1) 297.3(1.7) 9.2 �292.7 ( 1.9 78.9 ( 2.8 � �
1�3R �5.5 (0.3) 5.1 (0.5) 0.4 �5.3 ( 0.4 �0.7(1.9) 1.2(1.2) 0.5 �1.0 ( 1.5 4.3 ( 1.6 � �
1�3S �5.5 (0.2) 5.3 (0.4) 0.2 �5.4 ( 0.3 �10.1(0.9) 10.6 (1.1) 0.5 �10.3 ( 1.0 �4.9 ( 1.0 � �
1�4R �3.2(1.3) 3.5(1.1) 0.3 �3.4 ( 1.2 �4.7(1.9) 4.3(1.0) 0.4 �4.5 ( 1.5 �1.1 ( 1.9 � �
1�4S �4.4(1.4) 4.7(0.4) 0.3 �4.6 ( 0.9 �9.1(0.4) 11.1(0.6) 2.0 �10.1 ( 0.5 �5.5 ( 1.0 � �
1�5 6.2(0.6) �6.1(0.9) 0.1 6.2 ( 0.8 �3.1(1.8) 4.0(1.5) 0.9 �3.5 ( 1.6 �9.7 ( 1.8 �10.8 ( 0.6 �1.1
1�6R �39.2(0.8) 39.4(1.0) 0.2 �39.3 ( 0.9 �55.0(0.8) 52.2(1.1) 2.8 �53.6 ( 0.9 �14.3 ( 1.3 �14.6 ( 0.3 �0.3
1�6S �37.2(0.7) 38.3(1.4) 1.1 �37.8 ( 1.0 �47.2(1.4) 48.9(2.4) 1.7 �48.1 ( 1.9 �10.3 ( 2.1 � �
1�7 �342.8(1.4) 343.1(0.7) 0.3 �343.0 ( 1.1 �353.8(1.1) 355.2(1.7) 1.4 �354.5 ( 1.4 �11.5 ( 1.8 �9.7 ( 0.5 1.8
1�8R �388.6(0.7) 388.7(0.9) 0.1 �388.7 ( 0.8 �397.9(1.3) 400.5(1.1) 2.7 �399.2 ( 1.2 �10.5 ( 1.4 �11.8 ( 0.3 �1.3
1�8S �388.2(1.4) 387.9(0.8) 0.3 �388.1 ( 1.1 �397.8(0.8) 395.7(1.2) 2.1 �396.8 ( 2.0 �8.7 ( 2.3 � �
1�9R 0.2(0.2) �0.3(0.4) 0.5 0.2 ( 0.3 1.0(0.8) �1.4(0.9) 0.4 1.2 ( 0.9 1.0 ( 1.0 � �
1�9S 0.2(0.4) �0.1(0.3) 0.3 0.2 ( 0.4 �12.4(1.8) 13.8(1.5) 1.4 �13.0 ( 1.7 �13.2 ( 1.7 � �
1�10R �124.2(0.9) 123.8(1.5) 0.4 �124.0 ( 1.2 �119.8(1.5) 122.2(2.1) 2.5 �121.0 ( 1.8 3.0 ( 2.2 � �
1�10S �123.2(1.4) 123.7(1.5) 0.5 �123.5 ( 1.5 �109.5(1.2) 112.2(1.8) 2.7 �110.9 ( 1.5 12.6 ( 2.1 � �
1�11 �17.8(0.5) 17.9(0.6) 0.1 �17.8 ( 0.6 �33.9(0.7) 37.6(1.3) 3.7 �35.8 ( 1.0 �18.0 ( 1.2 �18.8 ( 0.4 �0.8
1�12R �351.4(0.6) 351.8(0.8) 0.4 �351.6 ( 0.7 �362.3(2.3) 363.6(1.1) 1.3 �363.0 ( 1.7 �11.6 ( 1.8 � �
1�12S �351.2(0.7) 351.5 (0.3) 0.3 �351.6 ( 0.5 �353.1(1.2) 350.8(1.7) 2.3 �352.0 ( 1.4 �0.4 ( 1.5 � �
2R�5 377.2(1.2) �378.1(1.9) 0.9 377.7 ( 1.6 310.8(1.9) � � � �66.9 ( 2.5 � �
2S�5 377.4(0.7) �377.5(1.7) 0.1 377.5 ( 1.2 274.2(0.6) �281.8 (1.6) 7.6 278.0 ( 1.1 �99.5 ( 1.6 � �
2R�6R 332.0(1.6) �331.8(0.9) 0.2 331.9 ( 1.3 286.6(2.3) � � � �46.3 ( 2.6 � �
2S�6S 332.2(0.9) �332.4(1.3) 0.2 332.3 ( 1.1 236.7(1.7) �205.0(2.4) 31.7 220.9 ( 2.1 �111.4 ( 2.4 � �
2R�9S 371.8(0.7) �372.9(1.9) 1.1 372.4 ( 1.3 315.0(2.3) � � � �57.4 ( 2.6 � �
2S�9R 372.2(0.4) �372.7(1.4) 0.5 372.5 ( 0.9 272.2(2.3) �252.0(1.4) 20.2 262.1 ( 1.9 �110.4 ( 2.1 � �
3S�8R �382.2(3.4) 382.1(1.4) 0.1 �382.2 ( 2.4 �398.2(2.6) 394.1(1.8) 4.1 �396.2 ( 2.2 �14.0 ( 3.2 � �
3S�9S 6.2(0.6) �6.1(1.1) 0.1 6.2 ( 0.9 �8.6(2.6) 8.0(1.2) 0.6 �8.3 ( 1.9 �14.5 ( 2.1 � �
4R�7 �340.6(0.9) 340.2(1.3) 0.4 �340.4 ( 1.1 �353.7(2.1) 357.5(1.8) 3.8 �355.6 ( 2.0 �15.2 ( 2.3 � �
4R�10S �120.0(1.3) 120.0(0.8) 0.0 �120.0 ( 1.1 �103.3(1.5) � � � 16.7 ( 1.8 � �
5�6S �44.5(1.5) 44.2(0.5) 0.3 �44.4 ( 1.0 �41.3(1.3) 41.2(2.2) 0.1 �41.3 ( 1.8 3.1 ( 2.1 � �
5�9S �6.2(0.5) 6.3(0.5) 0.1 �6.2 ( 0.5 �8.1(1.1) 8.5(1.3) 0.4 �8.3 ( 1.2 �2.1 ( 1.3 � �
6S�10S �84.2(1.3) 85.1(0.6) 0.9 �84.7 ( 1.0 �69.8(2.2) 65.8(1.7) 4.0 �67.5 ( 2.0 17.2 ( 2.2 � �
7�8S �44.7(0.4) 45.2(0.8) 0.5 �45.0 ( 0.6 �45.8(1.9) � � � �0.8 ( 2.0 � �

aThe values in the parentheses show the standard error estimate obtained by block averaging. bThe standard error in the average columnwere calculated
by [(s1)

2 þ (s2)
2/2]1/2, where s1 and s2 are the standard error for the forward and backward mutations, respectively. cThe error for the ΔΔGcalcd

(PNMT�water) was calculated by formula [(s1)
2þ (s2)

2 ]1/2, where s1 and s2 are the standard error for the mutations in water and PNMT, respectively.
dWhere multiple values for the FE of binding are available only the values obtained from refs 16, 21, 23, 24, and 26 shown as bold italics in Table 1 were
used as these were the most recently available at the time of publication.
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water is illustrated in Figure 3, which show plots of <∂H/∂λ>
versus λ for selected mutations. Figure 3a shows the forward and
backward mutations for the transformation of molecule 1 to 3R
and molecule 1 to 3S. As shown in Figure 3a, there is an almost
perfect overlap in the value of <∂H/∂λ> for all λ values for the
forward and backward mutations for both 1 to 3R and 1 to 3S as
expected. Comparable results were obtained in all other cases
with the difference in FE for the forward and backward mutations
(hysteresis) in water beinge1.1 kJ/mol, demonstrating that the
calculations in water were well converged.
From Table 4 it can be seen that taking the average between

the forward and backward mutations, all cycles not involving 2R
and 2S in PNMT converged to within 7.3 kJ/mol, with the

average residual being 4.3 kJ/mol. While clearly the results in
PNMT are not as well converged as in water, the intrinsic error in
most cases is still low. The convergence of the forward and
backward transformations is illustrated in Figure 3b, which shows
a plot of <∂H/∂λ> versus λ for the forward and backward
mutations for the transformation of molecule 1 to 3R and
molecule 1 to 3S in PNMT. Again there is an almost perfect
overlap in the value of <∂H/∂λ> for all λ values for the forward
and backwardmutations in both cases. Note, the change in FE for
the mutations 1�3R and 1�3S in water (Figure 3a) are
essentially identical as required. From Figure 3b it can be seen
there is a significant difference between the mutations 1�3R and
1�3S when bound to PNMT, reflecting enantiomeric selective

Figure 2. Schematic showing all possible closed thermodynamic cycles can be built from the mutations listed in Table 3. Note that the arrows refer the
mutation performed in a given direction. The values listed on each line correspond to the difference in the average FE values between PNMT and water
for these mutations.

Table 4. All Possible Three-Memebered Thermodynamic Cycles That Can Be Constructed from Table 3

thermodynamic cycles water ΔGa (kJ/mol)b PNMT ΔGa (kJ/mol)b PNMT�water ΔΔGa (kJ/mol)c

1f2Rf5f1 �0.6( 2.3 186.4( 3.5 187.0( 4.1

1f2Rf6Rf1 �0.9 ( 2.1 77.5( 3.4 78.4( 4.0

1f2Sf5f1 �0.3 ( 2.5 �11.2( 2.7 �10.9( 3.7

1f2Sf9Rf1 0.7( 2.2 �31.8 ( 2.8 �32.5( 3.6

1f3Sf8Rf1 1.1( 2.5 �7.3( 2.7 �8.4 ( 3.7

1f3Sf9Sf1 0.6( 1.0 �5.6( 2.7 �6.2 ( 2.9

1f4Rf10Sf1 0.3( 2.2 3.3( 2.6 3.0( 3.4

1f5f9Sf1 �0.2( 1.0 1.2( 2.6 1.4( 2.8

1f6Sf5f1 0.4( 1.4 �3.3( 3.1 �3.7( 3.7

1f7f4Rf1 0.8 ( 2.0 5.6( 2.9 4.8( 3.5

1f7f8Sf1 0.0 ( 1.7 �3.6( 3.1 �3.6( 3.5

1f9Sf2Rf1 �0.1( 2.0 �66.3 ( 3.7 �66.2( 4.2

1f10Sf6Sf1 �1.0( 2.1 4.7( 3.1 5.7( 3.8

5f6Sf2Sf5 0.8( 1.8 15.8( 3.0 15.0( 3.5

5f9Sf2Rf5 �0.9( 2.1 121.3( 3.2 122.2( 3.9
aThe residual FE averaged for the forward and backward mutations for each leg in water and in PNMT and for the difference between water and PNMT
is shown. bThe errors were calculated by formula [(s1)

2 þ (s2)
2 þ (s3)

2]1/2 where s1, s2, and s3 are the standard errors for the three different legs for
mutations in water and PNMT. cThe errors forΔΔGwere calculated by [(s1)

2þ (s2)
2 ]1/2, where s1 and s2 are the standard errors for cycles in water and

PNMT, respectively.
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binding. The failure of the cycle 1�3S�8R�1 to close within
7.3( 4.4 kJ/mol is primarily due to the high hysteresis between
the forward and backward calculations for the mutation 3S�8R
(Table 3). The mutation 3S�8R has a hysteresis of 4.1 kJ/mol.
Figure 3c shows a plot of <∂H/∂λ> versus λ for the forward and
backward mutations for 3S�8R. Even in this case there is still
almost perfect overlap between the forward and backward
mutations for each λ value, with the intrinsic error being less
than 0.5% of the value of <∂H/∂λ> λ at λ = 0.1.
The three-membered thermodynamic cycles in PNMT invol-

ving the molecules 2R and 2S have an error ranging from ∼11
kJ/mol to as high as ∼186 kJ/mol based on the average of the
forward and backward mutations for each leg. Clearly the
calculations involving molecules 2R and 2S have not converged.
This is also reflected in the high hysteresis between the forward
and backward mutations involving 2R and 2S (Table 3). Experi-
mental binding data are only available for a racemic mixture of
molecule 2 against the bovine PNMT. This suggests that both 2R
and 2S bind only weakly. In the MD simulations of the human
PNMT�2R and PNMT�2S complexes, the binding modes of
2R and 2S are unstable, suggesting that they have very low
affinity for human PNMTand explaining why the calculations are
poorly converged.
Comparison to Experiment. In order to compare the calcu-

lated differences in the FE of binding between the different
THIQ derivatives to the available experimental data, a series of
thermodynamic cycles were constructed. Note in this system, the
validation of the results from the simulations by comparison to
experiment is complicated by several factors. Table 1 shows there
are large differences in the experimental estimates reported by
different authors with a range of values for the binding affinity of
specific inhibitors having been published even by the same
group.22,23 For example, the variation in the experimental
estimate of the binding FE is in the order of ∼2 kJ/mol for
molecule 1, ∼4 kJ/mol for molecule 7, ∼9 kJ/mol for molecule
8R, and∼11 kJ/mol for molecule 11. This is despite the fact that

the error in any of the individual values was claimed to be less
than 1.0 kJ/mol. Also in some cases experimental binding data
are only available for the bovine PNMT and usually for one
isomer in the case of human PNMT.
Table 3 shows a direct comparison between the mutations

performed and the experimental relative binding FE. Specifically,
column 12 of Table 3 lists the difference between the FE of
binding determined experimentally and the FE of binding
estimated from the FE calculations for individual mutations for
which a one-to-one comparison in human PNMT can be made.
As can be seen, there is an almost exact correlation between the
calculated and the experimental free energies for the inhibitors
binding to human PNMT based on the most recent human
PNMT data highlighted in bold italics in Table 1. The average
absolute deviation is 1.0 kJ/mol with the maximum deviation of
1.8 kJ/mol in the case of molecule 7.
In order to compare the calculated relative binding free

energies to all the available experimental data for both human
and bovine PNMT, the relative binding free energies with respect
to inhibitor 5 were calculated. Inhibitor 5, which is achiral and
conformationally rigid, was selected as a reference as only one
experimentalKi value for human PNMThas been published. The
last column of Table 1 shows the difference between the
calculated and the experimental values for the FE of binding
relative to inhibitor 5 (ΔΔGexpt � ΔΔGcalcd). Again it can be
seen there is an almost one-to-one correspondence between the
calculated and the most recent experimental estimates of the
inhibitors binding to human PNMT. Figure 4a shows a plot of
the calculated and the various experimental values for the relative
binding FE of the available THIQ derivatives to human PNMT.
In Figure 4a, the filled circles indicate the most recent experi-
mental estimates, whereas the open circles connected by the
horizontal lines correspond to earlier experimental estimates.
Note, even in the case of molecule 7, there is a progressive
convergence of the experimental estimate of binding affinity
toward the calculated value with time. The binding affinity of
molecule 7 for human PNMT was estimated to be 0.58 ( 0.04
μM (�35.9( 0.2 kJ/mol) by Grunewald et al.22 in 2001, 0.28(
0.02 μM(�37.7( 0.1 kJ/mol) byWu et al.23,27 in 2004 (quoting
earlier values of Pendleton et al.),27 and 0.12( 0.02 μM (�39.8

Figure 3. FE profiles for the mutation of specific inhibitors in water and
in PNMT. Each graph shows the value of the integrand <∂H/∂λ>λ at
each λ-value. The error bars correspond to the standard error of ∂H/∂λ
at each λ-value. (a)Mutation of 1f3R (solid line), 3Rf1(dashed line),
1f3S (dots), and 3Sf1 (dots and dashed line) in water; (b) mutation
of 1f3R (solid line) and 1f3S (dashed line) in PNMT; (c) mutation
of 8Rf3S (solid line) and 3Sf8R (dashed line) in PNMT; (d)
mutation of the inhibitor 13S from the binding mode proposed in
pdb 2AN5 to the binding mode of the substrate 13R in pdb 2AN3. All
values are in kJ/mol.

Figure 4. Plot of the experimental versus the calculated binding
affinities in kJ/mol (relative to inhibitor 5). The straight diagonal line
has a slope of 1.0 and corresponds to a perfect correlation between the
calculated and the experimental values. The vertical lines show the error
in the calculated FE values. (a) Comparison with human PNMT, the
horizontal lines connect different experimental values for one com-
pound, the filled circles show the recent experimental binding data, the
open circle shows the earlier experimental binding data; and (b)
comparison with bovine PNMT.
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( 0.3 kJ/mol) by Wu et al.21,26 in 2005. A partial explanation for
this variation is that earlier estimates were obtained using low
concentrations of the cofactor and PNMT and also the possible
contamination of the cofactor.23 This not only highlights the
predictive power of the FE calculations but also the pressing need
for reliable experimental data against which computational
models can be validated. In this case any comparison to data
published earlier this decade would have led to the incorrect
assumption that the FE calculations were not predictive. In
reality the uncertainty in the calculations in this case is much
less than the variation in the experimental values over time.
Another point worth noting is that much of the analysis of the

binding of THIQ inhibitors to PNMT is based on an analysis of
binding data obtained using the bovine enzyme. In fact for many
of the compounds listed in Table 1, experimental data are only
publically available for the bovine form. Despite the very high
sequence identity between the human and bovine forms of the
enzyme of 84%, it is known that, while certain compounds may
have similar binding affinities between the human and the bovine
forms of the enzyme in other cases such as molecules 6R, 8R and
11, the values differ markedly.19,22,24,25 Figure 4b shows a plot of
the calculated relative binding free energies in human PNMT
versus the values for bovine PMNT reported in the literature.
Based on the calculations we would predict that molecules 1, 2R,
2S, 3R, 3S, 7, 9R, and 12R will have similar binding affinities (<4
kJ/mol) to both the human and the bovine forms of the enzyme,
whereas molecules 4R, 4S, 6R, 8R, 10R, 10S, and 11 would have
a significantly higher affinity (>6 kJ/mol) for the human as
compared to the bovine form. Note, no X-ray crystallographic
structure of bovine PNMT is currently available.
Enantiomeric Selectivity. Experimental binding data related

to the enantiomeric selectivity of the THIQ derivatives consid-
ered in this study toward PNMT are only available for the bovine
form of the enzyme. The calculations nevertheless correctly
predict the relative binding FE of the enantiomers in all cases
for which experimental data is available. The FE calculations
predict that PNMT preferentially binds 3S over 3R by∼9 kJ/mol.
The calculations also correctly predict the preferential binding of
6R over 6S by∼8 kJ/mol and preferential binding of 9S over 9R
by∼12 kJ/mol. For the other molecules in the test set there is no
data for both enantiomers, and for three molecules (2, 4, and 10),
experimental binding data for bovine PNMT are only available
for racemic mixtures. The calculations predict that human
PNMT would preferentially bind molecule 4S over 4R by
∼4 kJ/mol and 8R over 8S by ∼2 kJ/mol, and thus the enzyme
shows only weak enantiomeric selectivity to these compounds.
However, the calculation would predict that human PNMT
would preferentially bind molecule 10R over 10S and molecule
12R over 12S by more than 10 kJ/mol in each case.
Structure�Activity Relationships (SAR). In the current

work, the FE of binding for 20 analogues of THIQ interacting
with human PNMT has been derived with enantiomeric selective
data being derived for eight of these compounds. This provides
an opportunity to analyze possible structure�activity relation-
ships. As noted previously, electron-withdrawing polar substitu-
ents (�NO2, �SO2NH2, and �Cl) at the seven position of the
THIQ ring enhance binding affinity toward human PNMT at
least by ∼10 kJ/mol (compared to THIQ, molecule 1). An
additional �Cl substituent at position eight of THIQ (11)
improves the binding affinity by a further 10 kJ/mol. Based on
this we would predict that the addition of a small electron-
withdrawing group at position eight may be an effective means to

increase the affinity of THIQ derivatives toward human PNMT.
It is also clear that the stereochemistry at position three plays an
important role in determining the binding affinity. From Table 1
it can be seen that for nonpolar substituents, such as�CH3 (3, 9)
and�C2H5 (4), the ‘S’ enantiomer binds preferentially, while in
the case of the polar substituents, such as �CH2OH (6, 8),
�COOCH3 (10), and �CH2F (12), the ‘R’ enantiomer is
preferred. It is important to note, however, that in terms of
absolute stereochemistry the preferred compounds are those in
which substituent at the three position lies equatorial with
respect to the piperidine ring projecting toward Tyr222 with
the nitrogen of the ring forming a salt bridge with the side chain
of Glu219. In the other enantiomer, if the salt bridge to Glu219 is
maintained, then the substituent at position three would lie axial
to the ring and project toward the backbone of Phe182, which
could explain the lower affinity. However, the overall affinity
depends on competing interactions that cannot easily be reduced
to a simple structure�activity relationship, such as the size or the
hydrophobicity of the substituent at position three. This is
illustrated by the fact that while compounds 3, 9, and 12, which
have only a small substituent at position three (�CH3 or
�CH2F), and molecule 10, which has the largest substituent at
position three (�COOCH3), show good enantiomeric selec-
tivity, and intermediate size substituents (�C2H5 and �CH2OH)
are predicted to show only weak selectivity.
Binding of Chiral 2-Amino-1-tetralol to PNMT. Stereo-

chemistry also plays an important role in the recognition of
other PNMT ligands.38 For example, compound 13R and 13S,
which are epimers (diastereoisomers with the opposite stereo-
chemistry at one of the chiral centers), behave very differently
when bound to PMNT. The compound 13R is a substrate for
PNMT, whereas 13S acts as an inhibitor. The X-ray crystal-
lographic models of Gee et al. suggested that the two compounds
have different modes of binding (Figure 5a, pdb code 2AN3 and
2AN5) and used this to explain their different biochemical
behavior.38 Specifically it was proposed that the inhibitor 13S
binds in an orientation that is rotated by 180� to the long axis of
the fused ring when compared to the substrate 13R (Figure 5a).
In order to investigate the validity of this proposal, MD

simulations of 13R and 13S in both the proposed binding modes
were performed beginning from pdb structures 2AN3 and 2AN5.
In case of 13R the proposed X-ray binding mode was stable,
whereas the alternate binding mode resulted in the disruption of

Figure 5. (a) The binding mode of substrate 13R (magenta) inhibitor
13S (green) as proposed in the X-ray crystal structure pdb code 2AN3
and 2AN5, respectively. 2Fo�Fc map contoured at 1.0σ for inhibitor
13S in (b) pdb code 2AN5 and (c) alternate binding mode, which is
similar to substrate 13R.
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active site. In case of 13S, while the proposed X-ray crystal mode
was stable, the alternate binding mode was equally stable
(Figure 5c). In fact, as shown in Figure 5b and c, both orienta-
tions fit equally well within the experimental electron density. In
such cases one cannot easily distinguish the preferred binding
mode based on the density, geometry, or energetic criteria or on
the global indicators of quality, such as R and Rfree.

5 In such cases
one must instead turn to FE approaches to determine which of
the two modes is the more thermodynamically stable. The
calculations suggest that the preferred binding mode of the
inhibitor 13S is the same as that of the substrate 13R with the
alternative binding mode proposed in the X-ray structure being
higher in FE by∼4 kJ/mol. Again as can be seen from Figure 3d,
there was an almost perfect overlap of forward and backward
transformations between X-ray crystal and alternate modes of
13S in PNMT, indicating the calculations were very well con-
verged. Again, the difference in FE, which corresponds to a factor
of 5 in the binding affinity, is much greater than the uncertainty in
the calculations.
The Role of Water in Ligand Binding. The crystallographic

model of the 13R�PNMT complex (pdb code 2AN3, resolution
2.20 Å) has two molecules (A and B) in the asymmetric unit.
Molecule A contains a single structural water molecule (W1,
Figure 6a), while molecule B contains two structural water
molecules (W1 and W2, Figure 6b) in the binding pocket. To
determine whether these water molecules were critical to main-
tain the stability of the active site, separate simulations of both A
and B were performed. In the case of molecule A, an additional
water molecule entered the pocket forming hydrogen bonds with
the�NH3

þ group of the ligand and the�OH group of Tyr35, as
shown in Figure 6c, and remained stable in this position
throughout the simulation. In the case of molecule B, the second
structural water molecule, W2, occupied at the same position
(Figure 6c) as described earlier. This suggests that the water
molecule W2 is required to maintain the interaction between
PNMT and 13R as observed in the crystal structure.
Experimentally the mutation of Tyr35Phe shows a sub-

stantial decrease in the binding affinity for 13R and the cofactor
S-adenosyl-L-methionine (SAM).38 The reduction in the binding
affinity for the cofactor can be understood in terms of the
interaction of the Tyr35 hydroxyl group with the carboxylate
oxygen of the amino acid fragment of the cofactor analogue SAH
used in crystallization. However, it was not clear why the binding
affinity of the substrate 13R was also affected by Tyr35Phe
mutation.38 In the simulations, W2 forms a water-mediated

interaction between 13R and the hydroxyl group of Tyr35, and
it is likely that this accounts for the reduction in the binding
affinity of the substrate when Tyr35 is mutated to Phe.

’CONCLUSIONS

In this work the stereospecific binding affinity for a series of
20 analogues of THIQ and the stereospecific binding mode of
2-amino-1-tetralol to human PNMT have been investigated. Spe-
cifically, molecular dynamics simulations and free energy calcula-
tions have been used to understand in detail the structural and
thermodynamic basis of ligand recognition in this system. This is an
important case study as the binding affinities proposed by different
sets of workers in different studies differ significantly and revised
values based on new assay conditions have been recently published.
For those THIQ analogues for which recent experimental data are
available, excellent agreement between calculated and measured
relative binding free energies to human PNMT was obtained. The
average deviation between the calculated and the experimentally
determined values for these compounds using molecule 5 as a
reference was only 0.8 kJ/mol, showing that the calculations can
easily distinguish between the data sets. This highlights the funda-
mental challenge when attempting to compare theoretical calcula-
tions to measured binding affinities and the critical need for reliable
and validated experimental data.39 Clearly, the variation in the
published experimental data (despite the small errors claimed for
each of the individual experimental observations) is much greater
than the intrinsic uncertainty in the theoretical estimates.

The calculations have also enabled a detailed analysis of the
structure�activity relationships of these THIQ analogues. In
particular, the addition of a small electron-withdrawing group at
position eight is predicted to be an effective means to increase the
affinity of THIQ derivatives toward human PNMT. It is also
evident that the relative orientation of the substituents rather
than absolute stereochemistry at position three of THIQ appears
to govern enantiomeric selectivity. The size of the group at
position three of THIQ also plays a nontrivial role in enantio-
meric selectivity with small substituents, such as a methyl or
fluoromethyl group, showing greater enantiomeric selectivity
than slightly larger groups, such as ethyl and hydroxmethyl. In
case of 13R, the importance of the role specific structural waters
can play in ligand recognition has been illustrated. For example,
interactions between the substrate 13R and Tyr35 involving a
specific structural water (W2) can explain the effect of mutations
at position 35 on enzymatic activity. Finally, the thermodynami-
cally stable binding mode in case of the inhibitor 13S is predicted
to be similar to that of the substrate 13R as opposed to the novel
binding mode proposed in the pdb entry 2AN5. Overall the work
highlights the power of MD simulations and the free energy
calculations to resolve uncertainties in experimental binding
affinities, binding modes, and other aspects related to X-ray
refinement and computational drug design.
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ABSTRACT:Methodology to compute the relative static dielectric permittivity and dielectric relaxation time ofmolecular liquids is
reviewed and explicit formulas are given for the external field method in the case of simulations using a spherical cutoff, in which the
background dielectric permittivity (εcs) can be larger than one, in combination with a Poisson�Boltzmann reaction-field
approximation for long-range electrostatic interactions. The external field method is simple to implement and computationally
efficient. It is particularly suitable for polarizable molecular models with zero permanent dipole moment and for coarse-grained
molecular models with εcs > 1. The dielectric permittivities and relaxation times of water (H2O), dimethylsulfoxide (DMSO),
methanol (MeOH), and chloroform (CHCl3), which range from 2 to 80 and from 5 ps to 50 ps, respectively, were calculated as an
illustration.

1. INTRODUCTION

The interactions between molecules in the liquid phase, such
as biomolecules in aqueous solution, are basically (i.e., at the
quantum-chemical level) governed by electrostatic interactions.
These manifest themselves in the form of Coulombic interac-
tions between parts of molecules that have a nonzero net charge
density, or of polarization interactions between electronically
polarizable parts of molecules, or in the form of van der Waals
interactions originating from mutual interactions between dipo-
lar fluctuations of atoms. This implies that the dielectric proper-
ties of a molecular model for a given compound are of central
importance when using such a model in a biomolecular simula-
tion. For this reason, it is standard practice to compute and report
the dielectric permittivity of molecular models for compounds
that are used in such simulations. This property can be obtained
from a simulation of the compound in the liquid phase.

Different methods are available to compute the dielectric
permittivity (ε) of a molecular liquid via computer simulation,
e.g., molecular dynamics (MD) simulation:1

(1) In the limit of low field strength, the fluctuations of the
electric dipole moment MB of the simulated system in an
equilibrium simulation can be related to the polarizationPB
induced in the system if an external electric field EBext

would be applied to it,2 and thus to the dielectric
permittivity ε. Technically, this relationship between the
variance of the distribution ofMB and ε can be employed in
different ways, using simulations in which MB is unrest-
rained, or restrained by a biasing potential energy term, or
constrained to a particular range of MB values.3

(2) The dipole momentMB that is induced by the application
of an external field EBext to the system can be analyzed to
yield ε. The external field can be constant and
homogeneous4 or sinusoidal in space5 in order to probe
a range of EBext values in one simulation. A variant of the
external field method would be the coupling of the
polarization of the system PBsyst to an external polarization
bath PBbath, using a first-order weak coupling equation.6

When considering polarizable models for molecules that have
zero permanent dipole moment, the fluctuating dipole moment
methodology can obviously not be used, because no such
fluctuations will occur in a simulation. Thus, an external field
technique is the method of choice in such cases. Although this
method seems simple to implement—just apply a homogeneous
external field EBext of a chosen value and calculate the polarization
PB induced in the system—the precise expressions relating EBext

to PB and ε are dependent on the way the electrostatic interac-
tions in the system are calculated, e.g., using a cutoff sphere, a
minimum-image cutoff cube, a rectangular or oblique infinite
lattice sum, or a spherical cutoff with continuum reaction field
beyond the cutoff sphere. Since the first two schemes to calculate
the electrostatic interactions induce sizable distortions of the
configurational distribution of the system, only the latter two
schemes are currently used in molecular simulations.

Each technique has advantages and disadvantages. Using a
lattice-sum technique to compute long-range electrostatic inter-
actions, one simulates an infinitely extended system in atomic
detail, but at the cost of artificially enhancing periodic order in the
system, which distorts the forces inside the system.7�12 Using a
spherical cutoff with a continuum reaction-field approximation
representing the long-range electrostatic interactions, a distortive
periodicity is avoided at the expense of a loss of atomic details
beyond the cutoff sphere, which are modeled as an isotropic,
homogeneous mean-field dielectric response.13�15 In our view,
this approximation is in regard to noncrystalline condensed-
phase biomolecular systems less distortive than the imposition of
artificial small-scale periodicity.

In the reaction-field approximation of the long-range electro-
static interactions, it is usually assumed that the dielectric
continuum outside the cutoff sphere will react instantaneously
to changes of the partial charges inside the cutoff sphere. In
general, however, there will be a delay in the response caused by
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classical Stokes and dielectric frictional effects in the surround-
ings, which can be modeled using a generalized Langevin
equation for the reaction field.13 We shall not consider this
approximation of the long-range electrostatic forces, because the
method is computationally expensive and an instantaneous
treatment of the reaction-field turned out to be sufficiently
accurate.

The original formulation of the dipolar reaction-field force induced
by a dipole momentMB inside a cutoff sphere through the surround-
ing dielectric continuum of permittivity εrf

14 was generalized15 to the
case of a dielectric continuum characterized by εrf and an ionic
strength I represented by an inverseDebye screening lengthκ, leading
to a so-called Poisson�Boltzmann reaction-field force, which reduces
to the original dipolar one for κ = 0.

Here, we generalize the external field method to compute the
static relative dielectric permittivity of a molecular model4 to the
case in which the background permittivity of the cutoff sphere
(εcs) may be larger than one and the dielectric medium outside
the cutoff sphere can have a nonzero ionic strength. We give
expressions for the calculation of the dielectric permittivity ε
fromMD simulations in which a spherical truncation with εcsg 1
and a Poisson�Boltzmann continuum reaction field with κ g 0
outside the cutoff sphere is applied in combination with a
constant homogeneous external field EBext. The external field
method can also be used to obtain the Debye dielectric relaxation
time τD from nonequilibrium MD simulations in which a
homogeneous electric field is switched on. By performing
simulations at different field strengths and measuring the polar-
ization response, precise values of ε and τD can be obtained. The
expressions for the static (i.e., zero frequency), relative dielectric
permittivity ε(0) and for the Debye relaxation time of the model,
as a function of the magnitude of EBext, are tested via application
to models of different molecular liquids (chloroform (CHCl3),
methanol (MeOH), dimethylsulfoxide (DMSO), and water
(H2O)) that cover a wide range of ε(0) values (i.e., 2�80) and
of τD values (i.e., 5�50 ps), and comparison to the ε(0) values and
τD values obtained for these models using the dipole moment
fluctuation methodology, as reported in the literature.3,16�20

2. METHODS

2.1. Application of an External Electric Field.We consider a
system of N particles, atoms, or beads in case a coarse-grained
molecular model is used, in a computational box with or without
periodic boundary conditions. The interaction between the
particles consists of two components: the so-called “bonded
interactions” between atoms covalently bound to each other in a
molecule and “nonbonded interactions”. In a typical biomole-
cular force field, the bonded interaction terms represent the local
interactions between atoms that are separated by one, two, three,
or possibly four bonds in a molecule. All other atom pairs interact
through nonbonded interactions (generally electrostatic and van
der Waals pairwise additive interactions). In addition, the
molecular model can be polarizable, i.e., it contains polarizable
atoms or sites, leading to a nonpairwise additive electrostatic
interaction. When calculating the electrostatic interactions and
forces between the particles of a molecule, a given set of particle
pairs—the so-called “excluded neighbors” along the covalently
bound chain of atoms—is excluded from the nonbonded inter-
action calculation, because the interaction of the pair, generally
determined via quantum chemical or other methods, would be
poorly represented as electrostatic, van derWaals, or polarization

interactions. The set of particle pairs that is contributing to the
nonbonded interaction is additionally limited when a so-called
“cutoff sphere” for nonbonded interactions is applied. Since
electrostatic interactions are spatially long-ranged, such a cutoff
sphere restriction must be supplemented with a continuum or
other approximation of the electrostatic interactions for the
particle at the center of the cutoff sphere with those beyond it.
We consider an electrostatic nonbonded interaction cutoff

sphere with radius Rc around a particle i (see Figure 1). The
particles j inside the cutoff sphere have charges qj, and the static
relative dielectric permittivity of the medium inside the cutoff
sphere is εcs. For atomic particles, one generally has εcs = 1 (i.e., a
vacuum background). In a coarse-grained molecular simulation,
however, one may have εcs > 1 (i.e., a dielectric medium that
represents the dielectric response of the degrees of freedom that
are not considered in the coarse-grained model, via a mean-field
response). The dielectric continuum that is intended to represent
the electrostatic interactions beyond the cutoff sphere is modeled
as a dielectric continuum outside a sphere of radius Rrf around
particle i, characterized by a relative static permittivity εrf and an
ionic strength I or inverse Debye screening length κ:

k2 ¼ 2IF2

ε0εrf RT
ð1Þ

where F is Faraday’s constant, ε0 the electric permittivity of
vacuum, R the gas constant, and T the temperature. Generally,
one would choose Rc = Rrf, but slightly different values for these
radii might represent the true interactions better.7

The direct Coulomb force on particle i by particle j in the
cutoff sphere is

fBijðrijÞ ¼ qiqj
4πε0εcs

rBij

r3ij

 !
ð2Þ

with rBij = rBi� rBj. The generalized Poisson�Boltzmann reaction-
field force on particle i by particle j can be obtained by solving the
Poisson equation inside the cutoff sphere and the Poisson�
Boltzmann equation outside it, using the boundary condition of
continuous radial dielectric displacement at the boundary r =Rc =
Rrf

15 and zero potential at r = ¥,

fBijðrijÞ¼ � qiqj
4πε0εcs

1
R3
rf

 !
ð2εrf � 2εcsÞð1þ kRrf Þ þ εrf ðkRrf Þ2
ð2εrf þ εcsÞð1þ kRrf Þ þ εrf ðkRrf Þ2

" #
rBij

ð3Þ

Figure 1. (Left) Schematic picture of the cutoff spheres of two particles
i1 and i2, and the corresponding overlapping continuum reaction-field
regions. (Right) Schematic picture of the interactions between particle i
and all particles j in the cutoff sphere with radius Rc = Rrf.
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The direct Coulomb force on particle i exerted by all particles j in
the cutoff sphere, except those that are nearest neighbors and are
therefore excluded, is then

fBi ¼ ∑
Ncs

j 6¼ i

ði, jÞ notexcluded

qiqj
4πε0εcs

rBij

r3ij

 !
ð4Þ

and the Poisson�Boltzmann reaction-field force on particle i
exerted by all particles j in the cutoff sphere is

fBi¼ qi
4πε0εcs

1
R3
rf

 !
ð2εrf � 2εcsÞð1þ kRrf Þ þ εrf ðkRrf Þ2
ð2εrf þ εcsÞð1þ kRrf Þ þ εrf ðkRrf Þ2

" #
∑
Ncs

j 6¼i

qj rBji

ð5Þ
where Ncs is the number of particles in the cutoff sphere around
particle i. Using the short-hand notation,21

Crf ¼
ð2εcs � 2εrf Þð1þ kRrf Þ � εrf ðkRrf Þ2
ðεcs þ 2εrf Þð1þ kRrf Þ þ εrf ðkRrf Þ2

ð6Þ

the reaction-field force reads

fBi ¼ � qi
4πε0εcs

Crf

R3
rf

 !
MB

cs

i ¼ qi EB
par, rf
i ð7Þ

where the dipole moment of the cutoff sphere around particle i is
denoted by

MB
cs

i ¼ ∑
Ncs

j 6¼i

qj rBji ð8Þ

and the corresponding dipolar reaction field in the cutoff sphere
induced by the charges of the particles in it is given as

EB
par, rf
i ¼ � 1

4πε0εcs

Crf

R3
rf

 !
MB

cs

i ð9Þ

We note that the summation in eq 8 may be extended to include
the term for j = i, because rBii = 0.
The potential energy terms corresponding to the forces

described by eqs 2 and 3 are, for i 6¼ j,

VijðrijÞ ¼ qiqj
4πε0εcs

1
rij
� 1=2ð ÞCrf

R3
rf

" #
r2ij �

1� 1=2ð ÞCrf

Rrf

( )
ð10Þ

where the constant term ensures that Vij(Rrf) = 0. The total
electrostatic potential energy of the system then, using the
notation rBN = (rB1, rB2, ..., rBN), is given as

Vð rBNÞ ¼ ∑
N � 1

i¼ 1
∑
N

j>i

j inside cut-off i

ði, jÞ not excluded

qiqj
4πε0εcs

1
rij

 !

�∑
N�1

i¼ 1
∑
N

j>i

j insidecut-off i

qiqj
4πε0εcs

1=2ð ÞCrf

R3
rf

r2ij þ
1� 1=2ð ÞCrf

Rrf

" #
�∑

N

i¼ 1

q2i
4πε0εcs

1
2

� �
1� 1=2ð ÞCrf

Rrf

" #

ð11Þ

where the third summation is a constant that is added to
represent the self-interaction of the charged particles.
If a constant homogeneous external field EBext is applied to the

system, e.g., along the z-axis,

EB
ext ¼ Eext eBz ð12Þ

an additional force on particle i is present,

fB
ext, cs
i ¼ qi

4πε0
EB
ext, cs ¼ qi

4πε0
EB
ext þ EB

ext, rf
� �

ð13Þ

where EBext,rf describes the contribution to the electric field EBext,cs

inside the cutoff sphere due to the polarization PBext,rf in the
dielectric continuum outside the cutoff sphere that is induced by
the difference in dielectric permittivity inside the cutoff sphere
(εcs) and outside the cutoff sphere (εrf). This contribution is
dependent on the shape of the cutoff region.22 For a spherical
region, we have

EB
ext, cs ¼ EB

ext � εcs � εrf
εcs þ 2εrf

 !
EB
ext

¼ EB
ext þ 4π

εcs þ 2εrf

 !
PB
ext, rf

¼ 3εrf
εcs þ 2εrf

 !
EB
ext ð14Þ

where the polarization induced around the cutoff cavity in the
dielectric continuum by the external field is given as

PB
ext, rf ¼ εrf � εcs

4π

� �
EB
ext ð15Þ

Thus, the electric field in the cutoff sphere has four components:4

direct and reaction-field components that are due to the particles
in the cutoff sphere,

EB
par, cs
i ¼ ∑

Ncs

j 6¼ i

exclusions

qi
4πε0εcs

� � rBij

r3ij
ð16Þ

EB
par, rf
i ¼ � 1

4πε0εcs

Crf

R3
rf

 !
MB

cs

i ð17Þ

the direct external field EBext and the reaction field induced by it,

EB
ext, rf ¼ � εcs � εrf

εcs þ 2εrf

 !
EB
ext ð18Þ

The electric field EBext that is applied to the systemwill induce a
polarization PB in the system:23,24

PB ¼ 1
4π

ðεð0Þ � 1Þ EBext ð19Þ

where ε(0) is the zero-frequency or static dielectric permittivity
of the molecular model. The polarization PB can be calculated
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from the total dipole momentMB of the system and its volume V:

PB ¼ MB
V

¼ 1
V ∑

N

i¼ 1
qi rBi ð20Þ

if ∑i=1
N qi = 0. If the latter condition is not satisfied, MB , and,

therefore, PB will be origin-dependent. For a homogeneous
external field (see eq 12) along the z-axis, we then find

εð0Þ ¼ 1þ 4π
ÆMzæ
VEextz

ð21Þ

where ÆMzæ is the average dipole moment of the volume V in the
z-direction in the simulation.
The method has been implemented into the GROMOS

simulation software25 using the expressions given. However,
we note that the electric field eqs 13�21 could also be formulated
differently, using

PB ¼ ε0ðεð0Þ � 1Þ EBext ð22Þ
instead of eq 19, which would imply

fB
ext, cs
i ¼ qi EB

ext, cs ¼ qið EB
ext þ EB

ext, rf Þ ð23Þ

EB
ext, cs ¼ EB

ext þ 1
ε0

1
εcs þ 2εrf

 !
PB
ext, rf ð24Þ

PB
ext, rf ¼ ε0ðεrf � εcsÞ EB

ext ð25Þ
and

εð0Þ ¼ 1þ 1
ε0

� �
ÆMzæ
VEextz

ð26Þ

instead of eqs 13�15 and 21, respectively.
2.2. Calculation of the Dielectric Relaxation Time. The

Debye dielectric relaxation time (τD) of a molecular liquid can be
calculated from an equilibrium MD simulation of the liquid by
evaluating the autocorrelation function ÆMB(t0) 3MB(t)æt0 of the
total dipole moment MB of the system.26 The averaging is over
initial times t0, i.e., t g t0.
It is also possible to obtain a value of τD by averaging over a set

of nonequilibrium MD simulations that start from a Boltzmann-
distributed set of initial configurations and velocities and in
which a homogeneous static external electric field EBext is
switched on at t = t0. This is illustrated in Figure 2. Upon
switching on EBext along the z-axis at t = t0, the z-componentMz of
MB will increase from its initial value Mz(t0), the values of which
are Gaussian-distributed around Mz = 0, to a steady-state value
Mz(t = ¥). For a Debye dielectric medium, this buildup will be
exponential:

ÆMzðtÞæt0 ¼ ÆMzðt ¼ ¥Þæt0 1� exp � t � t0
τM

� �� �
ð27Þ

The value of ÆMz(t = ¥)æt0 will be larger for larger Ez
ext, but

different field strengths Ez
ext should yield the same τM, as long as

Ez
ext is not too small and not too large. The relationship between

τM and τD is given as

τD ¼ εð0Þ þ 2þ Crf ðεð0Þ � 1Þ
3

" #
τM ð28Þ

which is a generalization for κ g 0 of the relationship for κ = 0
given by Neumann.27 The value of ε(0) can be calculated using
eq 21, in which ÆMzæ = ÆMz(t = ¥)æt0.
2.3. Simulation Details. The molecular models for water

(H2O), dimethylsulfoxide (DMSO), methanol (MeOH), and
chloroform (CHCl3) that have been chosen to test the external
field methodology were the models for which the dielectric
properties calculated with the dipole-fluctuation method had
been reported in the literature.16�20 The geometry of these rigid
models was maintained using the SHAKE algorithm,28 with a
relative accuracy of 10�4. All simulations were performed under
NpT conditions using a modified version of the GROMOS05
package of programs.25 The temperature was kept to a reference
value by weak coupling to a temperature bath with a relaxation
time of 0.1 ps,6 and the pressure was maintained at 1.013 bar (1
atm) using the same type of algorithm, with a relaxation time of
0.5 ps and the experimental isothermal compressibility of the
corresponding solvent. The integration time step was 2 fs. For
the nonbonded interactions, a twin-range method was used with
cutoff radii of 0.8 nm (short-range) and 1.4 nm (long-range).
Outside the long-range cutoff, a reaction-field correction15 with a
relative dielectric permittivity (εrf) of 78.5

20 for SPC water, 4618

for DMSO, 32.6317 for methanol, and 516 for chloroform was
applied. Values of εcs = 1, κ = 0, and Rrf = 1.4 nm were used. The
pair list for pairs within the short-range cutoff and the energies
and forces for long-range pairs were updated every 10 fs (5
steps). Cubic boxes of 5384 SPC water molecules (initial box
length = 5.49 nm), 429 DMSO molecules (initial box length =
3.69 nm), 661 methanol molecules (initial box length =
3.60 nm), and 1000 chloroform molecules (initial box length =
5.11 nm) were used, together with periodic boundary conditions.
To calculate ε(0) for each electric field strength, an equilibration
simulation of 100 ps and, subsequently, a 500 ps production run
was performed at 298 K. The box dipole moment and the volume
were saved every 0.4 ps (200 steps), and the atom positions every
2.0 ps (1000 steps) for analysis. The values of τD were obtained
from 100 short (30 ps) nonequilibrium simulations at two
different electric field strengths. The box dipole moment and
the volume were saved every step for analysis. The 100 starting
configurations were taken from an equilibrium simulation of 1-ns
length, where the configuration was saved every 10 ps. The two

Figure 2. Sketch of the relaxation of the total dipole momentMz(t), as a
function of time upon switching on a homogeneous static electric field
Ez
ext at time t0, for three different nonequilibrium molecular dynamics

(MD) simulations.
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electric field strengths were chosen for each solvent, such that
they are as large as possible while being in the linear-response
regime.With regard to DMSO, no value for τD obtained from the
time correlation function of the dipole moment in an equilibrium
simulation was reported in the literature, it was therefore
calculated from a 1-ns equilibrium simulation, where the config-
urations were saved every 0.2 ps (100 steps) for analysis.

3. RESULTS

3.1. Static Dielectric Permittivity ε(0). In short simulations
for the models of four different molecular liquids (H2O, DMSO,
MeOH, and CHCl3), an external electric field of varying strength
was applied in the z-direction and the resulting polarization of the
box was measured. In Figure 3, the polarization in z-direction is
shown as a function of the strength of the applied field. For small
fields, the energy of the molecular dipole μ in the field is much
smaller than kBT, i.e., μiEz

ext/3kB,T,29 the response of PB to EBext

is linear and only these data points (open symbols) were
considered in the calculation of the dielectric permittivity ε(0).
For high field strengths, the relationship becomes nonlinear
because of saturation effects (full symbols). The slope of the
fitted linear function was used in eq 21, and the resulting ε(0)
values are shown in Table 1, together with the experimental
values and those obtained using the dipole moment fluctuation
methodology, as reported in the literature. For H2O, DMSO, and
CHCl3, the values for ε(0) resulting from the external field
method agree well with values from the fluctuation method. For
MeOH, the values differ, which could be due to the factors used
to set up the various simulations: size of the system, constant
volume versus constant pressure condition, cutoff radii and
update frequency of the nonbonded interaction pairlist, equili-
bration and simulation time periods. Since the dielectric permit-
tivity is a global property of the system, it converges slowly,
especially for high values. We note that all simulations from
which the dielectric permittivity was calculated, using the dipole
moment fluctuation method,16�18,20 were of rather short length.
To obtain well-converged values with this method, simulations

of periods of many nanoseconds should be performed, while 500
ps per field strength Eext are sufficient using an applied external
field. A 10-ns equilibrium simulation of the MeOH system, i.e.,
Eext = 0, was analyzed using the dipole moment fluctuation
formula and gave ε(0) = 24.4.
3.2. Debye Dielectric Relaxation Time (τD). In Figure 4, the

relaxation of Pz(t) and ÆPz(t)æt0 toward ÆPz(t = ¥)æt0 for liquid
water is shown for two different electric field strengths. With
increasing field strength, ÆPz(t = ¥)æt0 increases and its variation
decreases. However, both field strengths yield similar τD values,
which are close to those obtained using the equilibrium time
correlation function of MB, as reported in the literature. The
values of τD derived from the relaxation for all four test solvents
are given in Table 2. The value obtained using the fluctuation
formula, τD = 12.3 ps, is not very precise, because of the short
length of 1 ns of this simulation.

4. DISCUSSION

The models that were used for H2O, DMSO, MeOH, and
CHCl3 were rigid (i.e., they did not possess internal degrees of

Figure 3. Dependence of the polarization averaged over time ÆPzæ on
the applied electric field Ez

ext for different solvents: H2O (circles), DMSO
(squares), MeOH (triangles), and CHCl3 (inverted triangles). Lines
represent results obtained from linear regression: (—) H2O, (- - -)
DMSO, (- 3 -) MeOH, and ( 3 3 3 ) CHCl3. When μiEz

ext/(3kB) > 50
K,29,30 where μ is the molecular dipole moment, the data (full symbols)
were excluded from linear regression.

Table 1. Experimental and Calculated Values for the Relative
Static Dielectric Permittivity ε(0) at 298 K and 1 atm for
Water (H2O), Dimethylsulfoxide (DMSO), Methanol
(MeOH), and Chloroform (CHCl3)

a

ε(0)

solvent expt fluctuation formula applied field method

H2O 78.531 66.620 66.7

DMSO 4632 3818 39.5

MeOH 32.6331 19.817 27.8

CHCl3 4.8131 2.416 2.6
aThe lengths of the simulations for which the dipolemoment fluctuation
methodology was used were 3 ns,20 2 ns,18 2 ns,17 and 1.2 ns.16

Figure 4. Polarization Pz(t) for 100 nonequilibriumMD simulations of
liquid water (5384 SPC molecules) after switching on an electric field
Ez
ext at t0 = 0, for Ez

ext = 0.03 e nm�2 (upper panel) and Ez
ext = 0.05 e nm�2

(middle panel). The averages over the 100 trajectories are shown in red
(Ez

ext = 0.03 e nm�2) and blue (Ez
ext = 0.05 e nm�2) in the lower panel.
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freedom). This meant that no vibrational contributions of such
degrees of freedom to ε(0) or τD were present.

Recently, the correlations in the total dipole moment MB of a
Stockmayer liquid were analyzed in equilibriumMD simulations
using periodic boundary conditions and either a lattice-sum
(Ewald) or a reaction-field method to approximate the long-
range electrostatic interactions.37 For the strongly polar Stock-
mayer model used, the fluctuations of MB were observed to be
dependent on the relative size of the cutoff sphere and the
computational periodic box. In other words, a dependence of
ÆMB2æ on the system size was reported. Therefore, we investigated
the system size dependence of the values of ε(0) and τD obtained
with the external field method, using liquid water as the test
system. The results are shown in Figure 5 and Table 3. While the
variation of Pz(t = ¥) decreases as the system size increases,
because of better statistics, the average relaxation is independent
of the system size (lowest panel in Figure 5), and so are the values
obtained for τD and ε(0).

One could think of avoiding periodicity artifacts by using a
fixed nonperiodic spherical boundary in combination with the

image charge representation of the reaction field.38 However,
such an approach introduces wall effects, which cannot easily be
compensated via the use of special wall forces.39�41

5. SUMMARY AND CONCLUSIONS

Expressions for the calculation of the static relative dielectric
permittivity (ε(0)) and the Debye dielectric relaxation time (τD)
of a molecular model from MD simulations of the liquid phase,
where a constant external electric field is applied, were given for
the case in which a spherical truncation with εcs g 1 inside the
cutoff sphere combined with a Poisson�Boltzmann continuum
reaction-field with κ g 0 outside the cutoff sphere is used. The
external field method was applied to molecular models of four
different molecular liquids (water (H2O), dimethylsulfoxide
(DMSO), methanol (MeOH), and chloroform (CHCl3)), and
the results were compared to values obtained through the dipole
moment fluctuation methodology and from experiment. The
dielectric permittivities and relaxation times calculated using the
external field method agree with values resulting from the
fluctuation method. The external field method is simple to
implement and, compared to the dipole moment fluctuation
methodology, it is computationally more efficient and can also be
applied to uncharged, but polarizable molecular models or in
coarse-grained simulations, where εcs > 1 is used.
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ABSTRACT: The recent syntheses of complexes involving some small molecules in opened fullerenes and those of hydrogen
molecule(s) in C60 and C70 are accompanied in the literature by numerous computations for endohedral fullerene complexes which
cope with the problem of the stability of these complexes. In this contribution, stabilization energies of endohedral complexes of C60

and C70 with H2, N2, CO, HCN, H2O, H2S, NH3, CH4, CO2, C2H2, H2CO, and CH3OH guests have been estimated using
symmetry-adapted perturbation theory, which, contrary to the standard DFT and some other approaches, correctly describes the
dispersion contribution of the host�guest interactions. On the basis of these calculations, the endohedral complexes with all these
guests were found stable in the larger fullerene, while the C60 cage was found too small to host the latter four molecules. Except for
H2 and H2CO, a stabilization effect for most guests in the C60 cage is about 30 kJ/mol. For H2 and H2O guests, a typical
supramolecular effect is observed; namely, the stabilization in the smaller cage is equal to or larger than that in the larger C70 host.
Except for the water molecule where the induction interaction plays a non-negligible role, in all complexes the main stabilization
effect comes from the dispersion interaction. The information on the stability of hypothetical endohedral fullerene complexes and
physical factors contributing to it can be of importance in designing future experiments contributing to their applications.

’ INTRODUCTION

The captivating idea of an empty space inside the C60 cage that
could be filled with atoms or molecules has been recognized from
the early stages of fullerene study.1 It was also soon realized that
the confinement of a guest inside the fullerene cage would influence
both host and guest2 and could lead to various applications,2,3

although most of them proved until now unrealizable.4 Fullerenes
can be used in medicine,5�7 in photovoltaic devices,8,9 and in
electronics,10�12 in particular, as single-molecule transistors for
quantum computing.13�16 Of special interest are so-called
peapods formed by carbon nanotubes filled with endohedral
fullerene complexes such as 15N@C60 or

31P@C60, which are
considered as promising elements of quantum-processing
architecture.17 In view of exciting properties and the prospects
of applications, a prediction of stability and properties of
endohedral fullerene complexes on the basis of computations
seems to be quite important. In particular, the question of how
many hydrogen molecules can be hosted by C60 has drawn the
attention of many researchers.18,19 The published theoretical
estimations vary from 1 to over 20, while only one H2 molecule
could be inserted in C60,

20 and in the synthesized mixture of
H2@C70 and 2H2@C70,

21 the latter complex was present as only
a 4% admixture, which agrees well with the results obtained on
the basis of a simplified model.22 An often neglected fact that
endohedral fullerene complexes are objects with distinct topo-
logical properties is worth mentioning.19,23

Fullerene endohedral complexes involving lanthanoide guests
are probably the most studied, but recent syntheses of H2@C60

20

and of a mixture of H2@C70 and 2H2@C70
21 using a “molecular

surgery” approach consisting of the chemical opening of the cage,
inserting the guest, and chemically closing the cage hole have
paved the way to endohedral fullerenes with other guest mol-
ecules. Several open cage fullerenes with nonpolar or slightly
polar molecular guests inserted have been reported. In addition

to H2 in opened C60,
20,24 they include H2@C70 and 2H2@C70,

25

N2,
26 H2O,

27,28 NH3,
29 CO,30 and CH4

31 in opened C60,
CO@C60, and N2 in C60 and C70.

32 This vivid activity of
synthetic chemists inspired us to analyze the stability of several
endohedral fullerene complexes with small guest molecules.

It should be stressed that the calculations of endohedral
fullerene complexes present a difficult task since, on the one
hand, the systems under study are large and, on the other, weak
dispersive interactions stabilizing the complexes with nonpolar
or slightly polar guests are poorly described at low-level quantum
chemical calculations tractable for such large systems. Earlier
studies on endohedral fullerene complexes were summarized in
two reviews.18,19 A detailed discussion of published experimental
and calculated data on endohedral fullerene complexes involving
hydrogen guests has been published recently,33 applying sym-
metry-adapted perturbation theory (SAPT)34,35 on H2@C60,
2H2@C60, and 2H2@C70. Therefore, here, only new results for
these complexes and those involving complexes with other
nonpolar or slightly polar guests will be briefly discussed.

Endohedral complexes with C60, C70, two isomers of C76,
seven isomers of C80, and nine isomers of C82 with a series of
nonpolar or slightly polar guest molecules were analyzed by
Dodziuk et al.36 using molecular mechanics (MM) calculations
using two different force fields. The most interesting conclusion
from these calculations (the qualitative results did not depend on
the force field applied) was that only H2, H2O, and, possibly,
NH3 were stabilized inside C60. Thus, if endohedral fullerenes
were to be applied (one of the potential applications envisaged by
Stoddart3 is their utilization as drug carriers), then the develop-
ment of methods for production and purification of higher
fullerenes was a must. Next, after learning about obtaining H2

Received: February 16, 2011
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in C60 and two hydrogen molecules in opened C70,
37 Dodziuk

et al. carried out MM calculations for 1�4 H2 in C60, C70, two
isomers of C76, two isomers of C78, and seven isomers of C80,
finding that one guest molecule is stabilized in both C60 and
C70.

36 Although two H2’s were also found stabilized in the latter
host, the absolute value of stabilization energy was smaller by 1.8
kcal/mol than that of the H2@C70 complex.22 This effect is due
to repulsion of two hydrogen molecules inside 2H2@C70.

The conclusions of these studies were that (a) it would be
difficult to close the C70 cage with two hydrogenmolecules inside
and (b) C80 or larger fullerene would be necessary to host three
H2’s. The former conclusion proved valid, and interestingly and
somewhat accidentally, the experimental H2@C70:2H2@C70

rate of 96:421 corresponded to the calculated energy difference.
Extensive calculations for H2 and N2 in C60 at fixed geometries
were carried out by Slanina et al., who utilized second-order
Møller�Plesset (MP2), spin-component-scaled MP2 (SCS-
MP2)38 theories, and density functional theory (DFT) with
the MPWB1K functional,39 yielding the best estimates for the
stabilization effect of 4 and 9 kcal/mol, respectively.40 Ren and
co-workers reported calculations for H2 inside the C60 cage, but
their choice of methods—a combined PM3 and DFT study—
has not been appropriate for such types of complexes, which are
mainly bound by dispersion interactions.41 One and two H2

molecules in C60 and two of them in C70 were calculated in our
group33 using SAPT(DFT) (SAPT with interacting molecules
described on the DFT level), yielding one H2 stabilized in C60

and two of them in C70. On the other hand, on the basis of
calculations for the structures optimized at the PBE-D/def2-
TZVPP level using several DFT functionals and MP2 and SCS-
MP2 methods, Kruse and Grimme claimed that 2H2@C70 is
more stable than H2@C70.

42 They even stated that we have
obtained the same trend, although we have not considered the
complex H2@C70 explicitly.

33 In the interesting work of Sebas-
tianelli et al.,43 it was found that the translation�rotation zero-
point energies constitute significant factors destabilizing the
2H2@C60 and 3H2@C70 complexes. The conclusions from their
work should equally apply to other endohedral complexes,
meaning, e.g., that even if the interaction energy for some
fullerene complexes has been found negative, it does not auto-
matically signify that the complex can be formed if too large zero-
point translation and rotation motions are present. In a similar
spirit, Yagi and Watanabe proposed to separate slow vibrational
motions of a host within a new method called instantaneous
vibrational analysis (IVA) and applied the new approach to study
translational and rotational movement of water molecule inside
the C60 cage.44 They have found a considerable blue shift of
vibrational levels of most configurations of water inside C60 and
also noticed a significant dependence of the final results on the
level of theory used to evaluate the potential for IVA. Recently,
Min et al. studied the IR absorption of endohedral H2 in C60 in a
wide range of temperatures, from 6 to 300 K.45

Several studies for complexes involving molecular guests other
than hydrogen have been carried out. Unfortunately, most of
them employed the computational methods, like standard DFT
or semiempirical models, which are known to give unreliable
results when utilized for nonpolar or slightly polar guests. The
lack of a proper description of dispersion interactions in DFT
with standard functionals makes all conclusions about endother-
mal effects involved in the complexation questionable at best.
Utilizing extremely small basis sets is another common drawback
of many fullerene studies. Although it is often difficult to afford

larger basis sets, an examination of rather subtle intermolecular
interactions with inappropriate basis sets is of very limited signifi-
cance. Therefore, such studies involving, e.g., geometry optimiza-
tions, should be at best accompanied with a posteriori single-point
calculations for selected configurations, employing a more
advanced method for describing electron correlation, like MP2
or SCS-MP2. In many cases, the stabilization only is achieved
after the dispersion effect is taken into account. However, one
should be aware that MP2 often overestimates the binding
energy for the interacting molecules involving aromatic rings.46

Some examples of such combined studies are given in works of
Charkin et al., who performed a study on methane inside the C60

and C84 (Td) cages47 and carbon dioxide, ethyne, and several
other small molecules in the C70 cage48 with the B3LYP
functional and the 6-31G and 6-31G* basis sets, followed by
the MP2 computation used to obtain the dissociation energies.
The same group calculated the properties of benzene and
borazole inside the C84 fullerene.

49 Yet another application of
this type has been reported by Slanina et al. for the nitrogen
molecule in C60.

40,50 The complexes of methane in C84 and C60

have also been calculated by Rehaman and co-workers.51 How-
ever, only for the smaller host has the MP2 stabilization energy
been reported, while for the CH4@C84, only the DFT value has
been given. DFT calculations of Jin and co-workers on the
complexes of C2H2@C60, C2H4@C60, and C2H6@C60

52 also
seem of too low accuracy to yield reliable results. Some GGA
functionals have been applied by Gao et al.53 to N2@C60, in
which a considerable interaction of the lone pairs on nitrogen
atoms with the π electrons of the cage can be expected. There-
fore, the conclusion of Gao and co-workers on the small effect of
the guest inclusion on the properties of the complex is question-
able. Another example of an inappropriate choice of methodol-
ogy is the work byMazurek and Sadlej-Sosnowska,54 who utilized
very small basis sets for the Hartree�Fock (HF), DFT, andMP2
calculations of the complex of benzene enclathrated inside C60.
Therefore, their conclusion that such a complex would be stable
cannot be trusted. Note that it can be easily seen that the
distances between guest hydrogen atoms and host carbon atoms
are considerably smaller than the sum of their van der Waals
radii; therefore, large repulsion effects should be expected.

Ren and co-workers55 performed B3LYP/6-31G(d) calcula-
tions for the hypothetical highly reactive tetrahedrane inside C60.
Although the effect of stabilization of a short-lived species in a
fullerene cage has been already reported (see the discussion by
Dodziuk)56 and the cyclobutadiene synthesis inside a hemicar-
cerand has been executed by the Cram group,57 for the case
investigated by the Ren group, there is no way to insert a short-
lived tetrahedrane into the fullerene cage to allow one to test its
stabilization. Similarly, obtaining hypercoordinated cluster C2

inside highly unstable C20 and C24, for which Wang et al.58

reported the DFT calculations, seems hardly possible, although
the synthesis of the former cage has been achieved.59

In another study, Hu and Ruckenstein60 reported HF calcula-
tions for H2 and CO molecules inside the C58 cage with a seven-
membered ring. It is, however, well-known from the early
Cioslowski calculations61 that the HF method is not capable of
describing the stabilization of endohedral fullerene complexes
with a nonpolar or slightly polar guest, due to the lack of
dispersion interactions (note, however, that Cioslowski did not
draw this conclusion in the paper).61 The DFT calculations for
the hypothetical saturated C60H60 cage with small guest mol-
ecules have been reported by Hu and Ruckenstein.62 However,
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the cage has been shown by Saunders63 and Dodziuk and
Nowi�nski64 to be highly strained if all CH bonds point outside.
Therefore, the investigations by Hu and Ruckenstein have a very
limited foreseeable value. The former authors also carried out HF
and B3LYP calculations for the opened C60 cage which are
indispensable for the manufacturing of endohedral fullerene
complexes with nonpolar or slightly polar molecules.60 Unfortu-
nately, also here the selection of the computational methods
put in doubt the reliability of the results obtained.

In this study, we want to present the calculations of the
stabilization energies of endohedral complexes of the C60 and
C70 fullerenes with several small guest molecules, performed
using the accurate SAPT approach. This method, although more
demanding in terms of the computational resources than the
supermolecular HF and DFT methods, yields in return very
reliable results, which for small molecules compare favorably to
those obtained by the highly accurate supermolecular CCSD(T)
method.65,66 With increasing computer power, this method has
become affordable and easy to use, even for the fullerene
complexes, and can therefore allow one to evaluate the quality
of other methods, utilized so far for systems of such sizes.33,67�70

A separation of energy components into physically sound con-
tributions allows us additionally to analyze the sources of stability
or instability of a given endohedral complex under scrutiny.
As mentioned above, several uses of the endohedral fullerene
complexes have been proposed but not yet implemented.
We believe that a better understanding of forces stabilizing the
complexes can contribute to the development of their marketable
applications.

’METHOD

The interaction energy of two molecules A and B is con-
veniently defined as a difference of the energy of the inclusion
complex and the sum of energies of constituent molecules:

Eint ¼ EðA@BÞ � ½EðAÞ þ EðBÞ� ð1Þ
Note that in this definition the geometries of A and B do not

change in the complex. The stabilization energy is then defined as
the interaction energy calculated at a minimum. Two approaches
are applied to calculate this energy: the supermolecular and the
perturbational ones. In the first approach, the definition (eq 1) is
directly used to calculate the interaction energy, where the
energies of A@B, A, and B are obtained from the computational
quantum chemistry method, like, e.g., CCSD(T), MP2, HF, or
DFT. The supermolecular approach is easy to utilize, but one
should be aware of the limitations of the methods used to obtain
E(A@B), E(A), and E(B) so that no important components of
the interaction energy are lost (like the dispersion energy, which
is absent in the supermolecular HF interaction energy).

In the second approach, the interaction energy is derived from
perturbation theory with the intermolecular interaction operator
being the perturbation operator and with the sum of Hamilto-
nians of molecules A and B being the unperturbed operator. The
most successful perturbational theory applied to the intermole-
cular interactions is the approach proposed and developed by
Jeziorski et al., which bears the name symmetry-adapted pertur-
bation theory (SAPT).34,35 Since we do not know the exact wave
functions for the unperturbedmolecules A and B, which is usually
a prerequisite of employing the perturbational method, several
approaches have been developed to cope with this problem,
among which the description of the interacting molecules on the

DFT level is the only practical way to treat large complexes,
especially if two-electron repulsion integrals are calculated with
help of the density-fitting (DF) technique71 (see, e.g., refs 65,
72�76).

The idea of applying DFT in SAPT is a successful example of
“taking the best from both worlds”, i.e., treating the intramole-
cular electron correlation by DFT and the intermolecular (i.e.,
the dispersion effect) by the ab initio perturbational method. The
quality of the SAPT(DFT) (called alternatively DFT-SAPT)
approach has been critically evaluated by comparing it with the
supermolecular CCSD(T) results65,66 and recently with accurate
SAPT(CCSD) calculations (see, e.g., refs 77�79). The results of
this comparison confirm that the SAPT(DFT) usually repro-
duces quite accurately the so-called intramonomer electron-correla-
tion effects and that it is therefore the best possible method up-to-
date capable of treating large van der Waals complexes.

In SAPT, the interaction energy is obtained as a sum of several
physically sound energy contributions, i.e., the electrostatic,
induction, and dispersion energies and their exchange counter-
parts, which arise from the imposition of the Pauli exclusion
principle on the approximate wave function

Eint ¼ Eð1Þelst þ Eð1Þexch þ Eð2Þind þ Eð2Þexch-ind þ Eð2Þdisp þ Eð2Þexch-disp ð2Þ

Therefore, SAPT not only provides us the total interaction
energy, like the supermolecular methods do, but additionally, it
allows for an analysis of the importance of various contributions
to the interaction energy. It should be noted parenthetically that
in SAPT the intermolecular interaction operator is utilized in an
exact, nonexpanded form; i.e., no multipole expansion is em-
ployed, thus avoiding possible complications arising from the
divergent character of the inverse-distance series. It should be
emphasized that for the case of the endohedral complex the usual
expanded form of the interaction potential cannot be utilized at
all. If for some reason the expanded form of the potential is
necessary, the form presented in refs 80 and 81 should be applied.

In this work, DF-DFT-SAPT (i.e., DFT-SAPT with two-
electron repulsion integrals calculated with help of the DF
technique) implemented in the Molpro suite of programs82 has
been used to calculate the stabilization energies of the complexes.
The interacting molecules in DFT-SAPT have been described by
the PBE functional,83 with the asymptotic correction as proposed
in ref 84. For a calculation of this correction, we took the
experimental ionization potentials from refs 85 and 86 for C60

and C70, respectively, or from the Web site http://cccbdb.nist.gov/
exp2.asp for other molecules, while the DFTHOMO energies have
been calculated in the same basis as used in DFT-SAPT.

The geometries of the complexes were prepared using mo-
lecular mechanics with the MM387�89 parametrization. The
minimized structures were then reoptimized using the ArgusLab
package (http://www.arguslab.com/) with the PM3 method.
Several input geometries have been tried inMM and (e.g., for the
linear guests involving C60) the guest has been orientated
perpendicular to the six- or five-membered rings of the host.
The steric energy of the system has been minimized, whereas for
C70 complexes, three guest orientations for the starting geometry
(along the long axis and perpendicular to it) have been mini-
mized. Only the geometries corresponding to the lowest MM
energies have been selected for the single-point DFT-SAPT
calculations. We are aware that this method of selection of the
configurations cannot locate the DFT-SAPT minimum exactly,
but the full geometry optimization by a more advanced method,
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like DFT (with a possible addition of dispersion correction by the
Grimme method38) or MP2 in a reasonable basis, is beyond our
computer capacities. Our previous studies on just one complex
(H2@C60)

78 indicate that the potential energy surface is almost
flat in theminimum region and that, e.g., moving theH2molecule
by 0.2 Å from the center of the cage changes the interaction
energy by only 0.3 kJ/mol. We have also performed some test
calculations for an example of larger water guests in C60 and
changed the PM3 configuration by shifting H2O by 0.03 to 0.10
Å off the fullerene center or by elongating the O�H bonds by
1%. Such configuration modifications resulted in the energy
lowering or raising by at most 0.25 kJ/mol. Therefore, it seems
that locating the minimum by a very approximate method, like
MM or PM3, should not change the general conclusions about
values of the DFT-SAPT stabilization energies by more than a
few tenths of kilojoule per mole.

Sizes of the complexes prevent us from utilizing large basis
sets. To counterbalance the computational time and accuracy, we
decided to employ the TZVP basis set90,91 with the correspond-
ing auxiliary basis sets for density-fitting.92,93 In our previous
work on hydrogen molecules in C60, we have checked that this
basis set gives similar values of energy contributions to those of a
larger TZVPP basis for all components, but for the dispersion
energy, the TZVPP basis gave a 15% larger value. Since the main
aim of the present calculations is to estimate the stability of
various species, we can safely say that if the complex should be
stable on the basis of the DFT-SAPT calculation in a smaller

TZVP basis, it will certainly be stable in any more elaborate basis.
In several cases, when the stabilization energy in the TZVP basis
set turns out to be close to zero, the calculations in the def2-
TZVPP94 basis set have been performed as well in order to verify
whether the better basis set yields stabilization of the complexes.
However, since the calculation of a single point with DF-DFT-
SAPT in the TZVP basis set takes 2�3 days with available
computer facilities, depending on the complex size, and becomes
2.5�3 times longer in the def2-TZVPP basis, we renounce the
idea of recalculating all complexes under study in the larger basis.

’RESULTS AND DISCUSSION

The calculated interaction energies (see Table 1) obtained
with the TZVP basis indicate that, except probably CH2O, all
molecules under scrutiny are stabilized in the C70 host, while
HCN, CH2O, C2H2, CO2, and CH3OH do not form stable
complexes in C60. Moreover, a rather small energy value for the
CH4@C60 complex suggests that its stability can be jeopardized
if, in addition, the zero-point energies are included, which can be
equal to a few kilojoules per mole (see refs 43�47). As men-
tioned above, in order to verify the stability of this complex, an
additional calculation in the larger def2-TZVPP basis has been
performed. In the new basis, the energy becomes lower by as
much as 10 kJ/mol. This finding is mainly attributed to the
improved description of the dispersion component of the inter-
action energy (see Table 2). Similarly, a repeated calculation for
the CH2O@C70 in the def2-TZVPP basis yields a small stabiliza-
tion, which is mostly due to the improved description of the
dispersion interactions. Therefore, for the case of a larger full-
erene, the DF-DFT-SAPT method predicts that the endohedral
complexes with all guests under study are stabilized.

For obvious reasons, for many pairs involving the same guest
and different hosts, it can be observed that the stabilization is
larger in the larger host. It is noteworthy that several complexes
involving the latter cage (with N2, CO, CO2, H2O, H2S, NH3,
and CH3OH guests) exhibit very close values of the stabilization
energy (�30( 3 kJ/mol). Actually, only the complexes H2@C70

andH2CO@C70 have a very different stabilization energy of�13
kJ/mol and 1.8 (or�8.6 in the larger basis) kJ/mol, respectively,
while the largest absolute value of 40 kJ/mol has been found for
the complex HCN@C70. However, the H2 and, especially, H2O
complexes in both fullerenes under consideration exhibit an
effect typical for supramolecular chemistry. Namely, the absolute
value of the stabilization energy in the smaller, in size, cage is
equal to or even larger than that in the larger C70 host. This effect
can be rationalized by the fact that in a smaller cage more carbon
atoms are close to the guest. Thus, and if the net interaction with
the carbon atom is stabilizing, this results in a larger or equal
stabilization of this guest in the smaller fullerene.

To analyze the factors influencing stabilization of the com-
plexes, let us look at the SAPT components, which are shown in
Table 2 for the fullerene C60 and in Table 3 for the larger
fullerene. First, it should be noted that for endohedral complexes
it is inappropriate to think in terms of the usual asymptotic
description of the energy components (e.g., interaction of
dipoles etc.), since the interacting molecules are too close to
one another. Thus, in this case, the short-range part of the
components, i.e., the one resulting from the overlapping of the
electron clouds, comes into play.

Starting from the first-order corrections, one can say that the
electrostatic energy is relatively large (i.e., it constitutes a large

Table 1. Calculated SAPT(DFT) Interaction Energies in
the TZVP Basis Set for the Complexes of Linear, Planar,
and Three-Dimensional Guests in C60 and C70 in kilojoules
per molea

guest C60 host C70 host

linear guests

H2 �13.2b �13.0

N2 �15.9 �30.1

CO �21.4 �31.2

HCNc 9.8 �40.2

HCNd �6.3 not calculated

CO2 117.9 �32.2

C2H2 73.0 �22.2

planar guests

H2O �30.8 �27.9

H2S �32.0 �33.1

H2CO
c 65.1 1.8

H2CO
d not calculated �8.6

nonplanar guests

NH3 �22.6 �30.7

CH4
c �6.2 �23.8

CH4
d �16.5 not calculated

CH3OH 199.1 �29.7
a For a few cases, the calculations were repeated in the larger def2-
TZVPP basis. b In ref 35, where the better TZVPP basis has been used
for this complex, the interaction energy was equal to (�19.3)� (�19.4)
kJ/mol for three orientations studied, while for one orientation (the
hydrogen molecule parallel to one hexagon), it was higher by
0.76 kJ/mol. cCalculated using TZVP basis set. dCalculated using
def2-TZVPP basis set.
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part of the total interaction energy) in all cases, but it is
completely quenched by the first-order exchange term (coming
from the Pauli exclusion principle), and that in all cases the net
contribution from the interaction of the nonperturbed electron
clouds of the host and guest is strongly repulsive (see the column
with the total first-order energy, i.e., the E1 column). In addition,
the amount of this repulsion is obviously dependent on the size of
the guest. The examination of the pair of the second-order
induction and exchange-induction energies reveals that in the
majority of cases the positive exchange-induction term cancels
the negative induction contribution, leaving a small negative
stabilizing contribution. Such a behavior is characteristic for the
interaction of highly symmetric molecules with one another and
can be explained by the fact that the main component of the
induction term comes in this case from the short-range effect, i.e.,
overlapping of the perturbed electron clouds. The notable
exception is the water guest, in which case, almost a half of
the induction contribution remains. For other polar molecules,
the quenching is still big because even though they have sizable

dipole moments, their electron clouds overlap strongly with the
host’s cloud, creating a short-range induction component. How-
ever, one can see that for polar molecules some small, but non-
negligible, net contribution remains. Importantly, in some cases,
the latter is crucial to ensuring the negative interaction energy or
at least make it less positive (as for CH3OH in C70 and C60,
respectively). Interestingly, for the methane molecule, the in-
duction term contributes a lot to the negative interaction energy,
although this molecule does not have a permanent dipole and
quadrupole moment. The importance of the short-range induc-
tion contribution for the case of the methane molecule has also
been observed in an investigation of the complex of Ar with CH4

reported by Heijmen et al.95

The last pair of SAPT components, i.e., the second-order
dispersion and exchange-dispersion energies, exhibits different
behavior in comparison to the induction and exchange-induction
pair. The exchange-dispersion energy never quenches the dispersion
to a large extent. Quite on the contrary, it counterbalances at
most 26% (usually 10�20%) of the dispersion effect. In this way,

Table 2. SAPT Interactions Energy Components (in kJ/mol) for the Complexes with C60
a

Eelst
(1) Eexch

(1) Eind
(2) Eexch-ind

(2) Edisp
(2) Eexch-disp

(2) E1 E2 Eint Eint
d

H2 �7.4 21.5 �4.9 4.5 �30.9 4.1 14.1 �27.3 �13.2 �16.3

N2 �18.1 51.4 �16.8 15.4 �55.1 7.4 33.3 �49.2 �15.9 �21.4

CO �23.7 61.2 �27.8 24.1 �65.5 10.3 37.4 �58.8 �21.4 �28.0

HCNb �91.1 233.0 �99.6 86.4 �151.2 32.5 141.9 �132.0 9.8 �5.3

HCNc �90.4 234.2 �108.7 91.2 �165.7 33.1 143.8 �150.1 �6.3

CO2 �168.7 450.7 �189.3 181.2 �202.6 46.6 282.0 �164.1 117.9 97.7

C2H2 �166.2 443.8 �220.9 187.8 �224.1 52.6 277.6 �204.5 73.0 50.6

H2O �13.3 35.6 �18.3 10.7 �52.4 7.0 22.2 �53.0 �30.8 �36.0

H2S �69.8 159.9 �92.3 83.6 �143.3 29.9 90.1 �122.1 �32.0 �46.3

H2CO �147.9 369.2 �178.5 161.7 �181.7 42.3 221.3 �156.2 65.1 46.9

NH3 �62.7 149.2 �85.8 74.8 �124.3 26.2 86.5 �109.1 �22.6 �35.1

CH4
b �75.3 190.5 �83.0 78.4 �146.9 30.1 115.2 �121.4 �6.2 �20.9

CH4
c �74.2 190.6 �81.1 76.4 �159.3 31.3 116.4 �132.9 �16.5

CH3OH �269.1 712.0 �372.3 322.1 �262.5 68.9 442.9 �243.8 199.1 172.9
a E1 and E2 are the sums of the first-order and the second-order components, respectively. bCalculated using the TZVP basis set. cCalculated using the
def2-TZVPP basis set. dObtained by adding 10% of Edisp

(2) to Eint calculated in the TZVP basis

Table 3. SAPT Interaction Energy Components (in kJ/mol) for the Complexes with C70
a

Eelst
(1) Eexch

(1) Eind
(2) Eexch-ind

(2) Edisp
(2) Eexch-disp

(2) E1 E2 Eint Eint
d

H2 �4.7 13.1 �2.8 2.5 �23.8 2.7 8.4 �21.4 �13.0 �15.4

N2 �23.7 63.5 �19.7 18.8 �79.6 10.4 39.8 �70.0 �30.1 �38.1

CO �28.9 73.4 �26.4 25.0 �86.8 12.5 44.5 �75.6 �31.2 �39.8

HCN �52.3 131.1 �64.4 53.9 �132.4 24.0 78.8 �118.8 �40.1 �53.3

CO2 �40.9 106.3 �37.0 34.2 �110.7 16.0 65.4 �97.6 �32.2 �43.2

C2H2 �63.8 167.1 �81.8 73.6 �145.5 28.1 103.3 �125.4 �22.2 �36.8

H2O �12.1 35.0 �18.6 11.8 �51.0 7.1 22.9 �50.8 �27.9 �33.0

H2S �66.3 151.4 �96.9 89.2 �139.7 29.3 85.0 �118.1 �33.1 �47.0

H2CO
b �63.5 163.4 �95.1 91.4 �118.0 23.5 100.0 �98.2 1.8 �10.0

H2CO
c �62.9 164.4 �72.9 67.6 �127.6 22.8 101.5 �110.1 �8.6

NH3 �37.1 91.0 �54.2 46.3 �94.2 17.4 �84.7 �70.0 �30.7 �40.1

CH4 �43.8 114.9 �45.2 42.9 �112.0 19.4 71.1 �94.9 �23.8 �35.0

CH3OH �69.0 177.3 �75.9 65.5 �155.7 28.0 108.3 �138.0 �29.7 �45.3
a E1 and E2 are the sums of the first-order and the second-order components, respectively. bCalculated using TZVP basis set. cCalculated using def2-
TZVPP basis set. dObtained by adding 10% of Edisp

(2) to Eint calculated in the TZVP basis
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the dispersion is the major negative contribution and is mainly
responsive for binding of the guest inside the host. For smaller
guests, its magnitude is sufficient to counterbalance the destabi-
lizing effect of the first-order repulsion term, making the guest
�host system stable.

In Tables 2 and 3, the interaction energies of two complexes,
HCN@C60 and H2CO@C70, calculated in the TZVP basis set
assume small positive values. As mentioned above, to check
whether this destabilization could be due to the small basis set
applied, additional calculations with the def2-TZVPP basis set
were performed. As expected, the dispersion energy turned out
to be the most sensitive to the quality of the basis set, and an
addition of the polarization Gaussian functions resulted in low-
ering of both the dispersion energy and total interaction energy,
leading to the stabilization of the complexes. The resulting
increase in the absolute value of the dispersion contribution
was about 10% of its value in a smaller basis. Since other
components (see the electrostatic energy, first-order exchange
energy, and the sum of the second-order induction and exchange-
induction energies) are not that sensitive to the basis set effect,
we decided to estimate the increase in the stabilization caused by
the saturation of the dispersion components by scaling of the
Edisp
(2) term by 10%. The resulting estimated interaction energy is

given in the last column in Tables 2 and 3. Such a rescaling
procedure has been already utilized in SAPT calculations in
similar cases, i.e., when the application of the large basis was not
possible because of the hardware limitations, and has been shown
to substantially improve the quality of the potential energy
surface.96 It can be seen that—as expected—the stabilization
of the complexes becomes larger with the rescaled dispersion, or
(for some larger guest in the smaller cage) they become less
destabilized. The effect is especially pronounced for nonpolar
guests, in which case the dispersion is the main attractive
component of the interaction energy. It is also interesting to
note that for two isoelectronic guests of approximately the same
size, N2 and CO, a difference of about 5 kJ/mol in the total
energy appears. An inspection of data presented in Table 2 allows
one to draw a conclusion that the nonsymmetric distribution of
the electron density for CO causes a stronger interaction with the
C60 cage. This effect for the unperturbed densities can be
observed as larger absolute values of the electrostatic and first-
order exchange energies. Similarly, the perturbed densities cause
qualitatively the same effect for the induction and exchange-
induction pair; i.e., charge redistribution in the cage caused by
CO is larger than by N2. Also, the dispersion and exchange-
dispersion terms contribute to this effect, giving the net increase
of the stabilization energy. Interestingly enough, the net stabili-
zation energy for both species in the larger cage is virtually the
same. However, the components are quite different (see
Table 3).

Although the stabilization energy is the most popular and easy
to obtain parameter of the stability of the endohedral complexes,
an ultimate test of stability should be the thermodynamic
functions, like enthalpies or Gibbs energies. However, in both
cases, the calculation of the vibrational frequencies of the
complex and the constituent molecules is necessary, which is
quite expensive for a molecule of fullerenes’ size. Therefore, such
studies are much more rare. Slanina and Nagase50 have obtained
an estimate of the Gibbs energy for the N2@C60 complex and
have found that the entropic contribution is quite significant (the
MP2 stabilization energy and the TΔS value are equal to �9.8
kcal/mol and �5.9 kcal/mol, respectively), although the

stabilization effect prevails. On the basis of this study, one can
estimate that some of the complexes studied by us can be
thermodynamically unstable at room temperature. However,
due to the high energy of CC bond breaking, once formed, they
can be, like cubane, kinetically stable. It should be also noted that
the harmonic approximation, utilized almost exclusively to
estimate the thermal contribution from the vibrations, could be
insufficient for some modes of endohedral complexes.45

’SUMMARY

We performed the calculations of the stabilization energies of
several endohedral complexes with C60 and C70 fullerenes with
the recently developedDF-DFT-SAPT approach. On the basis of
these results, the stability of all guests under study in the latter,
larger fullerene is predicted, while larger guests, i.e., CO2, C2H2,
H2CO, and CH3OH, are not stabilized in the C60 cage. However,
a general conclusion of Dodziuk et al.36 that mastering the
manufacturing and purification of larger fullerenes is necessary
for applications of their endohedral complexes with molecular
guests remains in force. The analysis of the energy components
reveals that the main stabilizing effect is always due to the
dispersion energy, while the net contribution of the first-order
terms is always repulsive. Only for the highly polar molecules
does the induction effect of polarizing the cage by the electro-
static field of the guest contribute non-negligibly to the stabiliza-
tion of the complexes. Taking into account that few small
molecules have been found trapped in the opened C60, we expect
that the cages will be chemically closed in the near future,
providing the corresponding endohedral complexes. At present,
no devices on the basis of endohedral fullerene complexes are
available on the market, in spite of numerous proposals of their
applications. We believe that an understanding of forces stabiliz-
ing them can contribute to their development and practical use in
the near future.

’AUTHOR INFORMATION

Corresponding Author
*E-mail: tania@tiger.chem.uw.edu.pl, dodziuk@ichf.edu.pl.

’ACKNOWLEDGMENT

We are grateful to Dr. K. S. Nowi�nski for the preparation of
TOC graphics and to Mr. T. B. Demissie for the preparation of
the input data.

’REFERENCES

(1) Heath, J. R.; O’Brien, S. C.; Zhang, Q.; Liu, Y.; Curl, R. F.; Tittel,
F. K.; Smalley, R. E. J. Am. Chem. Soc. 1985, 107, 7779–7780.

(2) Dresselhaus, M. S.; Dresselhaus, G.; Eklund, P. C. Science of
Fullerenes and Carbon Nanotubes: Their Properties and Applications;
Elsevier: Oxford, U. K., 1995.

(3) Stoddart, J. F. Angew. Chem., Int. Ed. Engl. 1991, 30, 70–71.
(4) Dodziuk, H. In Strained Hydrocarbons. Beyond the van’t Hoff and

Le Bel hypothesis; Dodziuk, H., Ed.; Wiley-VCH: Weinheim, Germany,
2009; pp 5�12.

(5) Cagle, D. W.; Kennel, S. J.; Mirzadeh, S.; Alford, J. M.; Wilson,
L. J. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 5182–5187.

(6) Bolskar, R. D. Nanomedicine—U.K. 2008, 3, 201–213.
(7) Bakry, R.; Vallant, R. M.; Najam-ul-Haq, M.; Rainer, M.; Szabo,

Z.; Huck, C. W.; Bonn, G. K. Int. J. Nanomed. 2007, 2, 639–649.
(8) Clarke, T. M.; Durrant, J. R. Chem. Rev. 2010, 110, 6736–6767.



1482 dx.doi.org/10.1021/ct200111a |J. Chem. Theory Comput. 2011, 7, 1476–1483

Journal of Chemical Theory and Computation ARTICLE

(9) Ross, R. B.; Cardona, C. M.; Swain, F. B.; Guldi, D. M.;
Sankaranarayanan, S. G.; Van Keuren, E.; Holloway, B. C.; Drees, M.
Adv. Funct. Mater. 2009, 19, 2332–2337.
(10) Kobayashi, S.; Mori, S.; Iida, S.; Ando, H.; Takenobu, T.;

Taguchi, Y.; Fujiwara, A.; Taninaka, A.; Shinohara, H.; Yoshihiro, I.
J. Am. Chem. Soc. 2003, 125, 8116–8117.
(11) Shibata, K.; Kubozono, Y.; Kanbara, T.; Hosokawa, T.; Fujiwara,

A.; Ito., Y.; Shinohara, H. Appl. Phys. Lett. 2004, 84, 2572–2574.
(12) Yasutake, Y.; Shi, Z. J.; Okazaki, T.; Shinohara, H.; Majima, Y.

Nano Lett. 2005, 5, 1057–1060.
(13) Yu, C. Y. Phys. Rev. A 2007, 75, art. 012318.
(14) Garelli, M. S.; Kusmartsev, F. V. Eur. Phys. J. B 2005,

48, 199–206.
(15) Twamley, J. Phys. Rev. A 2003, 67, art. no. 052318.
(16) Meyer, C.; Harneit, W.; Weidinger, A.; Lips, K. Phys. Status

Solidi B 2002, 233, 462–466.
(17) Yang, W. L.; Xu, Z. Y.; Wei, H.; Feng, M.; Suter, D. Phys. Rev. A

2010, 81, 023303.
(18) Dodziuk, H. J. Nanosci. Nanotechnol. 2007, 7, 1102–1110.
(19) Dodziuk, H. In Mathematics and Topology of Fullerenes; Graovac,

A., Ori, O., Cataldo, F., Eds.; Springer: Hamburg, Germany, 2011;
pp 117�151.
(20) Komatsu, K.; Murata, M.; Murata, Y. Science 2005, 307, 238–

240.
(21) Murata, M.; Maeda, S.; Morinaka, Y.; Murata, Y.; Komatsu, K.

J. Am. Chem. Soc. 2008, 130, 15800–15801.
(22) Dodziuk, H. Chem. Phys. Lett. 2005, 410, 39–41.
(23) Dodziuk, H.; Nowinski, K. S. Tetrahedron 1998, 54, 2917–

2930.
(24) Rubin, Y.; Jarrosson, T.; Wang, W.; Bartberger, M. D.; Houk,

K. N.; Schick, G.; Saunders, M.; Cross, R. J. Angew. Chem., Int. Ed. 2001,
40, 1543–1546.
(25) Murata, Y.; Maeda, S.; Murata, M.; Komatsu, K. J. Am. Chem.

Soc. 2008, 130, 6702–6703.
(26) Ito, S.; Shimotani, H.; Takagi, H.; Dragoe, N. Full. Nanotubes

Carbon Nanostruct. 2008, 16, 206–213.
(27) Iwamatsu, S.; Murata, S. Tetrahedron Lett. 2004, 45, 6391–

6394.
(28) Xiao, Z.; Yao, J. Y.; Yang, D. Z.; Wang, F. D.; Huang, S. H.; Gan,

L. B.; Jia, Z. S.; Jiang, Z. P.; Yang, X. B.; Zheng, B.; Yuan, G.; Zhang,
S. W.; Wang, Z. M. J. Am. Chem. Soc. 2007, 129, 16149–16162.
(29) Whitener, K. E., Jr.; Frunzi, M.; Iwamatsu, S.-I.; Murata, S.;

Cross, R. J.; Saunders, M. J. Am. Chem. Soc. 2008, 130, 13996–13999.
(30) Iwamatsu, S. I.; Stanisky, C. M.; Cross, R. J.; Saunders, M.;

Mizorogi, N.; Nagase, S.; Murata, S. Angew. Chem., Int. Ed. 2006,
45, 5337–5340.
(31) Whitener, K. E., Jr.; Cross, R. J.; Saunders, M.; Iwamatsu, S.-I.;

Murata, S.; Mizorogi, N.; Nagase, S. J. Am. Chem. Soc. 2009,
131, 6338–6339.
(32) Peres, T.; Cao, B. P.; Cui, W. D.; Lifshitz, C.; Khong, A.; Cross,

R. J.; Saunders, M. Int. J. Mass Spectrom. 2001, 210, 241–247.
(33) Korona, T.; Hesselmann, M.; Dodziuk, H. J. Chem. Theory

Comput. 2009, 5, 1585–1596.
(34) Jeziorski, B.; Moszynski, R.; Szalewicz, K. Chem. Rev. 1994,

94, 1887–1930.
(35) Szalewicz, K.; Patkowski, K.; Jeziorski, B. Struct. Bonding

(Berlin) 2005, 116, 43–117.
(36) Dodziuk, H.; Dolgonos, G.; Lukin, O. Carbon 2001,

39, 1907–1911.
(37) Komatsu, K.; Murata, M.; Murata, Y. In XIX International

Winterschool on Electronic Properties of Novel Materials, Kirchberg in
Tirol, Austria, 2005.
(38) Grimme, S. J. Chem. Phys. 2003, 118, 9095–9102.
(39) Zhao, Y.; Truhlar, D. G. J. Chem. Theory Comput. 2005,

1, 415–432.
(40) Slanina, Z.; Pulay, P.; Nagase, S. J. Chem. Theory Comput. 2006,

2, 782–785.
(41) Ren, Y. X.; Ng, T. Y.; Liew, K. M. Carbon 2006, 44, 397–406.

(42) Kruse, H.; Grimme, S. J. Phys. Chem. C 2009, 113, 17006–
17010.

(43) Sebastianelli, F.; Xu, M.; Bacic, Z.; Lawler, R.; Turro, N. J.
J. Am. Chem. Soc. 2010, 132, 9826–9832.

(44) Yagi, K.; Watanabe, D. Int. J. Quantum Chem. 2009, 109, 2080–
2090.

(45) Min, G.; Nagel, U.; H€uvonen, D.; R€o€om, T.; Mamone, S.;
Levitt, M. H.; Carravetta, M.; Murata, Y.; Komatsu, K.; Chen, J. Y.-C.;
Turro, N. J. J. Chem. Phys. 2011, 134, art. 054507.

(46) Hobza, P.; Selzle, H. L.; Schlag, E. W. J. Phys. Chem. 1996,
100, 18790–18794.

(47) Charkin, O. P.; Klimenko, N. M.; Charkin, D. O.; Mebel, A. M.
Russ. J. Inorg. Chem. 2004, 49, 723–733.

(48) Charkin, O. P.; Klimenko, N. M.; Charkin, D. O.; Mebel, A. M.
Russ. J. Inorg. Chem. 2005, 50, 1903–1911.

(49) Charkin, O. P.; Klimenko, N. M.; Charkin, D. O.; Mebel, A. M.
Russ. J. Inorg. Chem. 2005, 50, 1702–1709.

(50) Slanina, Z.; Nagase, S. Mol. Phys. 2006, 104, 3167–3171.
(51) Rehaman, A.; Gagliardi, L.; Pyykk€o, P. Int. J. Quantum Chem.

2007, 107, 1162–1169.
(52) Jin, L. J.; Zhang,M.; Su, Z.M.; Shi, L. L. J. Theor. Comput. Chem.

2008, 7, 1–11.
(53) Gao, H.; Zhu, W. H.; Tang, C. M.; Geng, F. F.; Yao, C. D.; Xu,

Y. L.; Deng, K. M. Acta Phys. Sinica 2010, 59, 1707–1711.
(54) Mazurek, A. P.; Sadlej-Sosnowska, N. Int. J. Quantum Chem.

2010, 110, 1354–1359.
(55) Ren, Y. X.; Jiang, C. Y.; Wang, J.; Liu, Z. Y. J. Mol. Graphics

Modell. 2008, 27, 558–562.
(56) Dodziuk, H. In Strained Hydrocarbons. Beyond the van’t Hoff and

Le Bel hypothesis;Wiley-VCH:Weinheim, Germany, 2009; pp 449�458.
(57) Tanner, M. E.; Knobler, C. B.; Cram, D. J.Angew. Chem., Int. Ed.

1991, 30, 1924–1027.
(58) Wang, Y.; Huang, Y. H.; Liu, R. Z. J. Mol. Struct. THEOCHEM

2006, 775, 61–65.
(59) Prinzbach, H.;Weller, A.; Landenberger, P.;Wahl, F.;Worth, J.;

Scott, L. T.; Gelmont, L.; Olevano, D.; von Issendorff, B. Nature 2000,
407, 60–63.

(60) Hu, Y. H.; Ruckenstein, E. J. Chem. Phys. 2003, 119, 10073–
10081.

(61) Cioslowski, J. J. Am. Chem. Soc. 1991, 113, 4139–4141.
(62) Hu, Y. H.; Ruckenstein, E. J. Chem. Phys. 2005, 123, art. 144303.
(63) Saunders, M. Science 1991, 253, 330–331.
(64) Dodziuk, H.; Nowinski, K. S. Chem. Phys. Lett. 1996,

249, 406–412.
(65) Podeszwa, R.; Szalewicz, K. Chem. Phys. Lett. 2005, 412, 488–

493.
(66) Hesselmann, A.; Jansen, G.; Sch€utz, M. J. Chem. Phys. 2005,

122, art. 054306.
(67) Hesselmann, A.; Korona, T. Phys. Chem. Chem. Phys. 2011,

13, 732–743.
(68) Podeszwa, R.; Bukowski, R.; Rice, B. M.; Szalewicz, K. Phys.

Chem. Chem. Phys. 2007, 9, 5561–5569.
(69) Podeszwa, R.; Szalewicz, K. Phys. Chem. Chem. Phys. 2008,

10, 2735–2746.
(70) Podeszwa, R. J. Chem. Phys. 2010, 132, art. 044704.
(71) Dunlap, B. I.; Connolly, J. W. D.; Sabin, J. R. J. Chem. Phys.

1979, 71, 4993–4999.
(72) Williams, H. L.; Chabalowski, C. F. J. Phys. Chem. A 2001,

105, 11158.
(73) Jansen, G.; Hesselmann, A. J. Phys. Chem. A 2001, 105,

11156–11157.
(74) Misquitta, A. J.; Szalewicz, K.Chem. Phys. Lett. 2005, 357, 301–306.
(75) Hesselmann, A.; Jansen, G. Chem. Phys. Lett. 2002, 357,

464–470.
(76) Hesselmann, A.; Jansen, G. Chem. Phys. Lett. 2002, 362,

319–325.
(77) Korona, T. Phys. Chem. Chem. Phys. 2008, 10, 6509–6519.
(78) Korona, T. J. Chem. Theory Comput. 2009, 5, 2663–2678.



1483 dx.doi.org/10.1021/ct200111a |J. Chem. Theory Comput. 2011, 7, 1476–1483

Journal of Chemical Theory and Computation ARTICLE

(79) Korona, T. In Recent Progress in Coupled Cluster Methods;
�C�arsky, P., Paldus, J., Pittner, J., Eds.; Springer: Dordrecht, TheNetherlands,
2010; pp 267�296.
(80) Pyykk€o, P.; Wang, C.; Straka, M.; Vaara, J. Phys. Chem. Chem.

Phys. 2007, 9, 2954–2958.
(81) Wang, C.; Straka, M.; Pyykk€o, P. Phys. Chem. Chem. Phys. 2010,

12, 6187–6203.
(82) Werner, H. J.; Knowles, P. J.; Lindh, R.; Manby, F. R.; Sch€utz,

M.; Celani, P.; Korona, T.; Mitrushenkov, A.; Rauhut, G.; Adler, T. B.;
Amos, R. D.; Bernhardsson, A.; Berning, A.; Cooper, D. L.; Deegan,
M. J. O.; Dobbyn, A. J.; Eckert, F.; Goll, E.; Hampel, C.; Hetzer, G.;
Hrenar, T.; Knizia, G.; K€oppl, C.; Liu, Y.; Lloyd, A.W.; Mata, R. A.; May,
A. J.; McNicholas, S. J.; Meyer, W.; Mura, M. E.; Nicklass, A.; Palmieri,
P.; Pfl€uger, K.; Pitzer, R.; Reiher, M.; Stoll, H.; Stone, A. J.; Tarroni, R.;
Thorsteinsson, T.; Wang, M.; Wolf, A. Molpro, version 2009.1; Cardiff
University: Cardiff, U. K., 2009.
(83) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996,

77, 3865–3868.
(84) Gr€uning, M.; Gritsenko, O. V.; van Gisergen, S. J. A.; Baerends,

E. J. J. Chem. Phys. 2001, 114, 652–660.
(85) Lichtenberger, D. L.; Nebesny, K. W.; Ray, C. D.; Huffman,

D. R.; Lamb, L. D. Chem. Phys. Lett. 1991, 176, 203–208.
(86) Steger, H.; Holzapfel, J.; Hielscher, A.; Kamke, W.; Hertel, I. V.

Chem. Phys. Lett. 1995, 234, 455–459.
(87) Lii, J.-H.; Allinger, N. L. J. Am. Chem. Soc. 1989, 111,

8566–8575.
(88) Lii, J.-H.; Allinger, N. L. J. Am. Chem. Soc. 1989, 111,

8576–8582.
(89) Allinger, N. L.; Kuohsiang, C.; Lii, J.-H. J. Comput. Chem. 1996,

17, 642–668.
(90) Godbout, N.; Salahub, D. R.; Andzelm, J.; Wimmer, E. Can. J.

Chem. 1992, 70, 560–571.
(91) Schafer, A.; Huber, C.; Ahlrichs, R. J. Chem. Phys. 1994,

100, 5829–5835.
(92) Weigend, F.; H€oser, M.; Patzelt, H.; Ahlrichs, R. Chem. Phys.

Lett. 1998, 294, 143–152.
(93) Weigend, F.; K€ohn, A.; H€attig, C. Chem. Phys. Lett. 2002,

294, 3175–3183.
(94) Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7,

3297–3305.
(95) Heijmen, T. G. A.; Korona, T.; Moszynski, R.; Wormer, P. E. S.;

van der Avoird, A. J. Chem. Phys. 1997, 107, 902–913.
(96) Moszynski, R.;Wormer, P. E. S.; Jeziorski, B.; van der Avoird, A.

J. Chem. Phys. 1994, 101, 2811–2824.



Published: March 30, 2011

r 2011 American Chemical Society 1484 dx.doi.org/10.1021/ct100357p | J. Chem. Theory Comput. 2011, 7, 1484–1493

ARTICLE

pubs.acs.org/JCTC

Free Energy Landscapes of Alanine Dipeptide in Explicit Water
Reproduced by the Force-Switching Wolf Method
Yasushige Yonezawa,*,† Ikuo Fukuda,‡ Narutoshi Kamiya,† Hiromitsu Shimoyama,† and Haruki Nakamura†

†Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
‡Computational Science Research Program, RIKEN, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan

ABSTRACT: Precise and rapid calculation of long-range interactions is of crucial importance for molecular dynamics (MD) and
Monte Carlo simulations. Instead of the Ewald method or its high speed variant, PME, we applied our novel method, called the
force-switchingWolf method, to computation of the free energy landscapes of a short peptide in explicit water. Wolf and co-workers
showed that long-range electrostatic energy under a periodic boundary condition can be well reproduced even by truncating the
contribution from the distant charges, when the charge neutrality is taken into account. We recently applied the procedure proposed
byWolf and co-workers to a mathematically consistentMD theory bymeans of a force-switching scheme, and we show that the total
electrostatic energy for sodium chloride liquid was well conserved and stable during the MD simulation with the force-switching
Wolf method. Our current results for an aqueous peptide solution with a series of canonical and multicanonical molecular dynamics
simulations show that the force-switchingWolf method is not only in good accordance with the energies and forces calculated by the
conventional PME method but also properly reproduces the solvation and the free energy landscapes of the peptide at 300 K.

’ INTRODUCTION

Molecular dynamics (MD) and Monte Carlo (MC) simula-
tions are now indispensable and widely used for studies of
condensed matter, such as nano- and biomolecular systems. In
these simulations, most of the computational time is usually
consumed by calculations of nonbonded long-range, electrostatic
interactions. The long-range interactions determine thermody-
namic, structural, and dynamical properties of the systems.
Therefore, fast and accurate methods for computing the inter-
actions are required for reliable MD and MC applications.

There are various algorithms proposed for computing the
long-range electrostatic interactions. Truncation of interactions
(the cutoff method) was formerly the most widely used, but it
introduces serious errors and artifacts in the treatment of the
energies and forces.1 The reaction field method,2 cell-multipole
method,3 fast-multipole method,4 and smooth-cutoff potential
method5 have been developed to overcome these problems.

The Particle Mesh Ewald (PME) method,6,7 a computation-
ally efficient alternative to the Ewald method, takes advantage of
the Fast Fourier Transform algorithm and is nowwidely accepted
as the standard to calculate electrostatic interactions among
charged particles of molecular systems under periodic boundary
conditions. However, the Ewald method has intrinsic artifacts, as
pointed out by many researchers.8�10 Moreover, because of
network communication problems of the Fast Fourier Transfer
algorithm employed in the PMEmethod, it is hard to accomplish
good scalability with respect to large systems in highly parallel
computations.11,12

Wolf et al. proposed an algorithm, in which charge neutral-
ity and potential damping are applied to the cutoff method,
and it achieves fairly good accuracy, comparable to the Ewald
method, for simulations of NaCl and MgO in crystalline and
liquid phases.13 The algorithm, hereafter referred to as the Wolf
method, is easy to parallelize and is computationally very efficient

like the original cutoff method, because no reciprocal space
calculations are necessary. In the past decade, the Wolf method
attracted a great deal of attention and has been evaluated in many
applications. Demontis et al. used this method in simulation
studies of liquid water and in anhydrous and hydrated alumino-
silicates. They showed that the method is computationally more
efficient than the PME method when the damping parameter is
carefully chosen.14 Zahn et al. proposed a modification of the
Wolf method to apply it to molecular liquids in MD simulations
and obtained results comparable to those of the PME method in
the TIP3P and SPC water systems.15 Ma and Garofalini applied
the Wolf method to β-SiC crystals with a short-range correction
in MD and obtained results that were very close to experimental
data.16 Avenda~no and Gil-Villegas used the Wolf method in MC
to simulate properties of electrolyte solutions and molten salts
and showed that the Wolf method reproduced the simulation
data produced using the PME method.17 Fennell and Gezelter
proposed another modification to the original Wolf method,
referred to as the Fennell method hereafter.18 This method was
also shown to reproduce the results of MD simulations of NaCl
crystals using the PME method.

Kikugawa et al. applied the Fennell method both to globular
proteins in explicit water and to membrane proteins immersed in
lipid bilayers with explicit water.19 They obtained results com-
parable to the PMEmethod with respect to not only the energies
and forces but also the dynamics of the radial distribution
function for the solvent and conformational dynamics of the
proteins. Moreover, they demonstrated that the Fennell method
realizes fast MD calculations using the special purpose MD
engine MDGrape-3 and is highly scalable in parallel on a PC
cluster connected by high speed networks.
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Recently, Fukuda et al. pointed out that there is an incon-
sistency between forces and energies in the formulation of the Wolf
method. They then proposed an improved method, in which the
inconsistency is completely removed using the force-switching
scheme.20 Hereafter, we call it the force-switching Wolf (FSw-Wolf)
method. They confirmed that the electrostatic energy of the FSw-
Wolfmethod for the sodiumand chloride liquid system is comparable
to that of the Ewald method and that it produces more exact energy
conservation properties than those of the original Wolf method.

In this report, in order to investigate the applicability of the
FSw-Wolf method to biological molecular systems, we evaluated the
method for an alanine-dimer peptide in explicit water under periodic
boundary conditions. We here focus our attention just on a compar-
ison between the FSw-Wolf method and the PME method. This
system would not produce any significant artifacts, due to the
periodicity applied in the PME, if the configuration sampling is
completed. In fact, in studies of similar systems, Villarreal and
Montrich recently reported that incomplete sampling of explicit
solvent of solvated biomolecular systems is likely to affect the results
to a greater extent compared to the artifact induced by the Ewald
method.21 To effectively utilize the sampling data, the free energy is a
good measure, since it is strongly affected by the quality of the
sampling data, especially in biological systems. Consequently, we
show that when the parameters are sufficiently optimized, the
energies, forces, and radial distribution functions of the FSw-Wolf
method are comparable to the PME method in canonical molecular
dynamics simulations. Moreover, we show that the dipole�dipole
interactions of water molecules calculated by the FSw-Wolf method
are similar to those obtained by the PME method. In order to
precisely evaluate the free energy landscape using the FSw-Wolf
method,we carried outmulticanonicalmolecular dynamics (McMD)
simulations22�27 for the peptide system, andwe compared the results
from the PME method with those from the FSw-Wolf method. The
McMDsimulation is oneof the generalized-ensemblemethods, and it
allows us to investigate the free energy landscape involving rare events
separated by the large barriers, which are not attained by canonical
MD simulations. Such a reliable estimation of the free energy using
theMcMD simulation with theWolf type method has not been ever
performed for biomolecular systems.

’MATERIAL AND METHODS

Wolf Method. The Wolf method has been described else-
where.13 We briefly introduce the algorithm. The electrostatic poten-
tial has a long-range nature as it slowly decreases as the inverse of the
distance between the charged particles. The effective range is thought
to be infinite. Therefore, some particular treatment is required for the
integration of an infinite charge distribution. The form of the pure
electrostatic potential Ecoloumb is

Ecoulomb ¼ 1
2 ∑

N

i¼ 1
∑
N

jð6¼iÞ

qiqj
jrijj ð1Þ

where the summation runs over all charged particles. qi stands for the
charge of the ith atom and |rij| the distance between the ith and
jth atoms.
The cutoff method calculates only interactions between the

particles within radius Rc of each other, which creates an
artificially charged sphere. This introduces large inaccuracies as
indicated by Wolf et al.13 They proposed a way to eliminate this
artifact by introducing a charge neutrality condition within the
cutoff sphere and potential damping using the erfc. The total

electrostatic energy Ewolf can be written as

Ewolf ¼ ∑
N

i¼ 1
∑

jð > iÞ
jrijj < RC

qiqjerfcðRjrijjÞ
jrijj

"

� lim
jrijj f Rc

qiqjerfcðRjrijjÞ
jrijj

( )#
� erfcðRRcÞ

2Rc
þ Rffiffiffi

π
p

� �
∑
N

i¼ 1
q2i

ð2Þ
whereRc is the cutoff distance,R represents a damping parameter
that determines the speed of the convergence of the summation,
and N is the number of atoms. The second term on the right-
hand of eq 2 is a representation of the charge neutrality regarding
the atoms in the cutoff sphere other than the center atom i. The
third term represents the contribution by atom i; the last is the
self-energy. Using this approach, it is possible to precisely
reproduce the Madelung energy.

’THE FORCE-SWITCHING WOLF METHOD

Fukuda et al.20 have pointed out that the negative derivative of
the Wolf potential energy is not consistent with the force of the
Wolf method, which was proposed in the original paper by Wolf
et al.13 This inconsistency should be a source of serious systema-
tic error when applied to molecular dynamics simulations.
Fukuda et al. then modified the Wolf method to fulfill the
consistency using the force-switching scheme, and they demon-
strated that the FSw-Wolf method satisfied energy conservation
much better than the original Wolf method.

The total energy EFSw-Wolf of the FSw-Wolf method is
presented by the following equations,

EFSw-Wolf ¼ 1
2 ∑

N

i¼ 1
∑
jð6¼iÞ

qiqj~VðjrijjÞ

� erfcðRr1Þ
2r1

� V/ðr1Þ
2

þ Rffiffiffi
π

p
� �

∑
i
q2i ð1.1Þ

where

~VðjrijjÞ �

erfcðRjrijjÞ
jrijj þ V/ðr1Þ � erfcðRr1Þ=r1 for 0 < jrijj < r

V/ðjrijjÞ for r1 e jrijj e rc
0 for rc < jrijj <¥

8>>>><
>>>>:

ð1.2Þ
Here, r1 and rc stand for the switching length (described below)
and the cutoff length, respectively. In the current study, accord-
ing to a report by Fukuda et al.,20 we employed rc� r1 = 1 Å.V* is
determined so that the force smoothness is satisfied in the entire
range by the force-switching scheme as follows:

f iFSw � Wolf ¼ ∑
jð6¼iÞ

qiqj~FðjrijjÞ
rij
jrijj ð1.3Þ

where

~FðjrijjÞ ¼
FðjrijjÞ for 0 < jrijj < r1
F�ðjrijjÞ for r1 e jrijj e rc
0 for rc < jrijj <¥

8>><
>>: ð1.4Þ
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and

FðjrijjÞ � erfcðRjrijjÞ
jrijj2

þ 2Rffiffiffi
π

p expð�R2jrijj2Þ
jrijj ð1.5Þ

Here, we set F*(|rij|) to have the following fourth polynomial
equation form:28

F�ðjrijjÞ � R0 þ βjrijj þ γjrijj2 þ δjrijj3 ð1.6Þ
Thereby, we obtained the values of the coefficients satisfying the
smoothness condition at r1 and rc as

R0

β

γ

δ

2
66664

3
77775 ¼ 1

ðrc � r1Þ3

ð�rcr1bþ rcaþ r21b� 3ar1Þr2c
ðbr2c þ rcr1b� 2r21bþ 6ar1Þrc
�ð2br2c � rcr1bþ 3rca� r21bþ 3ar1Þ
brc � br1 þ 2a

2
66664

3
77775

ð1.7Þ
with a = F(r1) and b = dF(r1)/dr.

Thus, V*(|rij|) is expressed as the following:

V�ðjrijjÞ ¼ � R0jrijj þ
βjrijj2
2

þ γjrijj3
3

þ δjrijj4
4

 !

þ R0rc þ βrc2

2
þ γrc3

3
þ δrc4

4

 !
ð1.8Þ

In the Appendix, we describe the details of implementation of
the FSw-Wolf method for biomolecular systemwith the potential
energies associated with the covalent bonds.
Canonical Molecular Dynamics Simulations.We employed

alanine-dimer peptide for the current studies, because the
alanine-dimer peptide (Ala�Ala) has been well studied as an
ideal standard biological peptide. We capped the alanine-dimer
peptide with an acethyl group (Ace) at the N terminus and with
an N-methyl group (NMe) at the C terminus to eliminate large
electrostatic interactions between the termini. The peptide,
Ace�Ala�Ala�NMe, was immersed in a cubic box of water
with an edge length of 36 Å and solvated with 1541 water
molecules for a total of 4655 atoms in the system. We used the
Amber96 force field for the peptide and the TIP3P model for
water.29

Preparation and equilibration procedures for a production run
of the system were as follows. The positions of the modeled
hydrogen atoms were adjusted by energy minimization in vacuo.
The peptide was then immersed in a water box, which had been
pre-equilibrated under NPT conditions with a constant number
of particles, temperature (300 K), and pressure (1 atm) using the
Berendsen thermostat and barostat.30 The atoms of the peptide
were kept fixed while the solvent was allowed to equilibrate for
200 ps under NVT conditions at 300 K. After the solvent
equilibration, we reduced the restraining force for the atoms of
the peptide and simulated all atoms of the system under NPT
conditions at 300 K and 1 atm of pressure. The covalent bonds
and angles including polar hydrogens were constrained and
treated as rigid bodies, thus allowing for a simulation time step
of 1 fs. A production run of 10 ns was done under NVT
conditions, using a Hoover�Evans thermostat at 300 K.31

In the PMEmethod, the parameter R of the PMEmethod was
set to 0.35 Å�1, and the real space cutoff distance was set to 10 Å
for all runs. The mesh size was set to 36� 36� 36, thus ensuring

a grid density of 1 Å for the system with sufficient accuracy from
the Ewald method. Moreover, we employed the atom base cutoff
scheme for the long-range interactions in both methods. The
radius of the neighbor list is 1 Å larger than the cutoff, and it is
updated every five steps with a time step of 1 fs for all simulations.
The parameters for the FSw-Wolf method are described in detail
in the Results and Discussion section.
To evaluate dipole�dipole interactions in a homogeneous

polar molecular system, a cubic water system under periodic
boundary conditions with an edge length of 36 Å including 1569
water molecules was prepared in addition to the peptide system.
We performed canonical ensemble molecular dynamics simula-
tions of the water system at 300 K, using the PME and FSw-Wolf
methods. The dipole�dipole interactions were evaluated using
the 1 ns trajectories of the water system.
Multicanonical Molecular Dynamics Simulations. We

used the force-biased multicanonical molecular dynamics
(FBMcMD) simulation method24 to evaluate the free energy
landscape of the peptide. The FBMcMD algorithm has been
described elsewhere,24,26 so here we briefly summarize it. We
generated the FBMcMD ensemble by performing constant-
temperature MD at an arbitrarily chosen temperature T0 = 1/kBβ0
with force scaling as

dpi
dt

¼ νðEÞf i ð3.1Þ

νðEÞ ¼ DRmcðEÞ
DE

ð3.2Þ

where β0 is the inverse temperature, kB is the Boltzmann constant, pi
and fi indicate the momentum and the force of the ith atom,
respectively, Rmc(E) is the multicanonical temperature, and ν(E)
represents the force scaling factor. Since the ν(E) values have not
been given a priori, they should be determined by the following
iterative scheme:

νk þ 1ðEÞ ¼ νkðEÞ þ 1
β0

D ln PkðEÞ
DE

ð4Þ

Here, Pk(E) is the probability distribution of potential energy from
kth iterative runof the FBMcMD.ν(E) relates to the density of states
Ω(E) through the following equation:

1
ΩðEÞ ¼ e�β0RmcðEÞ ð5Þ

Once the ν(E) has converged, the system can realize a randomwalk
on the potential energy space. We set the temperature for the
FBMcMD simulation to 300�700 K so that the peptide can sample
various structures at this temperature.
We started FBMcMD simulations from the peptides equili-

brated by canonical MD. The same system from the canonical
MD was used. We set the reference temperature to 250 K. The
FBMcMD simulations for the PME method and that with the
modified Wolf method were done in the same manner. We note
that only nonbonded electrostatic interactions are different
between the two simulations. In both simulations, we then
obtained flat energy distributions covering a temperature range
from 300 to 700 K. We then executed production runs for each
simulation for 2� 107 steps and stored snapshots every 1 ps. All
of the simulations were done using the myPresto molecular
dynamics computing program.32
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’RESULTS AND DISCUSSION

Accuracy of Energies and Forces. In order to evaluate the
accuracy of the FSw-Wolf method, we analyzed the trajectories of
the energies and forces for the system from the canonical MD
simulations as follows.
A total of 1000 snapshots of the atom coordinates, i.e., one

every 1 ps, were extracted from the 1 ns trajectory as simulated using
the PME method. Then, for each of these structures, we calculated
the electrostatic energy using the FSw-Wolf method with four differ-
ent R values (0.1, 0.12, 0.16, and 0.2 Å�1) and 18 different rc cutoff
distances from 8.0 to 16.5 Å with an interval of 0.5 Å. Thus, the
electrostatic energies with 72 different FSw-Wolf method param-
eters were compared to the corresponding energies from the PME
method. The differences between the PME and the FSw-Wolf
methods were calculated according to the following criteria:

EerrðmÞ ¼ jEFSw-Wolf ðmÞ � EPMEðmÞj
jEPMEðmÞj ð6.1Þ

ÆEerræ ¼ 1
M ∑

M

m¼ 1
EerrðmÞ � 100 ð6.2Þ

Here, m is the index of each snapshot extracted from the trajectory
and M is the total number of snapshots. A comparison of the force
vectors of the two methods was made using eq 7:

FerrðmÞ ¼ 1
N ∑

N

i¼ 1

jf iFSw-Wolf ðmÞ � f iPMEðmÞj
jf iPMEðmÞj

ð7.1Þ

ÆFerræ ¼ 1
M ∑

M

m¼ 1
FerrðmÞ � 100 ð7.2Þ

Here, fFSw-Wolf
i and fPME

i are the electrostatic force vectors acting on
each atom using the FSw-Wolf method and the PME method,
respectively. Ferr(m) is the relative amplitude of the force vector
difference at the mth snapshot structure, and ÆFerræ is the average
difference over all of the snapshots.
In Figure 1, we show the energy errors between the PME

method and the FSw-Wolf method with several R parameters as a
function of the cutoff length. We can see from the figure that the
energy errors decrease with increasing cutoff length. The error with
R= 0.05Å�1 was large in thewhole range of cutoff length. In the case
where the cutoff length is greater than 12Å, the errorwas significantly
reduced when R was larger than 0.10 Å�1. The error was as small as
0.1% with R = 0.12 Å�1 and a cutoff length of 16.5 Å.
For comparison with the other cutoff method, we estimated

the error from the reaction field (RF) method, which has been
useful in many extensive studies. The dashed line in Figure 1 shows
the energy error obtained from the RF method2 with ε = ¥. The
error gradually decreases as the cutoff length increases. When we
choose a value greater than 0.15 for theR parameter, the error of the
FSw-Wolf method is less than that of the RF method for a wide
range of cutoff lengths, in this peptide system.
In Figure 2, we show the force error between the PMEmethod

and the FSw-Wolf method with variousR values as a function of the
cutoff length. Although the force errors decreased with increasing
cutoff length, the error ratios were 2 to 10 times larger than the
energy error ratios. In Figure 2, the force error was about 4% at a
cutoff length of 16.5 Å with R = 0.05 Å�1. As R increased, the
observed force error decreased, and it was as small as 0.82%, at a
cutoff length of 16.5 Å with R = 0.12 Å�1.

The origin of the errors in energies and forces should be due to
omission of the reciprocal space contribution of the PMEmethod in
the FSw-Wolf method. The reciprocal contributions are reduced by
taking a larger cutoff length than the PME method.
As expected, the energy accuracy of the FSw-Wolf method is in

good accordancewith the PMEmethod.On the basis of results from
the canonical MD simulations, respecting the force accuracy, we
found that a parameter set consisting of R equal to 0.12 Å�1 and a
cutoff length of 16.5 Å is optimal for the FSw-Wolf method dealing

Figure 1. (a) Energy errors of the FSw-Wolf method with various R
values from thePMEmethod and the error of the reactionfield (RF)method
(ε = ¥). (b) Magnified view of the energy error at the small error region.

Figure 2. (a) Force errors of the FSw-Wolf method with various R
values from the PME method. (b) Magnified view of the force error at
the small error region.
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with the peptide system. In addition to the optimal parameter set, we
employed another parameter set consisting of R equal to 0.16 Å�1

and a cutoff length of 12 Å to examine the features of the smaller
cutoff length relative to the optimized parameters. This parameter
set yielded 0.2% and 1.37% errors for energy and force, respectively,
from those by the PMEmethod. Those parameters were used in the
computations hereafter.
Parallel Timings. We investigated the parallel timing in the

FSw-Wolf method, because good scalability is generally expected
for the simple truncation method. To confirm that the FSw-Wolf
methodhas this advantage,we estimated the timingof themethods for
a water system, as a benchmark. We prepared a periodic boundary
cubic system including 29662 pure water molecules with an edge
length of 98Å. For theFSw-Wolfmethod, cutoff lengths of 16.5Å and
12Åwere used, with the neighbor list 1Å larger than the cutoff length.
For the PME method, we set a 128� 128� 128 fine mesh for the
reciprocal space and an 8 Å cutoff for the real space. The calcula-
tions were performed on a conventional PC cluster connected by a
normal switching-hubwith theprogrammyPresto, whichwepreviously
developed.32 We used MPI and slab decomposition for FFT paralle-
lization in the PME method. The results are displayed in Table 1.
The table shows that the timing of the FSw-Wolf method with

16.5 Å and that with 12.0 Å cutoffs are faster than the timing of
the PME method over 128 CPUs and that over 64 CPUs,
respectively. Similar results for PME were also obtained in ref 33,
in which a parallel simulation of dihydrofolate reductase, with 23 558
atoms, using a conventional PC cluster with 64� 64� 64mesh and
the NAMD program does not show a reduction in the calculation
time over about 200 CPUs. Although special machines with
optimized networks may show good PME scalability, the FSw-Wolf
calculations are faster than the PME calculations with a fine mesh,
performed on a conventional PC cluster with normal network
connections, even if the system has 88 986 atoms.
The recent technology of the volumetric decomposition has

shown to exhibit better scalability than that of the slab decom-
position for more than 256 CPUs, when a special high-speed
network is applied.12 On the contrary, when an ordinary simple
network is used, the slab decomposition shows good scalability
for the smaller number of CPUs than the maximum number of
the grid size.
Radial Distribution Function. We have calculated radial

distributions between water and the peptide as a function of
the radial distance. We calculated the radial distribution of
density g(r) using eq 8:

gðrÞ ¼ NðrÞδr
� �

4
3
π½ðr þ δrÞ3 � r3�

ð8Þ

where N(r)δr is the number of atoms of water between r and rþ
δr, and the angular brackets denote the ensemble average.
In Figure 3, we show the radial distribution function (RDF) of

water oxygen and the amide hydrogen and that of water hydro-
gen and the peptide oxygen for the three methods: the PME
method, the FSw-Wolf method using a cutoff of 16.5 Å with R =
0.12 Å�1 and that using a cutoff of 12 Å with R = 0.16 Å�1, and
RF methods with cutoffs 12.0 and 16.5 Å. All of the results are
almost identical, indicating that the FSw-Wolf and RF methods
reproduce the RDFs by PME, even if a cutoff value of 12 Å
is used.
Dipole�Dipole Interactions. It has been pointed out that the

simple truncation method suffers from either sensitivity or an
artifact regarding the dielectric properties, especially for the
solvent material.34 To examine whether this disadvantage also
appeared in the FSw-Wolf method, we evaluated the distance-
dependent Kirkwood factor using both the PME and FSw-Wolf
methods, for a cubic system with an edge length of 36 Å,
including 1569 water molecules, at 300 K. The distance-depen-
dent Kirkwood factor G(r), as a function of distance r, describes
the angular correlation of the molecules, which have permanent
dipole moments, as

GðrÞ ¼ 1
N ∑

i

μi ∑
j, rij < r

μj

jμj2

0
BB@

1
CCA

* +
ð9Þ

where rij is the distance between the ith and jth molecules, N is
the number of molecules, and μi and μj are the dipole moments
of the ith and jth molecules, respectively. <...> denotes the time
ensemble average. In Figure 4, the distance-dependent Kirkwood

Table 1. Timings of the FSw-Wolf (FSWW) and PME
Methods with Respect to the Number of CPU in Parallel
Computations

number of CPU

method 8 16 32 64 128

single step calculation time (sec)

PME 0.87 0.61 0.54 0.48 0.51

FSWW (16.5 Å cutoff) 3.57 1.90 1.09 0.66 0.46

FSWW (12.0 Å cutoff) 1.60 0.93 0.59 0.42 0.34

Figure 3. Radial distribution of (a) water hydrogen and peptide oxygen
and (b) water oxygen and hydrogen in the peptide bond as a function of
radial distance from the PME method and the FSw-Wolf methods
(FSWW) and Reaction Field (RF) methods. Except for PME, the base
lines are shifted for comparison. The distributions are normalized to
unity at the bulk region of solvent.
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factor, G(r), of the FSw-Wolf method with rc = 16.5 Å is very
similar to that of the PME method, and that with rc = 12.0 Å is
slightly different at the larger distance. The dielectric constants
calculated from the distance-independent Kirkwood factor35,36

are 86.8 (PME), 82.2 (FSw-Wolf method with rc = 16.5 Å), and
81.1 (FSw-Wolf method with rc = 12.0 Å). These values are
comparable with the results obtained in recent studies,35,36

although G(r) is very sensitive to the system size and the
computation conditions. It is noted that the Kirkwood factor,
by means of cutoff methods, is often very different from the PME
method, even whenmuch larger cutoff distances are employed.35

The Kirkwood factors were also reported to deviate with the
simple RF method from those with the PME method,37,38 or to
be similar to those with the improved RF method depending on
the simulation conditions.2 Thus, the current FSw-Wolf method
with the appropriate parameters should give not only accurate
absolute energy values but also reliable dynamic properties.
Free Energy Landscapes of the Alanine-Dimer Peptide.

We carried out three different McMD simulations, the first one
using the PME method, the second one using the FSw-Wolf
methods employing the optimized parameters described above,
and the third one employing the shorter cutoff length of 12 Å
with R = 0.16 Å�1. We obtained flat energy distributions and
converged densities of statesΩ(E) for all of the cases. The three
densities of state are shown in Figure 5.
In this figure, the three densities of state coincide with each

other, indicating that the three systems are thermodynamically
very similar.
We have taken the trajectories from the McMD simulations.

The length of each trajectory was 20 ns. We then plotted the free
energy landscape of the peptide reweighted at 300 K with respect
to the distance between the carbon atom of the C-terminal
methyl and the carbon atom of the N-terminal methyl in the
peptide, as shown in Figure 6.

From the figure, it is apparent that the peptides are distributed
widely from the extended to the twisted conformations. Further-
more, we see that the free energy landscapes from the PMEmethod
and from the twoFSw-Wolfmethods are almost identical. It suggests
that the conformational outlines of the peptide obtained from the
two methods bear a very close resemblance.
The backbone dihedral angles of the peptide well describe the

conformations. So far, there are experimental and theoretical
conformational studies of short peptides, and they employed the
dihedral angles to evaluate the conformational space.39,40 To compare
the conformational free energy landscapes from both methods, we
used the potential ofmean force with respect to dihedral angles of the
peptide.We employed a pair of the dihedral angles, say, (φ1,ψ1) and
(φ2,ψ2). Here, φ1 andψ1 are first alanine backbone dihedral angles,
and φ2 and ψ2 are the second ones. We show the free energy
landscapes of the dihedral angles reweighted to 300K inFigures 7�9.
In the lower panels of Figures 8 and 9, we depict the absolute

free energy difference between the FSw-Wolf method and the
PME method. The white regions of the figures indicate that the
differences are smaller than 1 kcal/mol. As shown in the figures,
the free energy landscapes have a strong resemblance to each other.
We see that free energy local minimums, major basins, of C5

ext in the
vicinity of (φ =�150�,ψ = 150�), PII in (�70�, 140�), and RR

0 in
(�60�,�60�) in the PMEmethod are well reproduced in the FSw-
Wolf method. On the contrary, slightly different distributions of the
free energies in the FSw-Wolf method from the PME methods are
found around the shallow basins, the free energies of which aremuch
higher than those of the major basins. However, such differences in
the free energy landscapes do not significantly contribute to the
conformational distributions.
Consequently, from a comparison between the FSw-Wolf

method and the PME in terms of the energies, forces, radial
distribution functions, dipole�dipole interactions, and the free
energy landscapes of the alanine-dimer peptide in explicit water,
it is concluded that the FSw-Wolf method with the optimized
parameters or even with the shorter cutoff length of 12 Å with R
equal to 0.16 Å�1 yields very similar results to the PME method.
This fact shows that the criteria regarding the choice of the
parameter values with respect to the force error in the FSw-Wolf
method surely ensures a good reliability of the method. In
addition, we can also get similar results along with the computa-
tional efficiency even if we loosen the criteria.
In order to avoid the discontinuity at the cutoff length rc for the

force function originally derived from the Wolf method, we used
a switching force function instead of the shifted force approach
as proposed in ref 18. Since these two approaches deform the
original force function, leading to the deformation of the original

Figure 4. The distance-dependent Kirkwood factor from the PME
method (solid line) and the FSw-Wolf (FSWW) methods with rc = 16.5 Å
(dotted line) and 12.0 Å (dashed line).

Figure 5. Logarithm of the densities of states Ω(E) of the peptide
system from the PME method and the FSw-Wolf methods (FSWW).

Figure 6. Potentials of mean force at 300 K as a function of the distance
between the carbon atom of the C-terminal methyl and the carbon atom
of the N-terminal methyl in the peptide from the PME method and the
FSw-Wolf methods (FSWW).
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potential function, they both need a correction of the total
energy. As described in ref 20, this correction can be successfully
done in the switching force approach, while it is nontrivial in the
shifted force approach. In fact, in the latter, the correction
depends on the potential parameters R and rc, and also on
|rij|� rc, namely, the particle configuration. Thus, it should keep

away from a simple correction.41 In addition, in contrast to the
shifted force approach, the current switching force approach can
easily induce smoothness of the force function, which is required
in the stable numerical integration in MD.28

A previous study in ref 20 showed that the electrostatic energy
by means of the FSw-Wolf method of a highly charged system,

Figure 7. The free energy landscapes of the couples of dihedral angles of the peptide reweighted to 300K using the PMEmethod. The left-hand side and
right-hand side display (φ1, ψ1) and (φ2, ψ2), respectively. Units are kcal/mol.

Figure 8. Upper panel: The free energy landscapes of the couples of the dihedral angles of the peptide reweighted to 300 K using the FSw-Wolf method
with the optimized parameter set of cutoff length 16.5 Å withR = 0.12 Å�1. Lower panel: The absolute value of the free energy difference from the PME
method. Left-hand side and right-hand side display (φ1,ψ1) and (φ2,ψ2), respectively. The area illustrated by the oblique lines shows a difference larger
than 8 kcal/mol. Units are kcal/mol.
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sodium chloride, was in accordance with that of the Ewald
method. High statistical simulation studies on the charged
protein system, using the FSw-Wolf method, are in progress.

’CONCLUSION

Accurate and rapid computations for electrostatic interactions
are of significant importance. Although the Ewald-like method is
generally regarded as the standard for calculations of condensed
matters’ MD and MC simulations under periodic boundary
conditions, many alternative methods have been proposed in
order to overcome the problem of intrinsic artifacts and the lack
of scalability on highly parallel computations. Utility of real space
approximations for the Ewald summation is that they are free
from the all-to-all networking procedure on the frequency-space
calculation, which severely prevents a good scalability with
respect to the number of particles, especially in a large system.
In this respect, the original Wolf method13 and the FSw-Wolf
method proposed by Fukuda and co-workers20 as well as other
alternatives are expected to be promising alternatives to the
Ewald method for treating large systems with highly parallel
computations, which have been one of the major trends in
computational science, such as in multiscale physics studies. In
fact, as demonstrated in one of our previous works,19 these Wolf
type methods have significant advantages, regarding the scal-
ability and the highly parallel calculations onmassive PC clusters.

Among the variants of the Wolf method having these advanta-
geous features regarding the computational cost, the FSw-Wolf
method presents a consistent MD scheme with a successful
energy correction and a sufficient smoothness of the energy
function.20 In this work, we have thus evaluated a physical
reliability of the FSw-Wolf MD method in a biological system,

using an alanine-dimer peptide in explicit water. Compared with
the PME method using the canonical MD simulations, we first
determined an optimized set of the parameters for the FSw-Wolf
method. The optimized parameters and the other parameters
employing a smaller cutoff length of 12 Å yielded comparable
energies, forces, and radial distributions to those of the PME
method. Then, we carried out force-biased multicanonical mo-
lecular dynamics simulations using the two parameter sets to
evaluate the free energy landscape of the alanine-dimer peptide
with respect to the conformational space. The results at 300 K
obtained from the multicanonical molecular dynamics were in
accordance with those of the PME method.

By using the canonical MD simulation and the McMD
simulation, which is highly reliable, especially in view of the free
energy estimation, we consequently show that the FSw-Wolf
method is a promising alternative to the PME method with
respect to physical accuracy. Advantageous features regarding the
computational cost for the Wolf and the variant methods remain
in the FSw-Wolf method. Thus, we believe that the FSw-Wolf
method should be very useful for simulating large biological
systems, in particular, for highly parallel computations.

’APPENDIX

We here describe how the total electrostatic energy in the
system that contains covalent bond interactions is evaluated in
the FSw-Wolf method. The total energy of such a system is
represented as

Etotal ¼ 1
2 ∑

N

i¼ 1
∑
N

jð6¼iÞ

qiqj
rij

� 1
2 ∑

N

i¼ 1
∑

j ∈ NCB
ii

qiqj
rij

ðA1Þ

Figure 9. Upper panel: The free energy landscapes of the couples of dihedral angles of the peptide reweighted to 300K using the FSw-Wolf methodwith
the parameter set of cutoff length 12 Å with R = 0.16 Å�1. Lower panel: The absolute value of free energy difference from the PME method. Left-hand
side and right-hand side display (φ1, ψ1) and (φ2, ψ2), respectively. The area illustrated by the oblique lines shows a difference larger than 8 kcal/mol.
Units are kcal/mol.
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where j ∈ Nii
CB means that atoms i and j( 6¼i) are submitted to

covalent bond interactions, e.g., bond, angle, torsion interactions
for “1�2, 1�3, and 1�4 pairs”. By using eq 1.1 for the first term
in eq A1, we get

Etotal ∼ 1
2 ∑

N

i¼ 1
∑
N

jð6¼iÞ
qiqj ~VðrijÞ � 1

2
erfcðRr1Þ

r1
� 1
2
V�ðr1Þ

�

þ Rffiffiffi
π

p
�
∑
N

i¼ 1
q2i �

1
2 ∑

N

i¼ 1
∑

j ∈ NCB
ii

qiqj
rij

ðA2Þ

and thus

Etotal ∼ 1
2 ∑

N

i¼ 1
∑
N

j ˇ NCB
ii ∪ fig

qiqj~VðrijÞ � 1
2
erfcðRr1Þ

r1

�

� 1
2
V�ðr1Þ þ Rffiffiffi

π
p
�
∑
N

i¼ 1
q2i þ

1
2 ∑

N

i¼ 1
∑

j ∈ NCB
ii

qiqj ~VðrijÞ � 1
rij

" #

ðA3Þ
where jˇNii

CB∪{i} indicates that atoms i and j are submitted to
only nonbonded interactions. It may be convenient for the
implementation to use the following deformation in the last
term of eq A3, viz.,

~VðrijÞ � 1
rij

∼ � erfðRrijÞ
rij

� erfcðRr1Þ
r1

þ V�ðr1Þ ðA4Þ

where we have used eq 1.2 and the assumption that r1 is
sufficiently large, i.e., r1 > rij for j ∈ Nii

CB. According to eq A4,
we have

Etotal ∼ 1
2 ∑

N

i¼ 1
∑
N

j ˇ NCB
ii ∪ fig

qiqj~VðrijÞ � 1
2 ∑

N

i¼ 1
∑
N

j ∈ NCB
ii

qiqj
rij

erfðRrijÞ

� 1
2
erfcðRr1Þ
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� 1
2
V�ðr1Þ

� �
∑
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qi qi þ ∑
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and so the force is

totali
f ∼ ∑

N

j ˇ NCB
ii ∪ fig

qiqj~FðrijÞ
rij
rij

� ∑
N

j ∈ NCB
ii

qiqj
rij2

"
2Rrijffiffiffi

π
p e�ðRrijÞ2 � erfðRrijÞ

#
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ABSTRACT:We present a systematic study of the decarboxylation step of the enzyme aspartate decarboxylase with the purpose of
assessing the quantum chemical cluster approach for modeling this important class of decarboxylase enzymes. Active site models
ranging in size from 27 to 220 atoms are designed, and the barrier and reaction energy of this step are evaluated. To model the
enzyme surrounding, homogeneous polarizable medium techniques are used with several dielectric constants. The main conclusion
is that when the active site model reaches a certain size, the solvation effects from the surroundings saturate. Similar results have
previously been obtained from systematic studies of other classes of enzymes, suggesting that they are of a quite general nature.

I. INTRODUCTION

The use of quantum chemical models of enzyme active sites
has proven very powerful in the study of both enzyme reaction
mechanisms and various active site properties.1 The philosophy
of the approach, commonly called the cluster approach, is to cut
out a rather limited part of the enzyme active site, a cluster, and
use accurate electronic structure methods to calculate geome-
tries, energies, and other properties. The electronic structure
method of choice has been density functional theory (DFT), in
particular, the B3LYP hybrid functional.2

In the cluster approach, two procedures are commonly used to
compensate for the fact that a large part of the enzyme is not
treated explicitly. To account for possible steric effects exerted by
the enzyme surroundings on the cluster, a number of centers,
typically where truncations are made, are kept fixed in the
geometry optimizations. This procedure is necessary to prevent
unrealistic movements of the various groups of the active site.

To account for electrostatic polarization effects, dielectric
cavity techniques are usually used. The surrounding enzyme is
assumed to be a homogeneous polarizable continuum with some
dielectric constant ε. The choice of this dielectric constant is
somewhat arbitrary and has been a matter of discussion, but
usually ε = 4 is used.

The combination of these two approximations has been
shown to be a quite robust protocol that indeed is sufficient to
elucidate reaction mechanisms, distinguish between different
mechanistic scenarios, and analyze the roles of various parts in
the active site. Ten years ago, typical cluster models consisted of
ca. 50 atoms, while today 150 atom models are quite common.
Consequently, the scope of applications has been broadened
considerably. Through the large number of applications in recent
years, it has been demonstrated that the approach has a wide
applicability, as essentially all classes of enzymes have been
modeled quite successfully.3

It is easy to realize that as the size of the model grows, a
better description of the active site is achieved, and both the

coordinate-locking scheme and the implicit solvation model will
work better and better because the model will be more flexible
and more of the polarization effects will be already explicitly
included in the cluster model. The question has been how large a
model one needs to use before the effects saturate. Saturation of
solvation effects in this sense means that the addition of these
does not influence the energy profile of the reaction under
investigation; i.e., the relative energies are the same with and
without the inclusion of implicit solvation. At that point, the exact
choice of the dielectric constant becomes an irrelevant issue.

Recently, by performing systematic studies in which the size of
the cluster model was gradually increased, we have shown that
saturation of the solvation effect happens surprisingly fast, at a
model size of less than 200 atoms. This has been demonstrated
for three cases that potentially could be problematic for the
cluster approach, namely, (a) the formation of an ion pair in the
reaction of 4-oxalocrotonate tautomerase (4-OT),4 (b) the
release of a chloride ion in the reaction of haloalcohol dehalo-
genase (HheC),5 and (c) the transfer of a methyl cation in the
reaction of histone lysine methyltransferase (HKMT).6

In the present paper, we further examine the scope of this
cluster methodology by studying another important class of
enzymes, namely, decarboxylases. Here, from being an anionic
moiety (R�COOh), CO2 is released as a neutral gas, which could
provide additional challenges where the cluster approach needs
to be evaluated.

Scheme 1. Reaction Catalyzed by AspDC
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A number of enzymes catalyzing carboxylation/decarboxyla-
tion reactions have previously been studied both with the cluster
approach7 and with QM/MM methodologies.8 The specific
enzyme considered in the present work is L-aspartate R-decar-
boxylase (AspDC), which catalyzes the decarboxylation of L-
aspartate to β-alanine (Scheme 1).9 This reaction is essential for
the biosynthesis of pantothenate (vitamin B5) and coenzyme A
in bacteria.10

AspDC belongs to the class of decarboxylases that utilize a
covalently bound pyruvoyl group that is generated through an
autoproteolytic cleavage reaction.9c,11 The suggested reaction
mechanism for AspDC is given in Scheme 2.12 It involves an
initial iminium formation step, followed by a C�Cbond cleavage
step which releases the carbon dioxide. Protonation and hydro-
lysis steps complete the reaction to give the final product and
regenerate the pyruvoyl cofactor.

Because we are, in the present paper, only interested in the
methodological issues, we will assume that this mechanism is
correct and will focus only on the key C�C cleavage step. Several
models of the AspDC active site are systematically devised to
investigate how the reaction energetics and solvation effects
change with the model size.

II. COMPUTATIONAL DETAILS

All calculations presented herein were performed using the
density functional theory method B3LYP as implemented in
Gaussian 03.13 For geometry optimizations, the 6-31G(d,p) basis
set was used. In order to obtain more accurate energies, single-
point calculations based on the optimized geometries were done
using the 6-311þG(2d,2p) basis set. Solvation effects were
calculated at the same level as the geometry optimizations by

Scheme 2. Suggested Reaction Mechanism of AspDCa

aThe frame indicates the C�C cleavage step studied in the present work.

Figure 1. Optimized structures of the reactant, transition state, and product for model 0. Distances in Ångstroms. The carboxylate —OCO angle is
indicated.



1496 dx.doi.org/10.1021/ct200031t |J. Chem. Theory Comput. 2011, 7, 1494–1501

Journal of Chemical Theory and Computation ARTICLE

performing single-point calculations on the optimized structures
using the conductor-like polarizable continuum model method
(CPCM).14 Five different dielectric constants were used, namely
ε = 2, 4, 8, 16, and 80. For models 0, I, II, and III (see below),
zero-point energy (ZPE) corrections were calculated at the same
level as geometry optimizations. For models IV.1, IV.2, and V,
the size of the models prohibited the frequency calculations.
Thus, for these models, the ZPE correction was taken from
model III.

As discussed in the Introduction, a number of atoms are
kept fixed during the geometry optimizations to prevent
unrealistic movements of the various groups in the models.
This technique leads to a few small imaginary frequencies, in
this case all below 40i cm�1. These frequencies contribute
insignificantly to the ZPE and can be ignored. However, they
make the calculation of harmonic entropy effects inaccurate.
Therefore, the entropy effects were not considered for models
I�V, see discussion below.

It is important to point out here that when working with large
models of enzyme active sites, like the ones used in the present
work, multiple-minima problems can appear, which can lead to
unreliable relative energies. We have, by careful visual inspection,
confirmed that the parts that do not directly participate in the
reaction are in the same local minima throughout the reaction.

The above-mentioned coordinate locking scheme facilitates this
procedure to some extent.

III. RESULTS AND DISCUSSION

III.A. Pyruvoyl-Catalyzed Decarboxylation. We first con-
sider the decarboxylation step of only the substrate covalently
bound to the pyruvoyl, i.e., without any surrounding active site
residues. In this model, which we call model 0, the cofactor is
truncated at the R-carbon of Ile26 and the β-carboxylic group of
the substrate aspartate is in the protonated form. In the active
site, this group forms salt bridges to the Arg540 residue, and when
the latter is not explicitly included in the model, it is a better
choice to protonate the group rather than using the anion model
to avoid charge delocalization problems in the calculations.15

The model consists of 27 atoms and has a total charge of 0. The
optimized structures of the reactant, transition state (TS), and
product species are shown in Figure 1.
In the catalytic cycle of AspDC, the formation of the Schiff

base (iminium intermediate) leads to weakening of the C�C
bond and hence the facilitation of the decarboxylation step. In the
zwitterionic reactant structure of model 0, we see that the
positive charge at NH is stabilized by two hydrogen bonds to
the neighboring β-carboxylic acid group and the carbonyl oxy-
gen. It is interesting to note how the scissile C�C bond is
weakened, having a bond length of 1.75 Å, considerably longer
than a normal C�C single bond length. Indeed, the barrier for
decarboxylation is calculated to be very low for this model. In the
gas phase, the step is practically barrierless (þ0.1 kcal/mol) with
an exothermicity of 9.5 kcal/mol. The addition of solvation
effects, however, increases both the barrier and the reaction
energy, because the zwitterionic reactant structure is stabilized
more than the TS and product structures. The barrier increases
to, e.g., 5.2 kcal/mol, and the reaction energy becomes only �
1.0 kcal/mol when ε = 80 is used. All energies are reported in
Table 1.
Before presenting the results concerning the active site

models, one additional issue needs to be discussed here, namely,
the entropic effects. The decarboxylation step results in the
decomposition of the reactant molecule into two, an imine and a
carbon dioxide. The entropy effects could potentially contribute
in a non-negligible way to the energetics. We have calculated the
harmonic entropy effects for model 0, and it turns out that at
room temperature (298.15 K), the entropy effects increase the

Table 1. Summary of the Calculated Energetics (kcal/mol)
for the Decarboxylation Step Using VariousModels of AspDC

ε = 1 ε = 2 ε = 4 ε = 8 ε = 16 ε = 80

model 0 (27 atoms) ΔE‡ 0.1 2.3 3.7 4.5 4.9 5.2

ΔE �9.5 �5.7 �3.5 �2.2 �1.5 �1.0

model I (76 atoms) ΔE‡ 8.3 12.0 14.2 15.5 16.1 16.7

ΔE þ0.3 þ2.9 þ4.5 þ5.5 þ6.0 þ6.5

model II (95 atoms) ΔE‡ 8.8 11.9 13.6 14.7 15.3 15.7

ΔE �0.6 þ2.6 þ4.5 þ5.6 þ6.2 þ6.7

model III (135 atoms) ΔE‡ 9.0 11.4 12.9 13.5 13.9 14.2

ΔE þ0.8 þ2.5 þ3.5 þ4.1 þ4.3 þ4.6

model IV.1 (166 atoms) ΔE‡ 13.9 13.1 12.7 12.5 12.4 12.3

ΔE þ9.9 þ8.7 þ8.0 þ7.6 þ7.4 þ7.2

model IV.2 (189 atoms) ΔE‡ 13.0 15.6 17.0 17.8 18.2 18.5

ΔE þ4.2 þ7.7 þ9.8 þ9.9 þ10.5 þ10.9

model V (220 atoms) ΔE‡ 13.5 13.5 13.4 13.3 13.3 13.3

ΔE þ9.0 þ9.6 þ9.9 þ10.0 þ10.0 þ10.0

Figure 2. Optimized stationary points for model I. Centers indicated by asterisks are kept fixed during the geometry optimizations.
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barrier by less than 0.1 kcal/mol. This is a very important result that
justifies the omission of entropy effects for the barriers in the
active site models. It is also consistent with results from QM/MM
free energy calculations on the histone lysine methyltransferase
enzyme, where it was found that the potential energy and the
free energy barriers differed by only 1 kcal/mol.16 Very similar
conclusions were reached by Thiel and co-workers in their studies
on p-hydroxybenzoate hydroxylase, 50-fluoro-50-deoxyadenosine
synthase, P450cam, and chorismate mutase.17

For the products complex, on the other hand, the entropy
effects become larger of course, since CO2 has completely
dissociated from the molecule. This leads to a lowering of the
reaction energy by 4.2 kcal/mol.
III.B. Active Site Model I. In the following sections,

we discuss how the inclusion of active site surrounding groups
affects the energetics of this reaction. Six models, gradually
increased from 76 to 220 atoms, were constructed on the
basis of the high-resolution crystal structure of AspDC

Figure 3. Optimized structures of the reactant, transition state, and product for model II (left) and model III (right). In this and the following figures,
some hydrogen atoms are removed for clarity.
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from H. pylori in complex with aspartate amide (PDB code:
1UHE).18

The first obvious places to add groups to model 0 are the two
carboxylate groups of the substrate. To the R-carboxylate group
that is going to be cleaved, two hydrogen bond donors were
added, Tyr58 (modeled by a methylphenol) and Lys90 (modeled
by propylamine). In addition, the carboxylic moiety of the Gly24
(generated in the autocleavage step), which forms a hydrogen

bond to Lys90, is also included (modeled by an acetate
molecule), as it will affect the hydrogen-bonding properties
of the lysine. The β-carboxylate, which in model 0 was in the
protonated from, is now in the ionized form but forming
salt bridges to the cationic Arg540 residue (modeled by a
methyl-guanidinium). The resulting model, called model I and
shown in Figure 2, consists thus of 76 atoms and has a total
charge of 0.

Figure 4. Optimized structures for models IV.1 and IV.2.
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Without solvation, the calculated barrier now is 8.3 kcal/mol
and the reaction energy isþ0.3 kcal/mol (Table 1). These values
are 8�10 kcal/mol higher than the corresponding ones for
model 0. This is mainly because the added hydrogen bonds
provided by Lys90 and Tyr58 are stronger to the anionic moiety
of the reactant as compared to the TS and neutral carbon dioxide
in the product, see Figure 2.
Upon inclusion of solvation effects, both the barrier and

the reaction energy increase further (see Table 1). With ε = 4

and ε = 80, for example, the barrier increases to 14.2 and 16.7
kcal/mol, respectively, and the reaction energy increases toþ4.5
and þ6.5 kcal/mol, respectively. The solvation effects are quite
large, and additional groups are clearly needed.
III.C. Active Site Model II. Next, on the basis of model I, the

peptide backbone chain between Val70, Asn71, and Gly72 was
added (Figure 3). These groups form hydrogen bonds to the
iminium NH and the amide carbonyl. With this addition, the
active site model (model II) now consists of 95 atoms.
As seen from Figure 3, the critical geometric parameters in the

transition state are quite similar to those obtained from model I,
with a C�C distance of 2.30 Å and an —OCO angle of 155.1�.
The calculated barrier for model II is 8.8 kcal/mol, and the
reaction energy is �0.6 kcal/mol. Both of these values are also
quite close to the ones calculated for model I. The solvation
effects are still large. For example, both the barrier and the
reaction energy increase by ca. 5 and 7 kcal/mol using ε = 4 and
ε = 80, respectively.
We see thus that although two explicit hydrogen bonds to the

substrate are added to the model, the energies and solvation
effects are not changed significantly compared to model I,
indicating that more groups need to be included in the active
site model.
III.D. Active Site Model III. On the basis of model II, a larger

model consisting of 135 atoms was designed, calledmodel III, see
Figure 3. In this model, the Gly24 residue is extended to include
the peptide bond to Ile23 to give the group more flexibility.
Tyr22 and a crystallographically observed water molecule are
included to stabilize the negative charge of Gly24 carboxylate.
Furthermore, the Val59-Tyr58 peptide and the side chain of
Asn71, which form two hydrogen bonds to the Ile26-pyruvoyl
amide group, are also included.
Because of the newly added groups around the carboxylic

moiety of Gly24, this group is now in the deprotonated anionic
form (R�COOh), and the Lys90 side chain is in the protonated
cationic form (R�NH3

þ) in the reactant complex of model III.
The hydrogen bond (1.76 Å) between Lys90 and the substrate
carboxylate group becomes stronger compared to that in model
II (2.25 Å). It is interesting to note that in the transition state, the
key C�C distance is 2.29 Å and the —OCO is 155.2�, which are
very close to those in model II. The barrier is 9.0 kcal/mol, and
the product lies at þ0.8 kcal/mol, also quite close to the values
found for model II. The solvation effects are now somewhat
smaller. For instance, the barrier increases to 12.9 and 14.2 kcal/
mol, and the reaction energy increases to þ3.5 and þ4.6 kcal/
mol using ε = 4 and ε = 80, respectively.
Although the solvation effects are now smaller than before,

they are still of considerable size, and clearly more groups need to
be added before saturation is reached.
III.E. Active Site Model IV. Model III was increased in two

different ways, and the resulting models are called models IV.1
and IV.2 and consist of 166 and 189 atoms, respectively. They
differ in where the addition is made. In model IV.1, the region
around the substrate β-carboxylate and the iminium part of the
substrate is extended by Thr57 and the Gly72-Ala73-Ala74
peptide chain, while in model IV.2, the region around the
R-carboxylate is extended by the Ile60, Ile85, and Leu87 residues
(see Figure 4).
The two extensions lead to significant and different changes in

both the energies and the solvation effects as compared tomodel III.
Inmodel IV.1, the barrier is calculated to be 13.9 kcal/mol, and

the reaction energy is þ9.9 kcal/mol. In contrast to all previous

Figure 5. Optimized structures for model V.
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models, the solvation now causes a lowering of both the barrier
and the reaction energy. The solvation effects are also getting
smaller compared to the previous models (less than 2 kcal/mol
for the barrier and less than 3 kcal/mol for the reaction energy),
Model IV.2, on the other hand, has a barrier of 13.0 kcal/mol

and a reaction energy of 4.2 kcal/mol, both of which are raised by
up to 5�7 kcal/mol upon the addition of solvation.
These different results for models IV.1 and IV.2 show thus that

the newly added groups influence the model energies in different
ways. The next obvious model is to combine these two.
III.F. Active Site Model V. In model V, all of the groups added

inmodels IV.1 and IV.2 are combined into a 220 atommodel, the
largest one used in this study (Figure 5).
The barrier now is 13.5 kcal/mol, and the reaction energy is

þ9.0 kcal/mol. As seen from Table 1, the addition of solvation
effects, even with the largest dielectric constant (ε = 80), leads to
a change of the vanishingly small 0.2 kcal/mol for the barrier and
1.0 kcal/mol for the reaction energy. Most of the polarization
effects on the reactive parts are thus already explicitly included in
the cluster model, and the solvation effects can be considered as
saturated at this size.
It is also very interesting to note that the optimized

transition state for this model has a very similar local geometry
to those of the other models discussed above. For example, the
dissociating C�C bond distance is 2.30 Å and the —OCO
angle is 154.7�.

IV. CONCLUSIONS

In the present study, we have investigated how the quantum
chemical cluster approach works for the case of enzymatic
decarboxylation reactions, as exemplified by aspartate decarbox-
ylase (AspDC). The size of the active site model is systematically
increased, and the reaction barrier and energy are evaluated using
several dielectric constants for the homogeneous surrounding.

The calculations show that once the model reaches a certain
size (in this case 220 atoms) the solvation effects saturate; i.e., the
relative energies are essentially the same whether the homo-
geneous surrounding is included or not (see Table 1). We have
observed this quick convergence for several examples of different
classes of enzymes, namely, 4-oxalocrotonate tautomerase,4 in
which an ion pair is formed during the reaction; haloalcohol
dehalogenase HheC,5 in which a chloride ion is released; and
histone lysine methyltransferase,6 in which a methyl cation is
transferred. Taken together, these results suggest thus that this is
a general feature of the cluster approach.

Of course, as pointed out by Ryde and co-workers,19 conver-
gence of the solvation effects is not equivalent to convergence of
the energies (barriers and reaction energies), although they
might be related. In this context, it is particularly interesting to
note that the energies of all active site models (I�V) after
application of some solvation corrections fall within a relatively
narrow range of about 5 kcal/mol. This shows that the results are
quite stable and are already using medium-sized models certainly
in a sufficiently accurate manner to investigate mechanistic
alternatives. Considering this, it is also unlikely that groups that
are further away will affect the relative energies in any sig-
nificant way.

Here, it should be remembered that geometry optimization of
the structures is an essential requirement of the cluster approach,
contributing to the quick convergence observed. By contrast,
the QM/MM methodology exhibits a quite slow convergence

behavior,19�21 which in part could be due to the fact that
geometries are not optimized.19,20
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ABSTRACT: The simulation of amyloid fibril formation is impossible if one takes into account all chemical details of the amino
acids and their detailed interactions with the solvent. We investigate the folding and aggregation of two model peptides using the
optimized potential for efficient structure prediction (OPEP) coarse-grained model and replica exchange molecular dynamics
(REMD) simulations coupled with either the Langevin or the Berendsen thermostat. For both the monomer of blocked penta-
alanine and the trimer of the 25�35 fragment of the Alzheimer’s amyloid β protein, we find little variations in the equilibrium
structures and heat capacity curves using the two thermostats. Despite this high similarity, we detect significant differences in the
populations of the dominant conformations at low temperatures, whereas the configurational distributions remain the same in
proximity of the melting temperature. Aβ25�35 trimers at 300 K have an averaged β-sheet content of 12% and are primarily
characterized by fully disordered peptides or a small curved two-stranded β-sheet stabilized by a disordered peptide. In addition,
OPEP molecular dynamics simulations of Aβ25�35 hexamers at 300 K with a small curved six-stranded antiparallel β-sheet do not
show any extension of the β-sheet content. These data support the idea that the mechanism of Aβ25�35 amyloid formation does not
result from a high fraction of extended β-sheet-rich trimers and hexamers.

1. INTRODUCTION

When an interacting particle is subject to Brownian motion in
a solvent, under the assumption that the radius of the particle is
significantly larger than the radius of the solvent constituents, its
motion can be modeled by the Langevin equation:1

m
d2 XBðtÞ
dt2

¼ � r!VðtÞ �mγ
d XBðtÞ
dt

þ RBðtÞ

ÆRiðtÞRjðt0Þæ ¼ δðt � t0Þδij6γkBT0 and Æ RBðtÞæ ¼ 0

ð1Þ

The action of the solvent at a temperature T0 is represented
implicitly through the action of a friction and a random force.
The friction force corresponds to the macroscopic decay in
momentum when a particle moves through a viscous fluid
colliding with the small fluid particles; the random force repre-
sents the microscopic shocks with the solvent that have the effect
of changing the particle trajectory. These shocks are disordered
and tend to “thermalize” the particle, meaning that at equilibri-
um, the velocity distribution is Gaussian, with zero mean and
variance σ2 = kBT0/m. The parameter controlling the impact of
viscosity on the dynamics is the friction constant γ, which can
also be interpreted as the collision frequency between the particle
and the solvent. Two limiting cases occur. When γ equals zero,
the particle follows a Newtonian dynamic and evolves in the
microcanonical ensemble. When γ tends to infinity, Newtonian
forces are negligible compared to the Langevin forces, and the
particle follows a purely diffusive Brownian dynamic. For all cases
in between, the system is in the canonical ensemble, at constant
temperature T0.

Although originally postulated to describe the Brownian
motion of a particle, this equation can be easily implemented
to act as a heat bath in molecular dynamics (MD) simulations.2

It can be shown that this formulation allows one to generate a
canonical distribution of states.3 In the context of molecular
dynamics, a Langevin thermal bath has the disadvantage that the
coupling of the system to the bath is not only global but also local
due to the random shocks. For large values of γ, the local shocks
between the particle and the solvent can become an important
disturbance to the system’s dynamics. Ideally one would want to
control the temperature through a global coupling only in order
to minimize the local disturbance. To overcome this limitation, a
new thermostat was introduced by Berendsen et al.4 The global
Langevin coupling is maintained, while an integration over fast
degrees of freedom smooths out local collisions. The modified
equation of motion is

m
d2 XBðtÞ
dt2

¼ � r!V �m
1
2τ

T0

T
� 1

� �
d XBðtÞ
dt

ð2Þ

where τ = 1/(2γ) and γ is the Langevin friction constant. In
practice one sets the Berendsen time constant τ = 1/(2γ) rather
than γ itself. Thermodynamics governed by a Berendsen ther-
mostat depart from the canonical distribution for finite and
nonzero values of τ. The statistical distribution followed by a
system obeying eq 2 has been rigorously determined only
recently.5 It reduces to the canonical distribution for τ = 0 and
to the microcanonical distribution for τ = þ¥.
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Several computational studies have already discussed the
effect of the Berendsen thermostat in MD and replica exchange
molecular dynamics (REMD) simulations. The systems studied
included a single butane molecule,6 bulk water alone or in the
presence of a penta-alanine,7 simulated by use of a fully atomistic
representation, and the 56-residue SH3 protein with tails of
various lengths, simulated by use of a single CR representation
and the native structure-based Go potential.8 These studies
indicate that the Berendsen thermostat produces a noncanonical
phase-space distribution, but the magnitude of the deviation is
system-dependent: small for bulk water and larger for a peptide
model using AMBER/TIP3P.7 UNRES MD simulations of two
model R-helical systems with the Berendsen and Langevin
thermostats showed also differences in the folding dynamics,
with the presence of explicit friction forces slowing down the
folding.9

Unless a worldwide network of computers10 or a specially built
supercomputer11 is used, atomic-level characterization of protein
folding and aggregation in explicit solvent is limited to short time
scales.12 To go beyond this limitation, one solution is to reduce
the number of degrees of freedon by resorting to simpler protein
representations. The implicit solvent optimized potential for
efficient structure prediction (OPEP) coarse-grained force field
has been recently used to predict the 3D structures of peptides in
their monomeric states via a greedy approach13 and the early
formed oligomers of various amyloid peptides by use of REMD
and the Berendsen thermostat.14,15

Our aim is to investigate the influence of the Langevin and
Berendsen thermostats on both folding and aggregation proper-
ties of peptides using the OPEP coarse-grained force field. To
this end, we performed long REMD simulations on the penta-
alanine peptide and the trimer of Alzheimer’s Aβ25�35 peptide.
REMD is one generalized ensemble method that goes beyond
conventional MD to accelerate convergence to equilibrium16,17

and allows one to extract thermodynamic information. The
penta-alanine model enables a comparison with the atomistic
simulations in explicit solvent carried out by Rosta et al.7 Aβ25�35,
due to its small size, is a convenient model system for studying
the formation of Aβ amyloids. It is known experimentally that
this molecule can readily form β-sheet aggregates that are highly
toxic to neurons.18 Simulations addressing its dimerization in
explicit water have been recently performed.19,20 In contrast to
other Aβ fragments such as Aβ16�22

21,22 or Aβ29�42
23,24, con-

sidered as toy models for computational studies of amyloid
formation, Aβ25�35 has been identified as a physiological proxy
with mutiple effects in neuronal intracellular components in-
cluding plasma membranes, mitochondria, and cytosol, and its
use has shown many of the same biochemical changes in animal
models as those detected in Alzheimer’s disease patients.25 To
enlarge the part of Aβ25�35 amyloid dynamics and stability, we
also carried out OPEP-MD simulations of hexamers built
from structured trimer conformations.

2. MATERIALS AND METHODS

2.1. General Setup. REMD simulations26 were performed
with the coarse-grained OPEP force field.27,28 In this model, the
backbone N, H, CR, C ,and O atoms are represented explicitly,
while the side chains of all amino acids (except for the proline’s
heavy atoms) are represented by a unique bead. The interaction
parameters include bond lengths, bond angles, improper tor-
sions, dihedral angles, van der Waals interactions, and two- and

four-body interactions for the backbone hydrogen bonds.28 By
removing numerous degrees of freedom, the OPEP force field
allows significant acceleration with realistic sampling of confor-
mational space.29

The Langevin thermostat was implemented in the OPEP-MD
program by scaling each velocity:

vij f e�γδtvij þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� e�γδtÞð1þ e�γδtÞ

q ffiffiffiffiffiffiffiffiffi
kBT0

mi

r
GðtÞ ð3Þ

where vij is the jth component of the velocity of particle i andmi is
its mass; γ is the Langevin collision frequency constant; δt is the
integration time step; kB is Boltzmann’s constant; T0 is the target
temperature; and G(t) is a random Gaussian number with zero
mean and unit variance. A typical value for γ is, for example, 50
ps�1, thought to reproduce best the dynamics in water,30 but
values as low as 0.15 ps�1 have been used for amyloids with an
implicit solvent model.31

Velocity rescaling for the Berendsen thermostat is29

vij f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� δt

τ

� �
1� T0

T

� �s
vij ð4Þ

where T is the instantaneous temperature and τ is the Berendsen
coupling constant. A typical value of τ suited to study aggregation
is τ = 0.5 ps (see ref 15), as it simultaneously allows for a quick
thermalization while not overconstraining the system.
2.2. Simulations. A summary of the setup details of all

simulations is given in Table 1. For each system, we describe
the method used (REMD or MD), the initial configuration, the
temperatures and thermostats used (Berendsen or Langevin and
the corresponding values of τ orγ), and the total simulation time.
The first system studied is the penta-alanine blocked by acetyl

and N-methyl groups. An exponential temperature distribution
of the replicas assured fast convergence. The temperature range
varying between 200 and 350 K spans across the folded and the
unfolded states: 200.0, 210.4, 221.4, 233, 245, 257.9, 271.4,
285.6, 300.5, 316.1, 332.6, and 350.0 K. For each thermostat,
two 300 ns REMD simulations were launched with 12 replicas,

Table 1. Summary of Simulations Performed

starting configa method temp (K) thermostat (τ or γ) time (ns)

Penta-alanine

E REMD 200�350 B (0.5 ps) 300 � 12

R REMD 200�350 B (1 ps) 300 � 12

R REMD 200�350 L (1 ps�1) 300 � 12

R REMD 200�350 L (0.5 ps�1) 300 � 12

Aβ25�35 Trimers

R REMD 250�500 B (0.5 ps) 1000 � 24

R REMD 250�500 L (1 ps�1) 1000 � 24

P MD 300 B (0.5 ps) 100

P MD 300 L (1 ps�1) 100

Aβ25�35 Hexamers

AP1 MD 300 B (0.5 ps) 100

AP1 MD 300 L (1 ps�1) 100

AP2 MD 300 B (0.5 ps) 100

AP2 MD 300 L (1 ps�1) 100
aThe starting conformation is either extended (E), random (R), parallel
(P), or antiparallel (AP).
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with the following coupling constants: Berendsen τ, 0.5 ps and
1 ps; Langevinγ, 1 ps�1 and 0.5 ps�1. This choice corresponds to
two series of simulations with reciprocal time constants with
respect to the equality τ = 1/(2γ). The initial configuration was
an extended configuration.
The second system is a trimer of the hydrophilic�hydropho-

bic Aβ25�35 peptide, of sequence acetyl-Gly-Ser-Asn-Lys-Gly-
Ala-Ile-Ile-Gly-Leu-Met-NH2. Since it is a homotrimer, five
different topologies are expected in principle:
• antiparallel (AP): the three chains form a β-sheet where
neighboring peptides are oriented opposite to each other

• mixed (Mix): the three chains form a β-sheet where two
neighboring peptides are oriented parallel, while the third
one is oriented in the opposite direction

• parallel (P): the three chains form a β-sheet with all peptides
oriented in the same direction

• partially folded (2 þ 1): two peptides form a β-sheet while
the third one is random coil

• coil: all three peptides are random coil
Two REMD runs were performed, one with Berendsen τ = 0.5

ps and the other with Langevin γ = 1 ps�1. For each run, 24
replicas were used with the same set of temperatures: 250,
252.69, 254.48, 258.66, 269.33, 285.64, 290.74, 294.25, 296.55,
297.99, 298.96, 299.83, 300.96, 302.81 306.45, 311.48, 317.74,
327.46, 345.32, 370.95, 407.15, 458.41, 488.43, and 500.00 K.

These temperatures were determined from the configurations
obtained by a preliminary REMD simulation of 500 ns with 18
replicas starting from fully disordered peptides separated from
each others by 15 Å via the procedure presented in ref 32. This
choice corresponds to a replica flux-optimized temperature
distribution for our system, as described in refs 17, 33, and 34.
It is of interest to note that equilibration was not achieved within
500 ns in the preliminary REMD.
Each REMD simulation was performed for 1 μs per replica,

startingwith conformations belonging to the antiparallel,mixed, 2þ
1, and coil basins and obtained through the preliminary simulation.
The integration time step was 1.5 fs, a sphere of 80 Å with reflecting
boundary conditions was used, and energy and structure snapshots
were taken every 1.5 ps. Replica exchanges were attempted every
6 ps, a time interval highly used and tested.26,35 Two MD simula-
tions of 100 ns at 300 K were also carried out on the trimer starting
from a fully extended parallel β-sheet.
The third system is a hexamer of Aβ25�35 consisting of a

single-layer antiparallel small β-sheet configuration. Four MD
runs of 100 ns at 300 K were performed, two with Berendsen τ =
0.5 ps (B1 and B2) and two with Langevin γ = 1 ps

�1 (L1 and L2).
The runs Bi and Li use the same structure, and the rmsd deviation
between the two starting conformations is 10 Å.
2.3. 2D and 3D Structure Analysis. For each system, the

secondary structure of all conformations was determined. For the

Figure 1. Plot of the heat capacity of the four penta-alanine simulations: (a) full 10�300 ns time interval; (b) 10�300, 10�150, and 150�300 ns
intervals for each thermostat and coupling constant.

Figure 2. Populations of the folded state for four different penta-alanine simulations. The capped penta-alanine was considered to be folded if it had at
least two i, iþ 3 or i, iþ 4 hydrogen bonds. (a) Full 10�300 ns time interval; (b) 10�300, 10�150, and 150�300 ns intervals for each thermostat and
coupling constant.
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Aβ25�35 trimer, prior to cluster analysis based on CR rmsd, we
determined the topology of each configuration by using a
combination of three metrics that includes vector cosines
(where we compute the angles between the vectors representing
the direction of each peptide), number of hydrogen bonds
formed, and distance between the peptides. We also analyzed
the transition times between the Mix and AP configurations and
defined that a conformational change from Mix to AP (or vice
versa) has occurred if, before and after the transition, the trimer
explores both topologies for at least 100 ps. For the Aβ25�35

hexamer, we followed the CR rmsd as a function of time using the
core β-sheet region.
2.4. Thermodynamic Quantities. At the end of an REMD

simulation, thermodynamic quantities can be extracted. Even
though in principle these could be obtained from their definitions
with respect to the independent variables of the system, in
practice this direct evaluation leads, sometimes, to very large
error bars in the estimates and alternative derivations turn out to
bemore convenient. This is the case for the specific heatCV. With
both thermostats, we could obtainCV by computing the potential
energy derivative with respect to the temperature, but different
strategies give better results. For the Langevin thermostat,
where the system obeys the canonical distribution, the heat

capacity can be calculated from the potential energy as

CV ðTÞ ¼ ÆðE� ÆEæÞ2æ
kBT2

ð5Þ

For the weak-coupling Berendsen thermostat, where the dis-
tribution is noncanonical, the appropriate formula has been
shown to be5

CV ðTÞ ¼ kBÆðδΦÞ2æ
ðkBTÞ2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ÆðδΦÞ2æ ÆðδKÞ2æ

q
2=ð3NÞ

ð6Þ

where Æ(δΦ)2æ and Æ(δK)2æ represent the variance of potential
and kinetic energy, respectively, and broken brackets denote a
time average.
Thermodynamic quantities are meaningful only if computed

after the full convergence of the system has been established with
respect to the particular quantity in question. Different quantities
have different convergence times. We used a block analysis
scheme to assess convergence over a given time frame. The
quantity is evaluated once over the entire time interval, a second
time over the first half of the interval, and a third time over the
second half. The three curves are then superposed and the
convergence is reached when the curves coincide within a
preset error.
In practice, to extract thermodynamical quantities, histogram-

based methods like WHAM are typically used.36 We preferred
implementing our own script based on the recently introduced
MBAR method,37 which has the conceptual advantage of produ-
cing curves accompanied by error bars and the technical advan-
tage of reducing the computing time by avoiding some of the
slow histogram calculations.

3. RESULTS

3.1. Penta-alanine. The first 10 ns of each REMD simulation
was discarded, and the remaining 290 ns was analyzed. The
acceptance rate was always higher than 30% in all four simula-
tions, reaching its minimal values for the lowest and highest
replicas.
When the heat capacity curves obtained from the two thermo-

stats with reciprocal values of τ and γ are compared (Figure 1),
the position of the peak (Tm) changes from 260 K for Langevin
to 273 K for Berendsen. Compared to the Berendsen thermostat,

Figure 3. Block analysis of the Aβ25�35 trimer heat capacity for each thermostat.

Figure 4. Heat capacities of the Aβ25�35 trimer with Langevin and
Berendsen thermostats.
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the Langevin thermostat shifts the melting temperature 13 K
toward lower temperature.
If the coupling constant is modified, the position ofTm and the

full width at half-maximum of the peak (fwhm) remain un-
changed in the Langevin simulations, whereas in Berendsen
simulations Tm remains constant while fwhm increases by 20%
( 5%. This variation in fwhm is larger than the error bars ob-
tained from block analysis.
A recent all-atom REMD simulation on the same penta-

alanine system in explicit solvent reported that, for a weak-
coupling Berendsen thermostat, the folded state is overpopulated
by about 10% at low temperatures and underpopulated at high
temperatures.7 To verify this hypothesis, we compared the
population distribution as a function of temperature, obtained
with both Langevin and Berendsen thermostats. In our simula-
tions we define the folded state by a criterion in terms of the
hydrogen-bond (H-bond) network. We considered a H-bond to
be formed if the distance between donor and acceptor was
smaller than 3 Å and the donor�H�acceptor angle was less
than 60�. In all simulations, we found that H-bonds were
established mainly between residues i and i þ 4 (R-helix) and
to a lesser extent between i and i þ 3 (310-helix). We also
observed a very small amount of i þ 5 contacts (π-helix). We
thus considered the peptide to be folded if it had two or more
hydrogen bonds between residues three or four amino acids
apart. The resulting folded populations are shown in Figure 2.
When we focus on the temperature range 290�340 K, our

simulations lead to a small shift in the folded populations varying

between 5% and 1% between the two thermostats, with an
increased population for the Berendsen thermostat. At lower
temperatures, the difference in the folded population slightly
increases but never exceeds 10%. This overpopulation of the
folded (helical) state at low temperatures with the weak Berendsen
coupling constant is fully consistent with what was observed by
Rosta et al.7 using all-atom REMD simulations. In contrast to
Rosta’s results at 350 K, where the fraction of folded state is
lowered by about 10% for Berendsen compared to Langevin but
remains around 0.6 at 350 K, both thermostats with OPEP give a
negligible population of folded state at 350 K.
3.2. Aβ25�35 Trimer. Two REMD simulations were per-

formed on the Aβ25�35 trimer, with reciprocal Langevin (γ = 1
ps�1) and Berendsen (τ = 0.5 ps) thermostats starting with 24
conformations from different energy basins. From a block
analysis of the potential energies and CV values, the first 100 ns
were discarded for each replica. Figure 3 shows the convergence
of each simulation by comparing their heat capacity profiles over
two time intervals, 100�550 and 550�1000 ns. The conforma-
tional properties are therefore based on 21.6 μs for each the-
rmostat.
In Figures 4 and 5, we show the heat capacity and the percentages

of β-sheet and random coil as determined by the STRIDE
program38 as a function of temperature. Overall, the characteristic
transitions are shifted by approximately 5 K between the two
thermostats, as assessed by the peak of heat capacity (297 K for
Langevin vs 291 K for Berendsen) and the inflection point of β-
sheet percentage (296 K for Langevin and 292 K for Berendsen).
Randomcoil profiles also superposewell with amaximumdifference
of 1% at low temperatures. We note, however, that the excess heat
capacity reaches slightly lower values in Berendsen simulation than
in Langevin simulation at low (below 260 K) and high (>460 K)
temperatures.
Of the five possible topologies of the Aβ25�35 trimer, all except

the parallel (P) three-stranded β-sheet have been detected in
each one of the REMD simulations. It should be noted that two
MD simulations starting from the fully parallel geometry evolve
toward the 2 þ 1 topology within 100 ns. Table 2 reports the
structural and energetic content of the REMD-generated topol-
ogies at the lowest temperature (250 K). As can be seen, the
antiparallel conformation (AP) is the most populated, followed
by the mixed (Mix) and 2 þ 1 topologies in both simulations.
Looking at the three populated AP, Mix, and 2 þ 1 topologies
representing 99.99%of the conformations, we find that the averaged

Figure 5. (a) β-Sheet and (b) random coil percentages in the two REMD simulations of Aβ25�35 trimer.

Table 2. Structural and Energetic Contents of the Two
Aβ25�35 Trimer Simulations at the Lowest Temperaturea

Berendsen Langevin

class % energy (kcal/mol) % energy (kcal/mol)

AP 71.6 �134.1 ( 6.3 56.3 �133.8( 8.4

Mix 24.2 �130.6 ( 6.9 37.7 �131.4( 8.9

P 0.0 0.0

2 þ 1 4.3 �119.9( 6.7 5.9 �118.7 ( 8.9

coil 0.0 0.0
aObtained by classifying every tenth frame of the converged period of
each simulation, totalling 60 000 structures. The population of coil
conformations is too small to get accurate statistics at this temperature.
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potential energies for both thermostats are very similar. For AP
topology, we find �133.8 kcal/mol for Langevin versus �134.1
kcal/mol for Berendsen, and for 2 þ 1 topology, we find �118.7
kcal/mol for Langevin versus �119.9 kcal/mol for Berendsen.
However, the Berendsen simulation displays a narrower energy
distribution than the Langevin simulation for each topology, with a
difference in the root-mean-square fluctuation of the potential
energy amounting to 2.0 kcal/mol.
The most populated clusters of each simulation at the lowest

temperature are represented in Figure 6. Structural differences
between the configurations sampled by the thermostats are very
subtle, as reported by the cross rms deviations between the
centers of the clusters. For instance, the mixed topologies or the
antiparallel topologies in the two simulations deviate by less than
1 Å. Similar rms deviations are found at higher temperatures
(data not shown).
We analyzed our trajectories in search of conformational

events from the antiparallel to mixed topologies or vice versa.
These events always involved a transient coil or partially folded
(2 þ 1) topology. Looking at each replica below the melting
temperatures, we found the following statistics. For the Langevin
simulation, we counted four events fromMix to AP, with an averaged

τMixfAP of 268 ns, and five events from AP toMix, with an averaged
τAPfMix of 111 ns. For the Berendsen simulation we observed the
same number of transitions as in Langevin, τMixfAP = 199 ns and
τAPfMix = 89 ns. The two simulations thus behave very similarly. It
should be noted that the interconversion betweenMix and AP three-
stranded β-sheets is slow despite the use of REMD and having
optimized the replica temperatures distribution to ensure adequate
exchange rates. This suggests the existence of significant potential and
free energy barriers, as found also in other systems such as dimers of
the Aβ16�22

21and GNNQQNY peptides.40

A final comparison between the thermostats is reported in
Figure 7, which compares the percentage of topological content
generated by each simulation as a function of temperature. Although
the distribution of each topology looks very similar for both
thermostats, there is one striking difference. At low temperatures
(<269 K), while the difference in the populations of the 2 þ 1
topology is small (<1%), there aremore antiparallel structures in the
Berendsen simulation than in the Langevin simulation (see also
Table 2). For instance, at 259K (replica 4), 63%of the structures are
antiparallel for Langevin and 46% for Berendsen. The reverse is true
for the mixed state, where we observe a population of 26% for
Berendsen against 41% for Langevin.
Around the melting temperatures, that is, between 280 and 340

K, the populations of the most ordered AP and mixed topologies

Figure 7. Topological content percentage analyzed over the converged
part of each Aβ trimer simulation (60 000 structures): (a) Berendsen
and (b) Langevin simulations.

Figure 6. Main structures encountered in the REMD simulations of
Aβ25�35 trimer at the lowest temperature. (a) Cluster analysis (images
were generated by PyMOL).39 B AP, first cluster of the Berendsen
simulation (65% population); L AP, first cluster of the Langevin
simulation (57%); B Mix, second cluster of the Berendsen simulation
(16%); LMix, second cluster of the Langevin simulation (16%); L 2þ 1,
an example of a partially unfolded 2 þ 1 topology (fifth cluster of
Langevin simulation, 1% population). White, hydrophobic residues;
green, hydrophilic residues; blue, polar residues; yellow, H-bonds.
Numbers indicated are root-mean-square deviations (rmsds) in ang-
stroms: numbers in green, rmsd on the whole backbone; numbers in
blue, rmsds on the structured part only (amino acids 26�30). (b, c)
Three different view angles of the (b) antiparallel and (c) mixed
structures.
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vary little between the two thermostats. For instance, at 291 K
(replica 9), the AP populations are 5.9% in one case and 6.2% in the
other. The peak of the 2þ 1 topology is shifted 3 K toward higher
temperatures for Langevin than Berendsen, and its height is the
same in both simulations. However, its distibution is larger, with a
full width at half-maximum of 36.4 K for Langevin versus 31.3 K for
Berendsen. Similarly, the coil curve is shifted 3 K to the right for the
Langevin simulation compared to Berendsen.
3.3. Aβ25�35 Hexamer. It is instructive to enlarge the part of

the amyloid dynamics and stability by examining oligomers
higher than the trimer. While changes in electrical fields asso-
ciated with membranes and the presence of metals can play a role
in Alzheimer’s disease and are studied by standard or
Car�Parrinello-type MD simulations,41,42 we limit ourselves to
mainly Aβ oligomers in aqueous solution.
Ma and Nussinov43 studied the stability of Aβ25�35 octamers

consisting of two β-sheets using short (5 ns) all-atom MD
simulations at 330 K. Recent all-atom MD simulations by Shea
and co-workers19 showed that a V-shaped protofibril structure
consisting of six Aβ25�35 peptides was stable at 310 K for 55 ns.
R€ohrig et al.44 studied the stability of oligomers of Aβ16�22 from
the dimer to the 32-mer. In all-atomMD simulations of∼30 ns at
300 and 348 K, a single-layer β-sheet of eight peptides was not

stable in contrast to a two-layered octamer β-sheet, suggesting
that the minimum nucleus size is on the order of 8�16 Aβ16�22

peptides.
It is well-established, however, that all-atom 100-ns MD simula-

tions, while allowing one to study the stability of preformed
oligomers, do not sample equilibrium structures, and one must
resort to enhanced conformational technique and/or simplified
protein�water representations. All-atom REMD simulations in
explicit solvent showed that seven β2 m(83�89) peptides are in
equilibrium between numerous topologies.45 From different coarse-
grained models, simulations pointed to the complexity of the free
energy landscape of Aβ16�22 6-mers and 7-mers.46,47 Similarly,
Masman et al.48 found that pentamers of Aβ1�42 with fibril
geometries remain stable by all-atom MD for 100 ns at 310 K,
while Urbanc et al.49 found disordered pentamers for the same
system using very long discrete MD simulations.
Here, we constructed a hexamer of Aβ25�35 consisting of a single-

layer antiparallel β-sheet configuration based on the antiparallel
structure we found for the trimer, that is, with a β-sheet core
spanning amino acids 26�30, and performed four MD runs of 100
ns at 300 K. Our goal is not to explore the full configurational space
but rather to determine the differences between Langevin and
Berendsen OPEP-MD simulations on a reasonable time scale. As
can observed in Figure 8, the L1 and B1 runs lead to 5.2( 1.8 and
5.3 ( 0.8 Å rmsd, respectively, on the entire trajectory, while the
L2 and B2 runs lead to 7.5( 1.2 and 6.7( 0.9 Å rmsd. This suggests
(i) the same plasticity of the oligomers for both thermostats,
characterized by the detachment of one or two external peptides
from the β-sheet core, and (ii) the heterogeneity of the energy
landscape, characterized by multiple isoenergetic conformations in
dynamic equilibrium, consistent with many computational studies
on other sequences.31,46,47,49 As reported for the REMD simulations
of the Aβ trimer, we observe similar averaged potential energies for
the hexamer with both thermostats (�301( 15 kcal/mol for B1þ
B2 vs �301 ( 20 kcal/mol for L1 þ L2) and a narrower energy
distribution for the Berendsen simulation.

4. CONCLUSIONS

In this study, we have determined the impact of Langevin and
Berendsen thermostats on folding properties of penta-alanine
and aggregation properties of the trimer of the 25�35 fragment of
the Alzheimer’s amyloid β protein with the OPEP coarse-grained
model. Using long REMD simulations, we find small variations in
the heat capacity curves for the two thermostats. There is, however, a
small distortion in thermodynamic descriptions of the two systems
with the Berendsen thermostat at low temperatures. While the
structural contents of the folded state for the penta-alanine peptides
and of the topologies for the Aβ25�35 trimer remain the same (rms
deviations of less than 1 Å), their populations can vary by 15%. This
finding is fully consistent with previous reports7 and the physics
behind this variation is the same: narrowed potential energy
fluctuations modify the relative populations of the configurations.
At higher temperatures, and precisely above and around themelting
temperatures, REMD simulations with the Berendsen thermostat
result in small effects. We can thus conclude that the aggregation
properties of all the amyloids, with the OPEP force field and the
Berendsen thermostat,14,15 would be unaffected around their melt-
ing temperatures.

It is of interest to examine the results of the Aβ25�35 trimer
simulations, since little is known about their structures experi-
mentally, as they are transient. Contrary to other fragments of the

Figure 8. Aβ25�35 hexamer. (Top) Superposition of the initial structure
on that obtained by Berendsen after 100 ns (image generated by
VMD).50. The rmsd is 6.35 Å for the core. (Bottom) Time evolution
of the CR rmsd of all chains for residues 26�30 at 300 K, that is, a few
degrees above the melting temperature predicted by Langevin and
Berendsen REMD simulations.
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full-length Aβ1�42 protein, the Aβ25�35 peptide has been subject
to a small number of MD and REMD simulations. Wei et al.19

and Kittner and Knecht20 studied its dimerization in explicit
water. Ma and Nussinov43 studied the impact of N27Q substitu-
tion on the stability of preformed β-sheets, and Shea and co-
workers19 studied the stability of protofibrils with various topol-
ogies. Fu et al.51 investigated the initial adsorption features and
dynamics of Aβ25�35 on a single-walled carbon nanotube surface
using MD in explicit solvent. Recently, Yu et al.52 reported a
hybrid computational approach to construct, search, optimize,
and rank soluble micellelike Aβ25�35 structures with different
side-chain packings at the atomic level.

Equilibration of Aβ25�35 trimers, as measured by the conver-
gence of the heat capacity, is a very difficult task with the OPEP
force field and REMD simulations. A replica flux-optimized
temperature distribution and a larger number of replicas con-
tribute to sampling efficiency. Our converged simulations, which
total 48 μs in length, show that trimers at 300 K have an averaged
β-sheet content of 12%. This content is very similar to the values
found at 310 K in the monomer (13%) and the dimer (20%) by
atomistic simulations.19 The trimer configurational ensemble is
primarily characterized by fully random coils or a small curved
two-stranded β-sheet stabilized by a disordered peptide. Ap-
proximately 10% of the conformations consist, however, of
curved small three-stranded β-sheets spanning the Ser26-Asn-
Lys-Gly-Ala30 amino acids with mixed or fully antiparallel
orientations of the chains. This impossibility to stabilize fully
extended amyloid-like conformations has been also observed for
dimers byWei et al.19 in explicit solvent. Whether the presence of
straight-extended β-sheet-rich dimers and trimers in the assem-
bly of Aβ25�35 peptides by use of an implicit water�atomistic
proteinmodel53 results from finite-size effects54 or is an artifact of
the force field used remains to be determined, but the present
OPEP-MD simulations of the hexamer do not reveal any
extension of the small β-sheet core within 100 ns.
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ABSTRACT: Owing to the availability of large-scale computing facilities and the development of efficient new algorithms, wave
function-based ab initio calculations are becoming more common in bioinorganic chemistry. In principle they offer a systematic
route toward high accuracy. However, these calculations are by no means trivial. In this contribution we address some pertinent
points through a systematic theoretical study for the equilibrium between the peroxo- and bis-(μ-oxo) isomers of the
[{Cu(C2H8N2)}2O2]

2þ complex. While this system is often regarded as a prototypical multireference case, we treat it with the
single reference local-pair natural orbital coupled cluster method and reiterate that the multireference character in this system is very
limited. A set of intermediate structures, for the interconversion between the two isomers, is calculated through a relaxed surface scan
thus allowing the calculation of an energetic profile that cleanly connects the bis-(μ-oxo) and side-on peroxominima on the ground-
state potential energy surface. Only at the highest level of theory involving complete basis set extrapolation, triple excitation
contributions as well as relativistic and solvent effects, the bis-(μ-oxo) isomer is found to be slightly more stable than the peroxo
structure. This is in agreement with the experimental findings. The effects of basis set, triples excitation, relativity, and solvent
contribution have all been analyzed in detail. Finally, the ab initio results are compared with density functional calculations using
various functionals. It is demonstrated that the largest part of the discrepancies of the results reported in the literature are due to an
inconsistent handling of relativistic effects, which are large in both ab initio and density functional theory calculations.

’ INTRODUCTION

The importance of copper enzymes hardly needs to be
emphasized.1�14 Within this class, enzymes featuring a binuclear
copper active site have received significant attention. Prominent
members include catechol oxidase8 and tyrosinase15,8�10,12

(both catalyzing the oxidation of catecholes to o-quinones) and
hemocyanin,13,16�22 an oxygen transportation protein. The
common feature of these enzymes is the Cu2O2

2þ core in the
active site. Up to six different isomers seem to be accessible for
this core. Three of them (Figure 1) have been characterized
spectroscopically23�26 and crystallographycally.23,24,26�28 Struc-
ture A is the μ-η2:η2-peroxo (side-on) isomer that will be
referred to below as P. In this core, the Cu�Cu distance is
close to 3.6 Å, and the O�O bond distance is∼1.4 Å. Structure
B, the bis(μ-oxo) dicopper(III) isomer, is referred to asO below.
Here the O�O distance has lengthened to 2.3 Å, which means
that the O�O bond has effectively been broken, while the
Cu�Cu distance is shortened to ∼2.8 Å. Structure C, the trans
μ-1,2-peroxo species, is less common but was the first motif to be
observed crystallographycally.27 All of these cores have singlet
ground states. In structures A and C copper is in the formal
oxidation state of 2þ (d9 electronic configuration), while in
structure B it is 3þ. Thus, structures A and C are thought to
represent magnetic coupling cases, in which case a closed shell
determinant does not provide a good description of the electro-
nic structure, and multireference approaches [or broken sym-
metry density functional theory, (DFT)] appear to be necessary
to obtain reasonable results. Thus, the (Cu2O2)

2þ core has

become a playground for theoreticians testing different theore-
tical approaches. A concise review of the literature up to 2009 has
been published by Ghermann and Cramer.7 Owing to the
concept that P requires a multireference treatment, massive
multireference calculations using the complete active space
self-consistent field/complete active space second-order pertur-
bation theory (CASSCF/CASPT2) and multireference config-
uration interaction (MRCI) methodologies have been
undertaken.29�34 However, as will be discussed below, structure
A is so strongly coupled that it is outside the magnetic coupling
regime, and treatments starting from a closed shell determinant
are adequate. Probably the most accurate calculations to date
have been performed by Cramer et al.29,31 using the CR-CC-
(2,3)35�37 approach.

It has nevertheless become evident from the many theoretical
studies performed on the system that proper theoretical

Figure 1. The three most common structures of the CU2O2
2þ core.

Received: December 2, 2010



1512 dx.doi.org/10.1021/ct1006949 |J. Chem. Theory Comput. 2011, 7, 1511–1523

Journal of Chemical Theory and Computation ARTICLE

modeling of the (Cu2O2)
2þ core is challenging and that theore-

tical results with both DFT and wave function-based approaches
scatter widely.7,33,38�41 The available studies range from treat-
ments of the bare core29,34,40�43 up to complexes containing six
histidines as terminal ligands.44 It became evident that DFT
results depend strongly on the specific form of the chosen
functional.29�32,38,39,44�52 The wave function-based calculations
suffer from the fact that small models are not experimentally
accessible, and hence comparison of theoretical results for the
naked (Cu2O2)

2þ core to experiment are not possible. On the
other hand, realistic size models are too large to be accurately
treated with either single- or multireference wave function
methods in conjunction with adequately large basis sets. At the
multireference level, the CASSCF method has been used and
found to be inadequate due to the lack of dynamic correlation
contributions53,54 and probably also due to excessive active space
requirements. Adding part of the dynamical correlation through
perturbation theory in the form of either the CASPT255 or the
restricted active space second-order perturbation theory
(RASPT2)33 method can in principle improve the
performance,29�34 but satisfactory convergence with respect to
the size of the reference space is difficult to achieve. In this
respect the RASPT2 method, which allows for significantly more
active space orbitals, is an important step. However, dictated by
the high computational cost, the available correlated ab initio
calculations that do include dynamic correlation contributions all
featured relatively small double-ζ type basis sets that certainly fall
short of coming close to the basis set limit. In addition, they were
done on small models with ammonia model ligands. Hence, the
theoretical results so far suffer from significant basis set incom-
pleteness problems.

In this work we study the problem using the recently devel-
oped local pair natural orbital coupled cluster method.56�58 This
method can handle realistic models of actual dicopper cores
while still employing quadruple-ζ size basis sets and reproducing
the parent canonical correlation methods with an accuracy of
0.5 kcal/mol or better.58 Therefore, these methods allow for
reliably estimating the basis set limit of chemically relevant
methods. In doing so, we have investigated a number of addi-
tional issues concerning such calculations, namely the interplay
of correlation with scalar relativistic and solvent effects. As will be
shown below, our most complete calculations are in full agree-
ment with the available experiments. In order to provide a
consistent set of calculations, we have also studied a number of
DFT functionals and compared them to the ab initio results, with
some surprising findings.

Another aspect that differs in our calculations from the
literature is the use of a series of structures resulting from a
relaxed surface scan along the O�O bond. Previous investigators

have mainly used interpolated structures results (e.g., a rigid scan).
As noted byCramer et al.31 such transit pathswould be expected to
overestimate the isomerization barrier between P and O.

The simplest type of dicopper core with saturated neutral
amine ligands that avoids the complication associated with the
use of ammonia (artificial hydrogen bonds, too much coordina-
tive flexibility) contains simply ethylene diamine (en) as a capping
ligand. Hence, we have chosen to study [Cu2(en)2(O)2]

2þ as a
representative model. This system is closely related to the one
developed and studied by Stack and co-workers.1,5,14,25,39,51,59,60

The experimental findings59 demonstrate that for this system
in dichloromethane solution, O should be the predominant
species.

’COMPUTATIONAL DETAILS

TheORCA suite of programs61 was used for all calculations. A
25 point relaxed energy surface was constructed along the O�O
bond distance between 1.3 and 2.5 Å using the Perdew�
Burke�Ernzerhof (PBE)62 functional together with Grimme’s
dispersion correction (Figure 2).63 This way of describing the
conversion between the two isomers has the advantage that the
energy surface is smooth since the intermediate structures are
optimized. Thus, the local maximum connecting the P and O
should be a fairly good guess at the energy of the transition state
describing the isomerization between the two forms.

For the wave function-based calculations the local-pair natural
orbital coupled cluster (LPNO�CCSD)57,58 method was used.
The basis sets used were the def2-SVP,64 def2-TZVP,64,65 def2-
TZVPP,64,65 and def2-QZVP.66 For all calculations, the def2-
QZVP/C auxiliary basis set was used for the resolution of identity
(RI)67,68 approximation that was used throughout. Finally the
complete basis set total energies were estimated based on a two-
point extrapolation scheme that will be described in detail below.

In the absence of LPNO triples correction, canonical CCSD-
(T)69,70 calculations were performed in order to estimate triple
substation effects. For these calculations the def2-TZVP basis set
was used for copper together with def2-SVP for the remaining
atoms. This choice is dictated by computational cost.

For the DFT part of this study, the following func-
tionals were used: B-LYP,71,72 B3-LYP,71�73 B1-LYP,71,72,74

BHandHLYP,72,73,75 and B2PLYP.76 Motivated by the work of
Siegbahn,77 dispersion corrections were investigated according
to semiempirical method developed by Grimme.63 In these
calculations, the def2-TZVP65 basis set, together with the
corresponding auxiliary basis set, was used.

For all DFT calculations, the restricted Kohn�Sham (RKS)
formalism was used. The reason for this choice was that all
unrestricted Kohn�Sham calculations gave identical results with

Figure 2. The structure of the first step (left) and the one after step 25 (right).
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the RKS ones (e.g., they maintained symmetry). Broken sym-
metry calculations were extensively examinded. The results
showed that up to 20% exact exchange (EEX) (corresponding
to the B3LYP functional), no broken symmetry solution was
more stable than the RKS one, even in the region of the PES
corresponding to P. Thus we feel that it is justified to focus on the
results of the RKS calculations.

For both wave function- and DFT-based calculations, scalar
relativistic effects were treated either explicitly [via the second-
order Douglas�Kroll�Hess (DKH) transformation78�82 or
with the zeroth-order approximation for relativistic effects
(ZORA)]83,84 or alternatively via effective core potentials
(ECPs). In the latter case, the ECP10MWB85,86 potential
together with the corresponding basis set was used on copper.
In the case of ZORA corrected calculations, the all-electron scalar
relativistic basis sets described earlier were used.87

Solvent effects were treated with the conductor-like screening
(COSMO)88 approach,89�91 as implemented in ORCA.92

’WAVE FUNCTION RESULTS

Multireference Character of the (Cu2O2)
2þ Core. Since the

LPNO�CCSDmethod chosen for the study is a single reference
method, the question concerning the multireference nature of
the wave function rises. In the literature, the T1 diagnostic

93 is
often employed to judge multireference character. The results in
Figure 3 demonstrate that the T1 diagnostic stays within reason-
able bounds over the entire isomerization coordinate and slightly
increases upon approaching the O isomer. If P would be a
genuine multireference species (as might be expected from the
formal d9 electron configuration at the two copper(II) ions), the
opposite trend would be expected. In fact, as discussed
elsewhere,94 one should distinguish between the terms ‘multi-
determinantal’ and ‘muticonfigurational’. The open-shell singlet
that dominates the wave function in the case of two weakly
antiferromagnetically interacting d9 sytems is multideterminantal
but monoconfigurational because a single spatial configuration is
involved in both determinants of the open-shell singlet. The term
multiconfigurational should be reserved for cases in which
different spatial configurations occur in the wave function with
large weights.
In agreement with other researchers,31 we do not think that

the T1 diagnostic is a good measure of multireference (or
multideterminantal) character. In coupled cluster theory, the
single excitation amplitudes essentially describe orbital relaxa-
tion, and hence, large single contributions are expected when the

Hartree�Fock (HF) orbitals are poor. In the present case, the
starting orbitals forO appear to be worse than those for P, which
is a sensible result because the metal ligand covalency is certainly
higher for the dicopper(III) species O compared to P and
because HF theory is known to not provide bonds that are far
too ionic.
In our opinion, a more valid criterion for multireference

character is the largest double excitation amplitudes. For genuine
diradicals, the largest amplitude should approach a value of unity
in which case the single reference approach as such becomes
invalid. Our results are shown in Figure 3. It is indeed observed
that the largest doubles amplitudes occur on the P side of the
isomerization surface. However, even there the largest double
excitation amplitude does not exceed a value of 0.17.
Taken together these results imply that the single reference

coupled cluster approach is very well suited for describing the
(Cu2O2)

2þ core over the entire isomerization coordinate con-
necting the P andOminima. Obviously, this does not imply that
other single reference methods are equally suitable for studying
the (Cu2O2)

2þ core. Owing to the exponential Ansatz, coupled
cluster theory (or its close variants) is certainly the most stable
approach and tolerates much larger amounts of multireference
character than, say, many body perturbation theory or config-
uration interaction approaches before breaking down.
Basis Set Limit Estimate. In order to approach the complete

basis set (CBS) limit, large scale LPNO�CCSD calculations
were performed. The usual practice to achieve this estimate is the
use of a two-point extrapolation scheme. As described below, we
have used various schemes for this extrapolation. The first
combination of basis sets was based on the smallest possible
basis set combination and involved the double-ζ/triple-ζ pair
def2-SVP/def2-TZVP (referred ExtrapolationS). Second, the
much more demanding triple-ζ/quadruple-ζ combination
def2-TZVPP and def2-QZVP was used (referred to as Extra-
polationB). The results of this extrapolation are supposed to
provide the most accurate results of this work.
The CBS extrapolated energy is estimated95,96 according to

the formula:

EðCBSÞ þ EðCBSÞHF þ EðCBSÞLPNO � CCSD ð1Þ
Here:

EðCBSÞHF ¼ EXHF e
ð � a

ffiffiffi
Y

p Þ � EYHF e
ð � a

ffiffiffi
X

p Þ

eð � a
ffiffiffi
Y

p Þ � eð � a
ffiffiffi
X

p Þ ð2Þ

is the estimated CBS HF energy and

Figure 3. The T1 diagnostic (left) and the largest doubles contribution in the wave function (right) across the isomerization coordinate, calculated with
the LPNO�CCSD method.
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EðCBSÞLPNO � CCSD ¼ XβEXLPNO � CCSD � YβEYLPNO � CCSD

Xβ � Yβ
ð3Þ

the estimated CBS LPNO�CCSD energy. In these equations X
and Y are the smaller and larger cardinal numbers of the involved
basis sets. We note in passing that the validity of extrapolating
with the def2 basis sets has been investigated in ref 97 and was
found to be excellent. The values ofR and β used were 10.39 and
2.40 for ExtrapolationS and 7.88 and 2.971 for ExtrapolationB.97

In Figure 4 the SCF contribution to the total energy (without
relativistic corrections and in the gas phase) is presented. It is
obvious that the SCF energy converges smoothly to the CBS
limit. The SCF energy has practically converged with the def2-
QZVP basis set. The largest difference between the CBS energy
calculated with ExtrapolationB and the energy calculated with
def2-QZVP is 0.1 kcal/mol. The only result that deviates
significantly from the CBS limit is, in fact, the uncorrected
def2-SVP curve.
In Figure 5 the analogous results are shown for the

LPNO�CCSD correlation energy. Fortunately, the correlation
energy also appears to converge smoothly, and at the level of the
def2-QZVP basis set, the LPNO�CCSD correlation energy
has essentially converged to the CBS estimate. The largest
deviation between the def2-QZVP and ExtrapolationB results
is 0.65 kcal/mol, which is reasonable given that the correlation
energy converges muchmore slowly to the basis set limit than the
SCF energy.95 However, these deviations are observed at the

extreme points of the PES. In the more important regions of the
PES, the deviations are again on the order of 0.2 kcal/mol.
Finally in Figure 6 the total PES is plotted as the sum of the

previous two terms. The maximum deviation between the def2-
QZVP and ExtrapolationB results is 0.48 kcal/mol. Again this
occurs at the first and last points of the PES. In the more
interesting relevant areas, the deviations are in the order of
0.1 kcal/mol. The deviations in the total energy are smaller than
those obtained for the correlation energy alone, since SCF and
correlation errors have opposite signs and tend to cancel. Never-
theless, it is concluded that with the def2-QZVP basis set, the
PES has essentially converged to the CBS result.
Below, the LPNO�CCSDmethod is used in conjunction with

ExtrapolationB in order to produce the most accurate results
achievable with this methodology.
At this point a note concerning an alternative widely used

extrapolation scheme is appropriate. In this scheme the CBS
correlation energy is estimated on the basis of the MP2 CBS
energy. The extrapolated correlation energy is obtained accord-
ing to the formula:

EðCBSÞcorr ¼ EðCBSÞMP2 þ ðEXLPNO � CCSD � EXMP2Þ ð4Þ

Here Ecorr
(CBS) is the CBS estimation for the correlation energy,

calculated according to eq 3 only replacing the LPNO�CCSD
energies with MP2 energies. ELPNO�CCSD

X and EMP2
X are the

LPNO�CCSD andMP2 energies calculated with the small basis
set. The HF energy is calculated in the same way as before. In the
left part of Figure 7 the correlation energy calculated, as
described above, using the cc-pVTZ/cc-pVQZ combination of
basis sets (referred to as ExtrapolationC), is presented. For
comparison in the same figure, the correlation energy calculated
with the ExtrapolationB scheme is also plotted.
From the left part of Figure 7, ExtrapolationC strongly

stabilizes P with respect to O. The stabilization of P over O is
as much as 7.1 kcal/mol larger compared to what is obtained with
the more rigorous ExtrapolationB scheme. It is obvious that a
basis set limit estimate that introduces such a large error is useless
for obtaining chemically meaningful results. The reason for this
disappointing behavior can be found in the behavior of the MP2
correlation itself energy. In the right part of Figure 7, the
correlation energies calculated with the canonical CCSD(T),
LPNO�CCSD, and MP2 methods obtained with the same basis
set are shown. While the LPNO�CCSD curve closely resembles

Figure 4. The HF energy calculated across the isomerization coordi-
nate with different basis sets.

Figure 5. The LPNO�CCSD energy calculated across the interconver-
sion coordinate with different basis sets.

Figure 6. The total energy calculated across the interconversion
coordinate with different basis sets.
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the canonical CCSD(T) one, the MP2 estimate is miserable and
dramatically overstabilizes P.
Interplay of Correlation and Relativity. Scalar relativistic

effects are usually considered to be of lesser importance in the
chemistry of the first transition row.98 Nevertheless their im-
portance has already been recognized for some time (e.g., Flock
et al., ref 32). In Figure 8 the HF, LPNO�CCSD, and total
energies calculated on the basis of ExtrapolationB and the
inclusion of scalar relativistic ZORA corrections are shown
(gas phase calculations).
The immediate conclusion from Figure 8 is that overall O is

stabilized by about 8.4 kcal/mol relative to the P. The second
important observation is that the net effect due to relativity arises
from the interplay of two competing factors. The relativistic
changes to the correlation energy work in favor of P, while the
analogous effect on the SCF energy works in favor ofO. The net
outcome is the sum of these two contributions. Since the effect
on the SCF energy is more pronounced, the latter dominates the
overall relativistic correction, thus resulting in an overall

stabilization of O. The 8.4 kcal/mol that O gains with respect
to P is enough to even change the more stable minimum from P
to O. The origin of the large scalar relativistic effects will be
investigated below after the DFT results have been presented.
However, before proceeding to analyze the effects of relativity,

the effects of perturbative triple excitations will be considered.
The canonical CCSD(T) triple corrections obtained in the scalar
relativistic and nonrelativistic cases are shown in Figure 9. It is
evident that the relativistic corrections are fairly limited and that
triple excitations slightly work in favor of O compared to P.
Overall, the triples correction favors the O by 2.1 kcal/mol.
Solvent Effects. In this step of the investigation, solvation

effects are added to the PES. They have been estimated at the
level of the conductor-like screening (COSMO) model using
CH2Cl2 as a solvent (def2-TZVPP basis set in this section). The
difference between gas-phase and solvent results calculated at
this level was added to the curve obtained with ExtrapolationB
together with the triple substitution effects. The resulting curve is
considered the most accurate result of this study and will serve as

Figure 7. Complete basis set correlation energy estimates using extrapolation schemes ExtrapolationB and ExtrapolationC (left). Relative correlation
energies calculated with the CCSD(T), LPNO�CCSD, andMP2methods (right), (def2-TZVP basis set on for copper and def2-SVP for the remaining
atoms).

Figure 8. The PES and its components calculated with the LPNO�CCSD method and the ZORA scalar relativistic corrections together with the
corresponding nonrelativistic curve (left). The effect of ZORA scalar relativistic corrections to the total energy across the interconversion coordinate (right).
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a reference for judging the DFT results. In Figure 10, the
resulting PES is plotted together with the obtained solvent effect.
From the left part of the figure, the main conclusion is thatO is

more stable than P by 4.1 kcal/mol. The estimated transition-state
energy is 8.6 kcal/mol higher above O. This result would imply
facile interconversion of the two isomers with the thermodynamic
equilibriumbeing significantly on the side ofO. The true transition
state must be slightly lower than the saddle point on the PES, as
this point is obtained from a constraint optimization.
The additional stabilization ofO relative to P is apparent from

the right-hand side of Figure 10. This makes sense as O has
the constituent atoms in higher formal oxidation states and is
more compact than P. Both factors are thought to contribute to
the extra stabilization of this dication.7 The size of the effect is as
large as 6 kcal/mol. Thus, the net result thatO is more stable than
P is caused by a combination of relativistic and solvent effects.

’DENSITY FUNCTIONAL THEORY

Since the largest part of the literature concerning computa-
tional studies on dicopper complexes is done with DFT, a
detailed study of the factors affecting the outcome of these

calculations is presented below. The factors studied are the exact
exchange contribution in the functional, dispersion forces, scalar
relativity, and finally solvent effects.
Effect of Exact Exchange of the Functionals. In order to

study the effect of exact exchange (EEX) in the calculated
energies, a set of different functionals with varying EEX was
used. The functionals were: BLYP71,72 (0% EEX), B3LYP71�73

(20% EEX), B1LYP71,72,74 (25% EEX), BHandHLYP72,73,75

(50% EEX), and finally also B2PLYP76 (53% EEX). The choice
of these functionals was made based on the fact that B3LYP is the
most popular functional in current use and that the remaining
functionals (except B2PLYP) use the same components and
differ mainly in the fraction of EEX. The double hybrid B2PLYP
functional also includes aMP2 correction that brings in semilocal
correlation effects. The results of our calculations with these
functionals in the gas phase and without corrections for relati-
vistic or dispersion forces are presented in Figure 11.
It is obvious that the DFT results depend strongly on the

fraction of EEX. In the right-hand part of Figure 11, the energy
difference between theO and Pminima is shown. Obviously, the
O � P energy difference is almost linear to the fractional EEX.
This was first noted by Rode et al.99 and by Cramer et al.29,31 and
is extended here to the range of 0�50% EEX. A comparison
reveals that B3LYP and B1LYP are in best agreement with
LPNO�CCSD results (calculated with ExtrapolationB and no
relativistic corrections), with B1LYP being slightly preferred.
The BLYP functional erroneously predicts the wrong isomer.
The B2PLYP functional does not seem to perform well in this
application as it gives a much too high energy value for the O
isomer. In fact it does not even predict a minimum for this
species. This must be attributed to the badly failing MP2
component in the B2PLYP energy.
Weak Interactions�D.The correction due to Grimme63 that

has been shown to improve the results of DFT calculations100,101

was investigated in this part. Parameters are only available for
BLYP, B3LYP, and B2PLYP. Hence B1LYP and BHandHLYP
were not investigated in this section.
In the left part of Figure 12, the PES calculated with the

different functionals after the inclusion of dispersion forces
correction is presented. In the right part the effect of these
corrections in the functionals is plotted, and one can see there
that the addition of dispersion forces correction does not have a
significant effect on the relative stability of the two isomers. The

Figure 9. The correlation energy recovered by the perturbative triples
correction across the isomerization coordinate calculated without
relativistic corrections and after the ZORA correction.

Figure 10. The total energy calculated across the isomerization coordinate estimated at the CBS limit including solvent effects, triples correlation
energy, and ZORA relativistic corrections (left). The effect of COSMO on the energy calculated with the LPNO�CCSDmethod and the def2-TZVPP
basis set, including ZORA corrections (right).
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quantitative form of the PES remains unchanged, while
the largest change in the relative energies is not larger than
1 kcal/mol. However, this result should not be overemphasized,
as it has recently been shown that in (Cu2O2)

2þ complexes with
large ligands, dispersion forces can be significant.77

Relativistic Effects. In most of the previous works, relativistic
effects were included either implicitly through ECPs or have
been ignored. Here an effort is made to systematically investigate
the size of these effects. In order to accomplish this, three
different approaches were used (the two scalar relativistic
corrections, ZORA83,84,102 and DKH78�82 as well as the ECP

ECP10MWB).85,86 In Figure 13 the effect of the ZORA relati-
vistic correction is presented, in Figure 14 the effect of the DKH
correction, and finally in Figure 15 the effect of the use of an ECP
for Cu.
It is obvious from these figures that the effect of relativity is as

pronounced, as in the LPNO�CCSD case, and results in a net
stabilization of the O isomer. As in the LPNO�CCSD case,
relativity switches the order of stability of the two isomers. ZORA
and DKH are almost indistinguishable. ECPs lead to a less
pronounced relativistic effect. Despite the fact that again O is
stabilized with respect to P, the stabilization is not large enough

Figure 11. Energy path, following the isomerization coordinate, calculated with various functionals (left). Energy difference E(O) � E(P) plotted
against the percentage of EEX contribution in the functional(right).

Figure 12. Single point energies calculated across the isomerization coordinate calculated with the correction for dispersion forces (left). Effect of
dispersion forces correction (right).

Figure 13. The potential energy using the density functional methods corrected for relativistic effects through ZORA (left part). The effect of ZORA
(right part).
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to change the position of the global minimum. It appears that a
little less than half of the scalar relativistic effects are recovered in
the ECP calculations (Figure 16).
Interestingly, the relativistic effect on the relative stability of

the two isomers also strongly depends on the functional used.
There appears to be a nearly linear correlation between the EEX
contribution in the functional and the size of the relativistic
corrections. This may well be related to the changes in metal�
ligand covalency. With increasing EEX, the metal ligand bonds
becomemore ionic. Thus, the d-electron count increases for both
isomers with increasing EEX. As O has the lower formal

d-electron count, it is expected to be increasingly stabilized
relative to P as EEX increases.
Compared to the value of 6.8 kcal/mol calculated at the CBS

limit with ZORA, LPNO�CCSD after triples correction, the
best result is delivered by BLYP-D which predicts an energy
difference of 6.4 kcal/mol. B3LYP-D is also excellent and
predicts a value of 7.6 kcal/mol.
Solvent Effects. The resulting COSMO corrected PESs are

shown in Figure 17.
The results follow the same pattern already found on the

LPNO�CCSD calculations thus favoring O. In quantitative
terms, BLYP-D provides the best result and predicts a stabilization
of 7.4 kcal/mol relative to the reference value of 6.4 kcal/mol.
B3LYP-D is slightly worse and gives a value of 8.2 kcal/mol.

’ORIGIN OF RELATIVISTIC EFFECTS

The origin of the significant relativistic effects is investigated
by looking at the changes that occur in the molecular orbitals due
to relativity. This is reasonable as the net relativistic effect is
dominated by the changes in the SCF energy. The effects of
scalar relativity on the B3LYP orbitals 42 up to 77 [the highest
occupied molecular orbital (HOMO) is orbital 69] are investi-
gated in Figure 18, where the energy difference of the individual
orbitals with and without the ZORA correction is plotted.

The plot can be divided into four regions depending on which
fragments dominate the molecular orbitals within a given region.
The deeper occupied valence orbitals are mainly ligand in
character (see Table S1 of the Supporting Information). As seen
in the left of Figure 18, the relativistic effects on these orbitals are

Figure 14. The potential energy using the density functional methods corrected for relativistic effects through DKH (left part). The effect of DKH
(right part).

Figure 15. The potential energy using the density functional methods calculated using the quasirelativistic ECP ECP10MWB for copper.

Figure 16. The relative stabilization of O with respect to P due to
relativistic corrections calculated with BLYP, B3-LYP, B1-LYP, and
BHandHLYP density functionals.
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small and, more importantly, are almost identical for the two
isomers. Hence these orbitals do not contribute to the prefer-
ential stabilization ofO relative to P. Summed over all orbitals in
that region, a net 0.9 kcal/mol stabilization of O results which is
probably within the noise.

The second region is defined by orbitals 51�58. Here one
finds that the P orbitals are preferentially stabilized. Summed
over all contributions results in a value of 11.5 kcal/mol.
From Table S2 of the Supporting Information it becomes
evident that in this region the strongly stabilized copper
d-orbitals ofO are located, while for P these orbitals are mainly
of ligand s and p character. Since d-orbitals are stabilized
by relativity, this region provides relativistic corrections in
favor of P.

The opposite case is met in region 3, the upper valence region.
Here copper d-orbitals dominate for P, while for O the highest
occupied orbitals are mainly of ligand s and p character. Since the

latter are little affected by relativity, the sum over this region
provides 18.4 kcal/mol relativistic effect in favor of O.

Thus the net relativistic effect can be traced back to the
stronger destabilization of P relative to O. Summed over all
molecular orbitals, a value of 7.8 kcal/mol in favor of O is
obtained which is sufficiently close to the net relativistic stabiliza-
tion energy of 5.3 kcal/mol. The preferential bias in favor ofO is
explained by the lower formal d-count (d8 forO vs d9 for P) and
by the fact that P has less covalent metal ligand bonds and hence
feels more of the d-orbital destabilization than O.

One final note concerns the effect in the lower lying unoccu-
pied orbitals. In Figure 18 orbitals 70�77 have been included. It
is apparent that P should be favored with respect to O as its
orbitals are preferentially less destabilized than those ofO. These
decreased gaps between occupied and unoccupied orbitals will
tend to increase the correlation energy. This may well explain the
opposite trend for the correlation energies obtained in Figure 8.

Figure 17. The potential energy using the density functional methods corrected for relativistic effects through ZORA, for dispersion forces through D
and for solvent effects through COSMO, with CH2Cl2 solvent (left part). The effect of solvent (right part).

Figure 18. Changes in the B3LYP/def2-TZVP orbital energies due to ZORA for the two isomers. Orbitals are arbitrarily linked by wavy lines to facilitate
visual comparison.



1520 dx.doi.org/10.1021/ct1006949 |J. Chem. Theory Comput. 2011, 7, 1511–1523

Journal of Chemical Theory and Computation ARTICLE

’COMPARISONOF COUPLED CLUSTER ANDDENSITY
FUNCTIONAL CALCULATIONS

As reference curve, the scalar-relativistic CBS extrapolated
LPNO�CCSD result together with solvent and triple-excitation
corrections is used. Relative to this reference, the most accurate
functional is B3LYP-D with a mean absolute error (MAE) of
4.4 kcal/mol, followed by B1LYP (4.5 kcal/mol) and BLYP-D
(4.8 kcal/mol). In Figure 19 the reference PES is shown next to
B3LYP-D. While the overall shape of the PES is correct with
B3LYP-D, the quantitative performance is not quite satisfactory:
The energy difference, between the two isomers, is overestimated
with B3LYP by as much as 9.3 kcal/mol, and the position of the
minimum for P is calculated to be 0.1 Å too short. Thus, none of
the functionals can be considered as satisfactory if one gives
preference to the wave function-based ab initio reference curve.

’CONCLUSION

In this paper we have discussed some aspects of applying
correlated wave function-based ab initio methods to transition-
metal chemistry. To illustrate this subject, a fairly detailed study
on the equilibrium between the bis-(μ-oxo) and peroxo isomers
of [Cu2(en)2(O)2]

2þ has been reported. A relaxed energy surface
scan provided the reaction coordinate for the interconversion of
the two isomers. Using the LPNO�CCSD method, the O
isomer was found to be more stable than P, in agreement with
the experimental results. The effect of relativity was found to be
important, favoring the O isomer. This trend was consistent for
the three different methods that were used to calculate the
relativistic corrections, namely ZORA, DKH, and quasirelativis-
tic ECP. The results for DKH and ZORA were almost identical.
About half of the relativistic effect was obtainedwith ECPs.While
this is somewhat displeasing, we note that ECPs also do not lead
to dramatic computational savings over scalar relativistic all
electron calculations. For this reason we prefer the latter. The
effect of solvent (within the limits of the dielectric continuum
model) was found to be significant as well and helps stabilizingO
over P to an extent that mirrors the relativistic effect. Thus

theoretical studies neglecting these two contributions to theO/P
equilibrium are grossly wrong.

Flock et al.32 in an early study on theO�P interconversion did
include relativistic effects in their description but did not consider
solvent effects. The same strategy was followed later by Rode and
Werner99 who included relativistic effects, though through the
use of ECP’s, but also left out solvent effects. Siegbahn in a very
rigorous and detailed study77 calculated the B3LYP energy
difference between O/P and found it to be 8.3 kcal/mol. This
result is in excellent agreement with the best ab initio results
calculated in this work. However, the coincidentally perfect
agreement is partly due to a cancellation of errors. Altough all
necessary corrections were considered, Siegbahns calculations
used the lacvp relativistic core potential. According to the
calculations presented above, this implies that the stabilization
of O, due to relativistic effects, is probably underestimated. In
addition the lack of dispersion corrections also favors P relatively
to O. Overall this would mean that some 4�5 kcal/mol of
stabilization energy in favor of O should be added that would
then lead to total stabilization close to 14 kcal/mol forO, which is
in good agreement with our own B3LYP calculations. We note in
passing that we agree with the comment of Cramer et al.,31 that
larger ligands (as mostly used in actual chemical studies) will
greatly reduce the importance of solvent corrections.

Five different functionals were compared to the LPNO�
CCSD results (BLYP, B3LYP, B2LYP, BHandHLYP, and
B2PLYP). With the exception of B2PLYP, they mainly differ in
the percentage of exact exchange that is incorporated. In agree-
ment with the literature,7,99 the addition of EEX systematically
favors the O isomer with the stabilization being linearly propor-
tional to the fractional EEX in the functional. The best agreement
with the LPNO�CCSD results was obtained with the B3LYP
functional once dispersion corrections were included. The
double hybrid B2PLYP is not successful in this application
because of the disastrous failure of MP2 for this system. How-
ever, none of the functionals can be considered to be in truly
satisfactory agreement with the reference ab initio results. This
clearly speaks in favor of continued efforts in the development of
wave function-based ab initio results for applications in coordi-
nation and bioinorganic chemistry. The recent progress in the
methodology is certainly encouraging in this respect.
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ABSTRACT: An adaptive Cartesian grid (ACG) concept is presented for the fast and robust numerical solution of the 3D
Poisson�Boltzmann equation (PBE) governing the electrostatic interactions of large-scale biomolecules and highly charged
biomolecular assemblies such as ribosomes and viruses. The ACG offers numerous advantages over competing grid topologies such
as regular 3D lattices and unstructured grids. For very large biological molecules and their assemblies, the total number of grid points
is several orders of magnitude less than that required in a conventional lattice grid used in the current PBE solvers, thus allowing the
end user to obtain accurate and stable nonlinear PBE solutions on a desktop computer. Compared to tetrahedral-based unstructured
grids, ACG offers a simpler hierarchical grid structure, which is naturally suited to multigrid, relieves indirect addressing
requirements, and uses fewer neighboring nodes in the finite difference stencils. Construction of the ACG and determination of
the dielectric/ionic maps are straightforward and fast and require minimal user intervention. Charge singularities are eliminated by
reformulating the problem to produce the reaction field potential in the molecular interior and the total electrostatic potential in the
exterior ionic solvent region. This approach minimizes grid dependency and alleviates the need for fine grid spacing near atomic
charge sites. The technical portion of this paper contains three parts. First, the ACG and its construction for general biomolecular
geometries are described. Next, a discrete approximation to the PBE upon this mesh is derived. Finally, the overall solution
procedure and multigrid implementation are summarized. Results obtained with the ACG-based PBE solver are presented for
(i) a low dielectric spherical cavity, containing interior point charges, embedded in a high dielectric ionic solvent—analytical
solutions are available for this case, thus allowing rigorous assessment of the solution accuracy; (ii) a pair of low dielectric charged
spheres embedded in an ionic solvent to compute electrostatic interaction free energies as a function of the distance between
sphere centers; (iii) surface potentials of proteins, nucleic acids, and their larger-scale assemblies such as ribosomes; and
(iv) electrostatic solvation free energies and their salt sensitivities—obtained with both linear and nonlinear Poisson�Boltzmann
equations—for a large set of proteins. These latter results along with timings can serve as benchmarks for comparing the
performance of different PBE solvers.

’ INTRODUCTION

The efficient and accurate implicit solvent-based electrostatic
modeling of large complex and highly charged biomolecules in
an aqueous electrolyte solution at finite ionic strengths remains
an important and difficult challenge in computational molecular
biophysics. Considerable success in modeling the long-range and
nonspecific electrostatic interactions of biomolecules in ionic
solution has been achieved on the basis of the Poisson�
Boltzmann equation (PBE), which provides the electrostatic
potential and other important derived quantities (e.g., electro-
static solvation free energies, electrostatic binding free energies,
forces, and pK shifts) under varying ionic conditions.1 Never-
theless, two challenges persist in the numerical calculation of
such systems. First, for large molecules, the mesh topologies used
to date—regular lattices and unstructured tetrahedral grids—
are subject to various inefficiencies and/or mesh generation
challenges that can be improved upon by considering an alternate
mesh structure as well as selecting a representation of the solu-
tion that reduces the mesh resolution demands. In the current
development, the PBE is solved upon a hierarchical mesh
structure variously referred to as an adaptive Cartesian grid

(ACG) or octree or simply a Cartesian mesh. The ACG terminol-
ogy is adopted here to distinguish it from regular lattices, which
are also commonly called Cartesian grids. The second challenge
is achieving reliable and rapid solution convergence for highly
charged biomolecular systems. The current article describes a
methodology that addresses both challenges, resulting in a robust
nonlinear PBE analysis capable of properly modeling salt-mediated
and nonspecific electrostatic effects in nucleic acids and their
associations with charged ligands such as cationic drugs, peptides,
and larger proteins.

One goal of the ACG-based PBE solver is to facilitate com-
putation of electrostatic properties for large-scale biomolecular
systems at the atomic level of detail using readily accessible com-
putational resources. For example, a recent experimental study
suggests that the electrostatic interactions in the ribosomal exit
tunnel can modulate the elongation rates of nascent peptides.2 For
such large-scale ribosomal systems, most Poisson�Boltzmann
studies have necessarily been based on coarse-grained molecular
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models due to memory constraints and convergence issues.3 The
PBE solver described here provides the variable mesh spacing
necessary to efficiently accommodate such nanoscale biomole-
cular assemblies. Moreover, it contains robust iterative proce-
dures that reliably converge the electrostatic solution at com-
parable rates for both the linear and nonlinear PBE of highly
charged complex biomolecular systems such as ribosomes. This
property is used to obtain a high resolution (0.3 Å) surface
potential map of the highly charged large 50S ribosomal subunit.
To the best of our knowledge, nonlinear PBE calculations for
such a highly charged and large biomolecular system have not
been previously performed on a serial platform—at least at such a
fine grid resolution. Moreover, with the computational tools
developed here, nonlinear PB calculations can be conducted in
nearly the same amount of computer time as linear ones, as borne
out in the Supporting Information, which provides such timings
for a collection of proteins.
Solution Methods for the PBE. Numerical solutions to the

PBE can be obtained using either finite difference (FD) techni-
ques, which here include finite element (e.g., unstructured
tetrahedral meshes) and finite volume-based discretizations, or
boundary element methods (BEM). Each approach has inherent
advantages, as reviewed in refs 1 and 4. Briefly, when solving the
linear PBE using the BEM, (i) only a surface mesh is required,
since the solution is expressed entirely in terms of surface
distributions; (ii) far-field boundary conditions are automatically
satisfied; (iii) the constraints upon the electrostatic potential and
its normal gradient at the molecular surface are explicitly
imposed; (iv) the potential fields associated with point charges
are expressed analytically, thereby circumventing problems relat-
ing to representing singular solutions upon grids; and (v) the
interactions between distant elements are evaluated using the
exact expressions, thus conferring high accuracy. With the introduc-
tion of fast multipole methods, computational costs have been
reduced from O(N2) to O(N log N) (N being the number of
boundary elements), thus allowing much larger problems to be
addressed. The first PBE solvers utilizing fast multipole-acceler-
ated BEM were limited to zero salt conditions.5�7 The extension
to finite salt concentrations was first achieved by Boschitsch and
co-workers4,8 and subsequently by Lu and co-workers using a
different form of the fast multipole expansion.9,10

A major limitation of BEM-based approaches is the forfeiture
of a pure surface-based solution representation and the attendant
increase in computational effort when solving the nonlinear form
of the PBE. Our experience11 has consistently shown that even
for very simple cases, computation times can easily increase by
O(10)�(100) when using the BEM for the linear part and
nonlinear terms expressed as source distributions, where the
latter appear as volume integrals over the entire computational
domain. Hybrid schemes offer one venue for retaining the
advantages of a BEM while allowing the nonlinear PBE to be
addressed.11

In the FD method, the differential form of the equations is
solved on a volume mesh that fills the region of interest. The
discrete equations can be derived according to variational
principles which underlie the finite element (FE) method or
by classical finite difference schemes based on the Taylor series
expansions about a given mesh point. The FE method provides a
general and systematic approach for developing the discrete model
upon a variety of meshes including unstructured (tetrahedral)
and curvilinear grids. In some instances however, the FDmethod
offers amore efficient approximation. For example, when adopting a

regular lattice mesh, the FD approximation to the Laplacian
operator at a mesh point both is second-order accurate and
involves only six neighboring mesh points, whereas a FEmodel is
only first-order accurate (at least in the most common imple-
mentations12,13 using linear order tetrahedral elements) and
involves all 26 neighboring mesh points, thus increasing compu-
tational requirements.
Themesh structure employed in a FDmethod directly influences

the performance and the quality of the results obtained. Histori-
cally, FD-based PBE modeling has employed two basic grid
structures:
Regular 3D Lattice. This is the grid arrangement adopted in

the popular PBE solvers such as APBS,14 UHBD,15 PBEQ,16

MEAD,17 ZAP,18 DelPhi,19 and PBSA-Amber20�22 and consists
of a uniformly spaced rectangular grid superimposed over the
biomolecule of interest. While no attempt is made to align the
mesh with the molecular surface, good estimates of the electro-
static potential solution are nevertheless obtained because this
solution is continuous across the surface. Regular lattices allow
one to readily develop a simple and efficient discretization of the
differential operators and to implement effective multigrid
procedures. However, the lack of a variable or adaptive grid spacing
capability leads to a restrictive tradeoff between accuracy and
storage constraints as larger biomolecules are considered. Further-
more, to minimize errors generated at the outer boundary of the
grid (such errors introduce biases in computed electrostatic
potential and energies), the grid must be extended sufficiently
far from themolecule so that the potential at the outer boundaries is
negligible. Nonlinear PBE calculations of highly charged biomo-
lecular systems are especially challenging in this regard since
consistent outer-boundary treatments for the nonlinear PBE
have only recently become available.23 To reduce calculation
effort and maintain good accuracy, the focusing24 procedure is
invoked where the solution obtained on a global mesh with large
mesh spacing is interpolated onto a collection of finer, localized
grids. This approach improves local accuracy but entails multiple
PBE calculations for a given molecular configuration.
Unstructured Grids. To address the shortcomings of regular

lattice grids, efforts have been directed at the use of unstructured
tetrahedral grids for biomolecules (e.g., ref 25). Such grids can
achieve good resolution over a wide range of length scales and
also offer the opportunity for solution-dependent mesh adapta-
tion. Unstructured grids have been used in the finite element
solution of the PBE to produce accurate predictions of biomo-
lecular electrostatic properties.12,13,25 A useful feature of un-
structured grids is the ability to conform to the molecular surface
so that no edges or elements intersect the surface. This allows for
inherently more accurate estimates of surface properties, parti-
cularly the electrostatic field, which is essential for reliable
prediction of electrostatic PBE forces. On the other hand,
unstructured meshes are subject to several limitations: (i) The
generation of good quality meshes is complex and time-consum-
ing, especially for grids that conform to the molecular boundary;
however active research in this area is expected to reduce the
associated computation times.26 (ii) Neighboring nodes must be
explicitly identified, thus increasing storage costs (each node has
approximately 14 neighbors, compared to six on a regular lattice
grid). (iii) Mesh adaptation procedures are complex and expen-
sive due to the large number of refinement possibilities in 3D.
(iv) Multigrid implementation is challenging because defining
coarser level meshes and linear-order accurate (the minimum
order needed for second-order PDEs) interpolation procedures
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between multigrid levels is nontrivial. (v) The discrete approx-
imation to the PBE equation generally has first-order errors
(errors are O(h) where h is the local mesh spacing) compared to
the approximation on a regular lattice, which is second-order
accurate (errors are O(h2)), so that slower convergence with
mesh spacing is obtained.
Herein, an alternate grid structure is proposed that combines

the adaptation and variable resolution features of unstructured
grids with the simple cube geometry and multigrid capabilities
enjoyed by regular lattice methods. This mesh, referred to here as
an adaptive Cartesian grid, derives from the hierarchical decom-
position of the computational domain known as an octree,27

which is obtained by recursive and selective subdivision of a cube
into smaller nested cubes (see for example Figure 2). It is noted
that an article utilizing the ACG concept to solve the nonlinear
PBE has recently appeared28 tomodel supercapacitor behavior of
porous electrodes. Their approach embodies several of the same
methodology details described below, including the derivation of
the finite difference formulas. Their applications do not appear to
call for a decomposition of the solution to eliminate singular
behavior at charge sites, and applications were limited to
comparatively simple geometries. ACGs have been widely used
in fluid mechanics applications to model flows about complex
geometries.29,30 Often, the most time-consuming and challen-
ging task in such applications is constructing a good quality mesh
(for a complex geometry, this can require several man-months),
and ACGs were developed in response to the need for a fast and
fully automated grid-generation capability.31�33 Like unstruc-
tured grids, the ACG allows the analysis to “zoom” into regions
where the solution is varying rapidly—e.g., near the molecular
surface. Elsewhere, where variations are more gradual, fewer,
larger cells may be used for optimal computational efficiency.
Outer boundaries can be placed far from the molecular boundary
to minimize the influence of boundary errors without incurring
appreciable computational cost. Compared to unstructured
grids, the ACG generation and adaptation procedures are both
simpler and less expensive computationally (for example, a mesh
containing a million nodes is easily generated in under a minute
using standard nonoptimized code on a readily accessible PC
hardware). Finally, ACG facilitates implementation of multigrid
schemes since the underlying octree data structure already
prescribes a complete hierarchy of coarser level meshes and
linearly accurate interpolation between levels is readily achieved.
In addition to using an ACG, the PBE solution methodology

presented here adopts a decomposition of the electrostatic
potential field similar to that in ref 34 to eliminate the singula-
rities at fixed atomic charge sites. In the exterior regions, the usual
total electrostatic potential is computed. Inside themolecule, one
develops the reaction field potential which contains no singula-
rities and so is accurately resolved on a mesh. The interior and
exterior solutions are connected by calculating the Coulombic
potential for nodes near the molecular boundary using fast
multipole accelerationmethods.8 By eliminating the singularities,
this decomposition (i) increases overall accuracy and reduces
sensitivity to grid translations/rotations, (ii) alleviates mesh
spacing requirements (no refinement near charge sites is
required), and (iii) allows one to directly and accurately compute
total electrostatic free energies (the grid-dependent self-
energies35 are completely absent) and forces. An interesting
consequence of i is that the regions where the computed solution
varies most rapidly are at the molecular surface rather than at
atomic charge sites. This implies that the finest mesh spacing is

warranted at the surface, and coarser elements can be employed
away from the surface.
The sections below describe the generation of the ACGmesh;

the discrete approximation of the Poisson�Boltzmann equation
on this grid, including the decomposition of the solution into the
full and reaction field potentials and the imposition of outer
boundary conditions; the solution procedure using Gauss�
Seidel iteration and multigrid; and postprocessing operations.
Results are obtained using the ACG-based PBE solver for
classical idealized problems involving one and two low dielectric
spheres, containing interior charges to affirm the overall accuracy
of the method, high resolution calculations of the electrostatic
potential and other important derived electrostatic properties
for medium-sized biomolecules, and demonstration calculations
for a selected large-scale and highly charged ribosome. In the
Supporting Information, ACG-PB predictions of electrostatic
solvation free energies are provided for a variety of proteins with
varying size, shape, and charge density along with timing informa-
tion for both linear and nonlinear PB solutions.

’METHODOLOGY

Generation of the ACG. Generation of the ACG grid for a
given molecular structure presumes availability of the atomic
coordinates (Fk), radii (σk), and partial charges (Qk). The atomic
coordinates can be obtained from structural biology databases
such as the RCSB Protein Data Bank (PDB files) or Nucleic Acid
Database (NDB files). The atomic radii can be assigned using
one of many available atomic radii sets (e.g., Bondi36). Assigning
atomic charges is more involved, especially when proper protona-
tion state assignment is required, but typically either a formal charge
set is adopted or partial atomic charges derived from molecular
mechanics force fields, such as AMBER37 or CHARMM,38 are
used. In addition to this structural description, a molecular
surface definition must also be specified. Common surface
definitions available in the ACG generation software include
the van der Waals (vdW) surface, which is the exposed surface of
the collection of overlapping spheres, and the solvent-excluded
(SE) surface (also commonly referred to as the molecular or
Connolly surface) obtained by rolling a probe sphere of radius,
rprobe (usually, rprobe = 1.4 Å for water), over the van der Waals
surface and identifying the points which can be reached by the
probe (exterior points) and which ones cannot (interior). Other
surface definitions, such as various Gaussian function-based
descriptions (e.g., ref 39), can also be used and are available in
the ACG software. Developing the ACG and assigning the
dielectric map to the resulting mesh nodes requires the ability
to determine whether a given point lies within the molecular
surface. For the vdW surface, this determination is straightfor-
ward using an inside-sphere test. For the SE surface, the test is
somewhat more involved—here, the procedures described by
Chan and Purisima40 are employed.
The ACG generation process begins by placing an initial cube

over the entire molecule. This initial cube is sized to be several
times larger than the maximum dimension of the molecule so
that the boundary condition at the outer boundary can be
accurately imposed (see below). The cube is then uniformly
subdivided a fixed number of times, L, to produce a uniform
lattice starting mesh containing (2L þ 1)3 nodes (or 8L cube-
shaped cells).
Recursive adaptation of this initial mesh then proceeds by

identifying which individual mesh cells intersect the molecular



1527 dx.doi.org/10.1021/ct1006983 |J. Chem. Theory Comput. 2011, 7, 1524–1540

Journal of Chemical Theory and Computation ARTICLE

surface. Each intersected cell is tested to determine whether one
of the following refinement criteria is satisfied:
(i) the user-specified finest mesh spacing, Δmin, is reached or
(ii) the intersected cell lies more than a prescribed distance

from the nearest atomic charge site.
Each intersected cell that does not meet either of these criteria is
uniformly subdivided into eight smaller cells. The resulting ACG
is then again subjected to thesemesh intersection and refinement
tests and the grid generation process continued. The refinement
process naturally terminates since eventually all intersected cells
meet the refinement criteria i or ii.
To prevent excessive cell size variation that can be detrimental

to solutions accuracy, the ACG is smoothed by requiring
that no terminal cell (a cell that has not been refined into
smaller ones) be larger than twice any of its neighbors. This
requirement also facilitates development of the finite difference
procedures and implementation of multigrid. If requested,
a Stern or ion exclusion layer of specified thickness, t, is
defined by appropriately marking all nodes that are outside
the molecule and less than a distance, t, away from the nearest
interior node.
When conducting electrostatic interaction or binding energy

calculations where the electrostatic energy of, say, a charged
ligand�nucleic acid complex is subtracted from the electrostatic
energies of the charged ligand and nucleic acid considered in
isolation, all three calculations (charged ligand, nucleic acid, and
charged ligand�nucleic acid pair) are conducted on the same
mesh. This is because the electrostatic interaction or binding energy
is often several orders of magnitude smaller than the individual
electrostatic energy contributions so that small errors (e.g., due
to finite mesh size) in the individual electrostatic energies appear
large relative to the electrostatic interaction energy. In such
calculations, the ACG is generated with respect to all three
geometries as if the molecule actually consisted of the super-
position of all three molecular surfaces. The same mesh is then
employed for all three energy calculations using the respective
dielectric maps.
FiniteDifferencingon theACG.TheACGcontains “hanging”

nodes, which are nodes that neighbor an element but are not
a vertex of that element (for example, a node that lies on a
midedge or the face of an element). The presence of hanging
nodes complicates the application of a variational or finite element
framework for deriving the governing equations (specifically,
compatibility between different sized elements is not easily
enforced). For this reason, a finite difference approach is adopted
to obtain a discrete expression of the PBE on the ACG. In
developing a FD approximation to the weighted Laplacian,
r 3 (εrΦ), it is desirable to simultaneously achieve the following
properties: (i) compactness, to ensure robust convergence and
numerical stability, the formula should be compact (i.e., only
involve immediately neighboring nodes); (ii) consistency, as
mesh spacing is reduced, the difference formula should converge
to the exact analytical result; (iii) positive weights, the final
expression relates the potential at a point, i, to the weighted sum
of the neighboring node potentials; ensuring that the associated
weights are positive is important for stable convergence and
conformance with maximum principles for elliptic PDEs.41 An
additional consideration for continuum electrostatic modeling is
that the dielectric “constant” changes discontinuously at the
molecular surface (MS). This makes it difficult to develop
formally consistent FD rules. However, the errors committed

in applying the FD formulas near the MS can be viewed as
perturbations of the surface geometry. Also, the success of FD
applied upon regular lattices indicates that good PBE predictions
can be obtained with simple interpolation of the dielectric/ionic
map (e.g., as currently done in any of the lattice code such as
APBS). Here, we will adopt such interpolation schemes and
confirm their effectiveness by subsequent numerical studies.
Current work is being directed at addressing accurate interpola-
tion at the surface.
The FD method begins by distinguishing between various

types of nodes. Denoting the collection of terminal octree cells,
ib, that touch a node, i, by {Ni} = {ib: ib incident to node, i} (this
implies that node i lies on the surface of ib), then three types of
mesh nodes can be distinguished.
Type 0 Node i is a vertex of all terminal cells, ib ∈ {Ni}, which

implies that it is not a hanging node. Type 0 nodes are
further distinguished into two subtypes:

Type 0A All ib ∈ {Ni} are of equal size.
Type 0B The members ib ∈ {Ni} differ in size.

Type 1 The node lies on the midedge of at least one terminal
cell, ib ∈ {Ni}.

Type 2 The node lies on the face center of exactly one
terminal cell, ib ∈ {Ni}.

Examples of these nodes are shown in Figure 1. Note that type
1 and 2 nodes are necessarily adjacent to cells of differing size.
Also, in all cases, the members of {Ni} differ by no more than a
factor of 2 in size. Finally, each node can only be of one type (e.g.,
it cannot simultaneously lie on amidedge and a face center). This
is a result of the size constraint between neighboring cells. Under
these constraints, the finite difference expressions for the differ-
ential operator, ∂/(∂x)(ε(∂Φ)/(∂x)), are now developed for
each of the node types.
The finite differencing expression for type 0A nodes is the

same as that used on a regular lattice. Along the x direction, the
contribution to r 3 (εrφ) is

D
Dx

ε
DΦ
Dx

� �
i

¼ εhi, i þ 1

ðΦi þ 1 �ΦiÞ
Δx2

� εhi, i � 1

ðΦi �Φi � 1Þ
Δx2

þOðΔx2Þ ð1Þ

where Ri is the position of node i, φi = φ(Ri), Ri(1=Ri( i(Δx), i
is the unit vector along x, and Δx is the size of the surrounding
cells. The second-order error estimate, O(Δx2), formally only
applies when the dielectric constant is not changing, which is
the case away from the molecular surface. The dielectric
constant, εhi,iþ1, is evaluated at the connecting edge midpoint.
Referring to Figure 1, the unique consistent finite difference

formula at a type 0B node involving the triplet of collinear nodes,
{0, 1, 2}, is

D
Dx

ε
DΦ
Dx

� �
1

¼ εh1, 2
Φ2 �Φ1

3Δx2
� 2εh0, 1

Φ1 �Φ0

3Δx2
þOðΔxÞ ð2Þ

whereΦi is the value ofΦ at the indicated vertex. Note that the
formula is only first-order accurate.
The FD formulas for type 1 and type 2 nodes are developed by

identifying the neighboring nodes, developing Taylor series
expansions for these nodes, and then considering how to combine
these series so that only the desired second-order derivatives
remain. For type 1 nodes such as nodeM in Figure 1, this process
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leads to the first order formula:

D
Dx

ε
DΦ
Dx

� �
M

¼ εðRc1Þ 1
3Δx2

Φ2 þΦ4

2
�Φ1 þΦ3

2

� �

� 2εhM, 9
jM �j9

3Δx2

� �
þOðΔxÞ ð3Þ

where the center of the face formed from nodes 1�2�3�4,

Rc1 ¼ R1 þ R2 þ R3 þ R4

4
ð4Þ

For a type 2 node such as node F in Figure 1, one obtains the first
order accurate formula:

D
Dx

ε
DΦ
Dx

� �
F

¼ εðRc2Þ 1
3Δx2

ðΔþΦÞ

� 2εhF, 10
jF � j10

3Δx2

� �
þOðΔxÞ ð5Þ

where the cell center,

Rc2 ¼ 1
8 ∑

8

k¼ 1
Rk ð6Þ

and the central difference approximation to ∂Φ/∂x at Rc2 is

ΔþΦ ¼ 1
4
ðΦ2 þΦ4 þΦ6 þΦ8Þ

� 1
2
ðΦM þΦa þΦb þΦc � 2ΦFÞ ð7Þ

This form is preferred over other options since it promotes
positive weights in the final assembled Laplacian approximation,
eq 8.
Summary of the FD Formulas. The FD formulas are first-

order accurate (errors are of O(Δx)) for other than type 0A
nodes. It is possible to extend them to higher order by including
additional nearby points, but this invites other problems such as
nonpositive weights and numerical instability associated with the
stronger influence from the more distant neighbors. The finite
element method applied using linear elements is also first-order
accurate (this is easily demonstrated in 1D when computing
∂
2Φ/∂x2 upon an unevenly spaced grid), whereas the regular

lattice methods are second-order accurate. The ACG-based FD
method offers intermediate accuracy since, depending upon the
degree of smoothing, the grid is populated mostly with type 0A
nodes. Hence, the discretization is second-order accurate over
most of the mesh and thus approaches the order of accuracy of a
regular lattice.
The FD approximations to the second-order derivatives in the

x direction extend naturally to the y and z derivatives which,
when assembled, yield the discrete approximation tor 3 (εrΦ).
At a node, i, this approximation can be cast in the form of a
weighted sum:

ðr 3 εrΦÞi ¼ ∑
neighbors, j

ωijðΦj �ΦiÞ ð8Þ

where ωij are the weights. For regions where the dielectric is
constant, ωij > 0. Across the surface where dielectric changes
however, some weights for type 1 and type 2 nodes at the
molecular surface may become negative, but no convergence issues
have occurred in our PBE calculations to date. It is easy to show
that this discrete approximation ofr 3 (εrΦ) upon the ACG is
compact and consistent, satisfies a discrete maximum principle
(all weights, ωij, are positive

42), and reverts to the classical finite
difference expressions when implemented upon a regular lattice.
Application to the Poisson�Boltzmann Equation. The

PBE is expressed over three distinct regions: (i) the molecular
interior or solute region, Ω1, which contains the atomic point
charges, has a low dielectric constant, ε1, and is enclosed by the
molecular surface defined previously; (ii) the exterior or ionic
solvent region, Ω2, which has a high dielectric constant, ε2, and
contains the dissolved ions; and (iii) a charge-free Stern layer (or
ion exclusion region where no mobile ions are present), Ω3, of
specified thickness about the molecular surface with dielectric
constant ε3 = ε2. The Stern layer can be used to account for the
ion size, and its thickness corresponds roughly to the hydrated
radius of the ion. In all PB calculations below, the Stern layer
thickness is set to zero.
The reduced (or dimensionless) electrostatic potential of any

arbitrary 3D complex-shaped biopolyelectrolyte,Φ, at locationR
in the computational domain, is governed by

r 3 ½εðRÞrΦðRÞ� þ 4πe
kBT

FðRÞ ¼ 0 ð9Þ

Figure 1. ACG nodes lying on the interface between two different sized cells.
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where the volume charge density in the different regions is given
by

FðRÞ ¼ Ff ðRÞ ¼ ∑
k
Q kδðR � FkÞ,R ∈ Ω1 ð10aÞ

FðRÞ ¼ FmðRÞ ¼ � 2eI1:1 sinhðΦÞ,R ∈ Ω2 ð10bÞ

FðRÞ ¼ 0,R ∈ Ω3 ð10cÞ
Note that the expression for Fm(R) in eq 10b pertains to a 1:1
electrolyte solvent (e.g., NaCl), which is assumed here for ease of
presentation. The extension to more general salt environments is
straightforward, and the ACG-based PBE solver currently accom-
modates mixtures of 1:1 and 2:1 salts11,43 and asymmetric salts.
Introducing the Debye�H€uckel screening parameter, κ, as

k2 ¼ 8πe2ðI1:1Þ
ε2kBT

ð11Þ

allows one to rewrite the PBE in the exterior domain, Ω2, as

r 3 ðεrΦÞ ¼ ε2k2 sinhðΦÞ � f ðΦÞ ð12Þ
The linearized form of eq 12, valid for small electrostatic
potentials,Φ, 1, is obtained by setting f(Φ)≈ fL(Φ) = ε2κ

2Φ.
In the ACG-based FD implementation, a discrete approxima-

tion of eq 9 is solved at everymesh node. The discretization of the
dielectric-weighted Laplacian, r 3 (εrΦ), is given by eq 8. For
nodes outside the molecule (in Ω2 and Ω3), evaluation of the
charge density in eq 9 according to eq 10b or 10c is straightfor-
ward. However, evaluation of the charge density within the
molecular interior presents numerical difficulties because the
potential becomes singular at the fixed solute charge sites (i.e.,
atomic centers), Fk. To eliminate this singular behavior, an
alternate representation of the interior potential field is adopted.
Representation of the Interior Electrostatic Potential. The

interior total electrostatic potential can be expressed as the sum
Φ =ΦrfþΦc, whereΦrf is the reaction field potential satisfying

r 3 ½εðRÞrΦrf ðRÞ� ¼ 0 ðR ∈ Ω1Þ ð13Þ
and Φc is the singular Coulombic potential given by

ΦcðRÞ ¼ 1
4π ∑

charges, k

qk
jR � Fkj

ð14Þ

Here, the reduced charge centered at position Fk is qk = (4πe/
ε1kBT)Qk. The reaction field potential contains no singularities
and therefore can be accurately resolved on the ACG. Thus, at all
interior points, the analysis solves for Φrf governed by eq 13
rather than Φ. This approach closely resembles the one im-
plemented by Zhou et al.35 upon a regular lattice. In the exterior
region, Ω2 ∪ Ω3, the full electrostatic potential, Φ, is retained,
and eq 9 is solved.
To connect these two representations, Φrf and Φ, at the

dielectric interface, first distinguish between the following four
possible arrangements for a grid point, i, and its neighbors, j:
a. Point i, and all of its neighbors, j, lie inside the molecular

interior, Ω1.
b. Point i and all of its neighbors, j, lie inside the molecular

exterior, Ω2 ∪ Ω3.
c. Point i lies in the exterior region,Ω2 ∪Ω3, but at least one

of its neighbors lies inside the molecule in Ω1.

d. Point i lies inside Ω1, but at least one of its neighbors lies
outside the molecule in Ω2 ∪ Ω3.

Cases a and b pose no difficulty since the discrete approxima-
tion eq 8 can be directly applied without modification. In case c,
one solves eq 9 and thus seeks to evaluater 3 (εrΦ). Here, the
total electrostatic potential is available at node i and all neighbors
lying in the exterior domain. However, for those neighbors
located inside the interior region, Ω1, one has only the reaction
field potential. Hence, the Coulombic potential, evaluated
according to 14, must be added to these interior grid points before
evaluating the weighted Laplacian. Thus, eq 8 is modified to

ðr 3 εrΦÞi ¼ ∑
neighbors,

j ∈ Ω2 ∪ Ω3

ωijðΦj �ΦiÞ þ ∑
neighbors,
j ∈ Ω1

ωijðΦrf
j þΦc

j �ΦiÞ

ð15Þ
Case d is treated similarly. One can solve eq 13 and subtractΦc

from all exterior neighbors, j. This option requires evaluating the
Coulombic potential at exterior grid points. Alternatively, if both
i and its neighbors, j, are sufficiently distant from the nearest
charge, then one can instead solve the equation for the full
potential, r 3 (εrΦ) = 0. Then, as for case c, the Coulombic
potential must be added to each of the interior nodes (including
node i) before evaluating the weighted Laplacian.
All cases can be expressed in terms of the generalized potential,

ΦgðRÞ ¼ Φrf ðRÞ, R ∈ Ω1

ΦðRÞ, R ∈ Ω2 ∪ Ω3

(
ð16Þ

which is the discontinuous quantity actually represented upon
the ACG mesh. The evaluation of the Laplacian can then be
expressed as a weighted summation over all neighbors (without
distinction as to whether they lie inside or outside the molecule):

ðr 3 εrΦÞi ¼ ∑
neighbors, j

ωijðΦg
j �Φg

i Þ þ σi ð17Þ

where σi represents the source terms originating from the
Coulombic potentials at neighboring interior points such as those
appearing in 15. Note that the source term is only nonzero for
points having one neighbor across the molecular surface. Thus
the Coulombic potential need only be evaluated at interior points
lying adjacent to the molecular surface, thereby minimizing the
number of Coulombic potential evaluations. To further expedite
the computation, Φc is evaluated using the fast multipole
acceleration method.4,8,44

After including the ionic source contributions from the PBE in
the exterior region, the final discrete form of the PBE can be
written:

λi ¼ ∑
neighbors, j

ωijðΦg
j �Φg

i Þ þ σi � f ðΦg
i Þ ¼ 0 ð18Þ

where fi = f(Φi
g) = 0 at interior points since one is solving for the

reaction field potential there.
Outer Boundary Conditions. The governing equations are

closed by specifying the potential at the outer boundary. One
option is to setΦ = 0 at the outer boundary and place the outer
boundary sufficiently far away to minimize the effects of outer
boundary errors—this can be accomplished more readily with
the variable mesh spacing features of the ACG. Another option is
to evaluate the outer boundary potential using the Debye�H€uckel
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approximation:

Φb =
1

4πðε2=ε1Þ ∑
charges, k

qk
jR � Fkj

expf�kjR � Fkjg ð19Þ

which is useful when solving the linear PBE. Solutions to the
nonlinear PBE, however, generally decay more quickly away
from the surface (where, |Φ| > 1) than their linear counterparts.
Thus, when considering the nonlinear PBE, eq 19 tends to
overestimate the boundary potentials, which introduces a bias
into the computed solution.
The approach23 adopted here is to approximate the electro-

static potential outside the computational domain by the approx-
imate monopole formula,Φb = Be�κ(r�h)/r where the constant,
B, is determined from electroneutrality conditions and 2h is the
side length of the overall grid. This approach is equally valid for
both the linear and nonlinear forms of the PBE and requires
only that the magnitude of the potential at the outer boundaries
|Φ| , 1. An explicit expression for B is given elsewhere.23

Iterative Solution Scheme. The discrete system, eq 18,
comprises a sparse algebraic set of coupled equations to be
solved for the potentials,Φi

g. For large numbers of nodes, direct
inversion of the equation system is not feasible, and an iterative
inversion method must be used. The choice of iteration method
has direct bearing upon the robustness and rate of solution
convergence. Here, a standard Gauss�Seidel iteration method
and multigrid are combined to achieve the good convergence.
Gauss�Seidel iteration usually results in an initially rapid, but
then slowed convergence rate. This slackening in convergence is
due to the persistence of long wavelength errors. Like most
simple iteration schemes, Gauss�Seidel updating effectively
eliminates short wavelength errors that fluctuate most rapidly
between grid points but is less efficient at removing long
wavelength components. To promote faster convergence at
moderate computational expense (storage and CPU), multigrid
acceleration is employed in the ACG-based PBE solver.
Multigrid methods exploit the error smoothing properties of

the Gauss�Seidel iteration process. After several Gauss�Seidel
iterations, the short wavelength errors are mostly eliminated, and
only long wavelength errors remain. These errors can therefore
be accurately resolved upon a coarser grid. Moreover, because
the mesh spacing is larger, the errors fluctuate more rapidly
between grid points on the coarser mesh. Therefore,
Gauss�Seidel applied on the coarser level is more effective at
eliminating those errors. This basic insight motivates the multi-
grid concept, which attempts to eliminate errors over all wave-
lengths by projecting the solution onto a hierarchy of increasingly
coarser meshes. Descriptions of the multigrid method are avail-
able elsewhere45 (including applications to the PBE46,47). There-
fore, only a brief description of the overall method is presented
here, with emphasis reserved for those implementation details
that are specific to the use of an ACG.
The multigrid algorithm begins by defining a sequence of

nested meshes, {Ml : l ¼ 0; nlev} where M0 is the finest
level mesh. Next, interpolation procedures for transferring solu-
tions and errors between successive levels are defined. In multi-
grid terminology, these are referred to as “restriction”
(transferring a solutions from the finer grid,Ml �1, to the coarser
level mesh, Ml ), and “prolongation” (transferring from Ml to
Ml �1) operators. Here bilinear interpolation is employed for the
prolongation step and its adjoint operator (full weighting45) used
for restriction.

In a two-level multigrid implementation, the solution process
begins by conducting a series of single-level Gauss�Seidel
iterations on the finest level, M0. The errors (or residuals), λi,
from eq 18 are then evaluated and restricted to the next coarser
level, l = 1, using full weighted averaging. A discrete approxima-
tion to the PBE is then developed on this coarser level. However,
the Coulombic source terms, σi, on this coarser level are set to
zero and replaced everywhere by the restricted errors which now
“drive” the coarser level solution. Gauss�Seidel iteration is then
conducted on this coarser level to obtain a correction potential
on this level, {Φ1}. The final step is to linearly interpolate the
corrections to the finer level, l = 0, and add them to the existing
solution, {Φ0} = {Φg}. The extension to multiple levels is
straightforward and explained elsewhere.45�47

Post-Processing. The total electrostatic free energy expres-
sion is taken from eq 8 of ref 48. After integration by parts of the
last term and substituting using the governing equation, eq 9, one
obtains the total electrostatic free energy, Gel, in kBT units:11

Gel ¼ Gf þ Gm �ΔΠ ð20Þ
where

Gf ¼ C
Z
Ω1

4πe
kBTε1

FfΦ dV ¼ C ∑
charges, k

qkΦð F
k
Þ ð21aÞ

Gm ¼ C~εk2
Z
Ω2

Φ sinhðΦÞ dV ð21bÞ

ΔΠ ¼ C~εk2
Z
Ω2

ð2cosh Φ� 2Þ dV ð21cÞ

and the conversion factor to express the energies in kBT units is

C ¼ ðkBTÞ2ε1
8πe2

ð22Þ

Here, Gf is the energy due to fixed charges, and Gm and ΔΠ are
the electrostatic stress and excess osmotic pressure terms,
respectively. The excess osmotic pressure contribution has
special significance when assessing salt dependencies of the
electrostatic free energies, since one can show49,50

dGel

dk
¼ � 2

k
ΔΠ ð23Þ

It is also useful to define the reaction field energy,

Grf ¼
Z
Ω1

4πe
kBTε1

Ff ðΦ�ΦcÞ dV ¼ ∑
charges, k

qkΦ
gðFkÞ ð24Þ

which is the difference between Gf and the Coulombic energy.
For interior points inΩ1 (e.g., the charge sites, Fk),Φ =Φcþ

Φg, is obtained by interpolating the reaction field potential from
the ACG and adding the Coulombic potential, Φc, from eq 14.
The electrostatic energy contribution from the interior region,
Gf, is computed by summing the product of charge times the
electrostatic potential at the fixed charge sites. The volume
integrals over the exterior region, Ω2, are evaluated by looping
over the cubic cells, ib, of the ACG and approximating the volume
integral of any function, g(Φ), byZ

V ib ∩ Ω2

gðΦÞ dV =
Δs3

8 ∑
external vertices, k

gðΦkÞ ð25Þ
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where the sum is taken over the exterior forming nodes, k, of cell
ib, and Φk is the potential at forming node k. In addition, a
correction term is added to the volume integrals to account for
the contribution outside the computational domain. This correc-
tion term is based on the samemonopole approximation used for
the outer boundary treatment and is developed fully in ref 23.

’RESULTS

The results presented here serve twomain objectives. The first
is to assess error by comparing ACG PBE predictions against
analytical solutions or results obtained by alternate highly
accurate means.11 In these studies, simple model geometries
involving one or two low dielectric spherical cavities, containing
charges, embedded in a high dielectric ionic solvent medium are
considered. The second goal is to demonstrate the effectiveness
of the ACG-based PBE solver as a practical tool for modeling
high resolution medium- and large-scale biomolecules ranging
from proteins to more highly charged nucleic acids and its large
and complex biomolecular assemblies for which numerous
X-ray crystal structures are now available. This second goal is
accomplished by computing the electrostatic potential maps.
Calculations were performed on a Dell Precision M2300 laptop
(3 GHz with 4 GB of installed memory) or a dual-processor Intel
Xeon Linux workstation (3 GHz with 1 GB of memory).

In addition to the results below, the Supporting Information
contains the computed electrostatic (solvation) energies, tim-
ings, and scaling with system size for proteins with varying charge
densities, shapes, and sizes and modeled both with the linear and
the nonlinear PBE. Those results show that for the same system
the computation time to solve nonlinear PBE is, on average, 6%
more than that for the linear PBE.
Linear PBE Solved for a Low Dielectric Spherical Cavity

with a Unit Charge Embedded in a High Dielectric Ionic
Solvent. The first model configuration studied solves the linear
PBE for a unit radius low dielectric spherical cavity, containing a
single interior charge, embedded in 0, 0.1, and 5M salt solutions.
The dielectric constants are set to ε1 = 2 and ε2 = 80, and the
temperature is set to T = 298.15 K. No ion exclusion or Stern
layer is modeled in this or subsequent PBE calculations presented
here. Since analytical expressions, developed by Kirkwood,51 for
the solution of the linear Poisson�Boltzmann equation are
available for all κ > 0,51,52 this case constitutes a useful benchmark
for establishing the overall accuracy of the ACG-PB solver. The
computational domain extends over four radii, and the mesh is
generated by requiring that any surface-intersected cell whose
size is larger than 0.125 times the distance to the nearest charge is
subdivided. As the charge is displaced toward the surface, this
subdivision criterion produces an increasingly finer mesh about
the surface point closest to the unit charge (see Figure 2). The
time to complete the calculation for all 15 charge locations was
105 s on the PC laptop machine.
The mesh and contours of constant electrostatic potential for

the casewhere the charge is closest to the surface (1� F= 3.125�
10�3 Å so that the distance from the surface is 0.3% of the
atom radius) are shown in Figure 2. With the variable mesh
spacing capability, the full mesh involves only approximately
115 000 mesh points (a comparable resolution calculation on a
regular 3D lattice would entail over a trillion points). Note that
the finest resolution provided by the ACG PB solver is at the
surface nearest the charge, not at the charge itself. This is where
the exterior full electrostatic potential and the interior reaction

field electrostatic potential vary most rapidly. The rapid variation
in the solution about the charge reflected in the contours is due to
the analytically evaluated Coulombic potential contribution.
Both outside and inside the molecule the potential maps are
smooth and well-behaved, including near the unit charge placed
inside the low dielectric sphere.
The numerical error defined as given by Erf =Grf

comp/Grf
exact� 1

is plotted as a function of distance below the surface in Figure 3
and shows that the error remains small even when the charge
comes very close to the surface. For charges located within 99%
of the spherical cavity radius, errors remain 1% or less.
Nonlinear PBE for a Low Dielectric Spherical Cavity of

Varying Central Charge in a Salt Solution. The nonlinear
behavior of a spherical cavity containing a centrally located charge is
considered to verify accurate recovery of nonlinear solutions and
demonstrate stable convergence at high net charge values. The
governing PBE in this case reduces to a second order ordinary

Figure 2. Cut through ACG for unit charge placed at F = 0.9969i inside
a low dielectric spherical cavity. The lower graph provides a closeup of
the mesh and solution near the charge site inside the low dielectric
spherical cavity.
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differential equation (ODE) that can be solved by alternative
means (e.g., Appendix A of ref 11). Two cases are considered in
this study. In the first, a centrally located 50e charge is placed
inside a 20 Å radius sphere and the 1:1 salt concentration varied.
The dielectric constant inside and outside the sphere are 4 and
78.5, respectively, and the temperature of the salt solution is T =
300 K. This case was examined by Zhou,53 and his results closely
agree with the ones obtained here. The variation of the total
electrostatic free energy, Gel, as a function of a 1:1 salt concen-
tration is also considered in Figure 4. According to eq 23, the
slope of the Gel vs κ curve is related to the excess osmotic
pressure energy contribution. This relationship thus constitutes
an internal consistency check valid for general molecular geo-
metries. The plot compares three different predictions of this
electrostatic energy slope: (i) the right-hand side of eq 23, where
the excess osmotic pressure, ΔΠ, is obtained using ACG-PBE;
(ii) differentiation of a piecewise quadratic fit to theGel∼κ curve
where Gel is obtained from ACG-PBE; and (iii) the excess
osmotic pressure predicted using the 1D analysis.11 Close
agreement is established over the entire 1:1 salt concentration
range. Theminor departure at the highest salt concentration appears
to be due to the finite differencing algorithm, the excess osmotic
pressure energy contributions obtained with the 1D solver, and
ACG-PBE remaining in close agreement.
Next, the net charge is increased from 1e, where the PBE

solution is essentially linear, to 10 000e, where nonlinear beha-
vior dominates and the ability of the ACG solver to converge the
solution in a robust manner is put to the test. In all cases, the
number of multigrid cycles required to converge the solution
ranged between 40 and 60. Figure 5 records the electrostatic free
energy contributions, normalized by Gf for the linear problem,
Gf(lin). Note that Gf(lin) can be expressed analytically, and the
resulting values are in close agreement with the numerical pre-
dictions. Normalizing the electrostatic free energy contributions
this way highlights the relative importance of the various nonlinear
contributions. Again, good agreement between the 1D and ACG
PB results is obtained. The change in normalized fixed charge
energy, ΔGf/Gf(lin) (here, ΔGf = Gf � Gf(lin) and Gf = Grf), is

seen to be negligible at small charge values but to dominate the
nonlinear contributions at higher charge values. Also, ΔGf/Gf(lin)
seems to asymptote to a constant value at very high net charges.
The opposite trend holds for the other two normalized electro-
static free energy contributions, GNa/Gf(lin) andΔΠNa/Gf(lin),

Figure 3. Error, Erf = Grf
comp/Grf

exact � 1, plotted as a function of the
distance of the interior unit charge, from the surface of the sphere. The
linear PBE is solved over a unit radius spherical cavity with ε1 = 2 and
ε2 = 80 under three different salt conditions: I1:1 = 0, 0.1, and 5.0 M
corresponding to Debye�H€uckel screening parameters, κ = 0, 0.103,
and 0.728 Å�1, respectively.

Figure 4. Comparison of salt sensitivity, ∂Gel/∂κ, obtained from (i) the
osmotic pressure,ΔΠ, computed with the ACG-PBE solver and relation
23; (ii) finite differencing of the Gel vs κ curve obtained with the ACG-
PBE solver; and (iii) a 1D high resolution calculation. Nonlinear energy
contributions as a function of the Debye�H€uckel parameter, κ, for the
single centrally located charge of 50e inside a 20 Å radius sphere. The
dielectric constants are ε1 = 4 and ε2 = 78.5.

Figure 5. Charge dependence of electrostatic free energy ratios for I =
0.03 M. Results are obtained using the ACG scheme and the 1D finite
element solution for the case of a spherical cavity with centrally located
charge. The plotted electrostatic free energies,ΔGf = Gf� Gf(lin), GNa,
andΔΠNa, are normalized by the fixed charge energy obtained from the
linear PBE, Gf(lin). In this case, this equals the reaction field energy, Grf,
since the Coulombic energy is zero.
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which individually contribute a fixed fraction of total electrostatic
energy at the low charge range. As net charge increases, however,
their relative contributions diminish to zero. Also, since these two
electrostatic free energy terms have opposite sign, their com-
bined contribution is quite small over the entire charge range.
Electrostatic Interaction Free Energies for Two Low Di-

electric Charged Spherical Cavities Embedded in an Aqu-
eous SaltMedium.The long-range and nonspecific electrostatic
interactions can modulate the kinetic rates of association of
protein�protein and protein�nucleic acid association proces-
ses.54 For instance, changes in the ionic conditions and charge
distribution of the binding partners have a significant impact
on the kinetic association rates of various biomolecular com-
plexes.55,56 The quantity of interest here is the electrostatic
interaction free energy, which is the difference between the total
electrostatic free energy of the complex and the summed total
electrostatic energies of the individual molecules considered in
isolation. Simple model two low dielectric spherical cavity
systems have been studied previously using semianalytical treat-
ments and are useful for validation purposes.57 Electrostatic
interaction or binding free energies can be difficult to calculate
because they are usually much smaller in magnitude than the
quantities being differenced. Therefore, the effects of truncation
and other discretization errors upon the electrostatic interaction
energy may be much more pronounced than for the total
electrostatic energies of the two interacting partners.
Accurate electrostatic binding free energies for realistic and

large-scale biomolecular systems are given below and elsewhere
using the ACG PBE solver.58�62 Here, the electrostatic interac-
tion between a pair of low dielectric spherical cavities, containing
interior charges, is considered as a model problem for verifying
the ability to accurately calculate these interaction energies. The
first sphere has a radius of 14 Å and contains three interior
charges, {Qi} = {�2.29,þ8,þ2.29}e, distributed along the x axis
at locations xi = {�7.8, 0, þ7.8} Å, relative to the center. The
second sphere has a radius of 21 Å and also contains three interior
charges, {Qi} = {�2.21, �12, þ2.21}e, distributed along the x
axis at locations xi = {X2 � 11.7, X2, X2 þ 11.7} Å, where the
separation, X2, is the x location of the second sphere center. The
dielectric constants chosen for this example are εin = 4 and εout =
78.5. The Debye�H€uckel screening parameter κ = 0.1316 Å�1.
Figure 6 compares the electrostatic interaction free energy

obtained using the ACG PBE solver with semianalytical
predictions57 demonstrating excellent agreement when the same
(van derWaals) surface is used to define the solute boundary that
separates the interior and exterior dielectric regions. The total
electrostatic free energies of the isolated 14 Å and 21 Å low
dielectric charged spheres are �199.3 and �283.2 kcal/mol,
respectively. Hence, the electrostatic interaction free energy is 2
orders of magnitude smaller than the individual electrostatic free
energies. As one would expect, the choice of molecular surface
affects the computed electrostatic interaction energy when
spheres are closer than the solvent probe diameter (2.8 Å).
Figure 6 also compares the electrostatic interaction energy
obtained using the solvent excluded molecular surface. The
resulting curve deviates significantly from the one using the
van der Waals surface with a factor of 4 difference being obtained
at the 35 Å separation.
High Resolution Surface Potential Maps of Nucleic Acids

and Their Binding Partners. Surface potential maps are now
routinely used to identify potential binding or recognition sites
on biomolecules at atomic resolution. For example, unique

recognition or ion binding sites in irregular RNA structures, that
contain noncanonical base pairs (e.g., GU wobble base pairs)
and/or extruded (non)canonical bases, have been identified
using the hybrid boundary element and finite difference non-
linear PB solver11 and confirmed using the ACG-PB
technology.63,64 Obtaining such quantitative or high resolution
electrostatic potential maps of large-scale biomolecules—espe-
cially highly charged ones like nucleic acids and their complexes
with various charged binding partners—is very challenging for
any PB solver. Surface potential maps are generated for three
configurations: a small, low-charge RNA binding protein along
with a single-stranded (ss) RNA binding partner, and a more
highly charged noncanonical DNA structure using the nonlinear
form of the PBE. The first case examines the binding of the
cationic Fox-1 protein (net charge = þ3e) to the RNA element
UGCAUG (PDB id: 2err, model 1), where the latter is a simple
single-stranded RNA structure. The solute boundary is modeled
using the solvent excluded surface with atomic radii and charges
specified using the CHARMM27 force field parameters.38 As
previously, the ion exclusion region is omitted; also T = 298 K,
ε1 = 2, and ε2 = 80. The surface mesh spacing resolution is set to
0.3 Å and the outer boundary set to approximately 3 times the
largest molecule dimension. In this study, the first model of the
NMR ensemble was employed to assess the error incurred in
electrostatic potential calculations. The histidine residues were
considered unprotonated, while other charged residues were
assigned protonation states based on a physiological pH value
of 7. Thus, the Asp andGlu residues had a charge of�1e, whereas
a charge ofþ1ewas assigned to the Lys and Arg residues. The 1:1
(i.e., NaCl) salt concentration was fixed at 0.1 M.
The surface maps are obtained by first identifying the mesh

edges intersected by the surface (i.e., those edges with an end
point in the interior and exterior domains) and then calculating
the intersection points. A triangulation of the intersection points
is then developed and the potentials at the intersection points
developed by extrapolating the ACG solution to the surface using
the nearest exterior mesh nodes. All surface potential maps are
produced using the commercial program, TecPlot.
As evident from Figure 7a,b, the single RNA element lies in a

distinct pocket of very positive electrostatic potential on the RNA

Figure 6. Electrostatic interaction energy for two low dielectric sphe-
rical cavities with interior charges embedded in a high dielectric ionic
solvent, as a function of separation distance between the centers of the
charged spherical cavities.
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binding domain of the Fox-1 protein. It has been previously
reported65,66—on the basis of linear PBE evaluations—that the
surface potential in the RNA binding site of this protein is
neutral. However, this is not borne out by the results obtained
here with the nonlinear PBE (Figure 7b), thus highlighting the
drawbacks of forming conclusions on the basis of linear PBE
calculations. Predictions using the linear ACG-PB solver also
show a significantly different surface potential distribution for the

protein RNA binding domain of Fox-1 relative to the nonlinear
one (see Figure 7b,c). The electrostatic potential of the ssRNA is
negative over most of its surface (Figure 7d), whereas the
negative potential regions of the RNA are attenuated with the
presence of the cationic protein (results not shown).
The second example is the deformed and nonlinear DNA

structure in association with the Tc3 transposase protein (PDB
id: 1tc3). Charges and radii are assigned using the AMBER force

Figure 7. Different depictions of the NMR structure of RNA binding domain (RBD) of Fox-1 in complex with the single-stranded UGCAUGU RNA
element (PDB id: 2err, model 1). (a) RNA phosphate backbone depicted by the dark gray ribbon and the different bases colored as adenine = red,
uracil = orange, guanine = green, and cytosine = yellow. The protein peptide backbone adopts an orange ribbon representation with positively and
negatively charged side chains shown as blue and red sticks, respectively. This view emphasizes the clustering of various cationic protein residues at the
RNA binding interface. (b) Surface electrostatic potential (in kcal/mol/e) and overall shape of the RBD of Fox-1. A well-defined and concave region of
positive potential, generated by the cationic protein residues and traced by the bent RNA structure, is clearly shown when the nonlinear PBE solution is
employed. This cationic protein (net charge =þ3e) follows the electrostatic pattern of other RNA binding proteins that have a distinct positive potential
patch on their binding interface.78 Thus, the RNA fills most of the concave blue/green protein surface to which it is complementary in both shape and
electrostatic potential. (c) Same view and color map as b but using the linear PBE. The positive electrostatic potential is now overestimated and the
positive regionmuch broader than in b. (d) Electrostatic potential of the single-stranded bent and overall negatively charged RNA structure. As expected,
an overall negative potential covers most of the RNA surface due to the presence of the anionic phosphate groups.
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field,37 and the solute boundary is represented using the solvent
excluded molecular surface. Also, T = 298 K, ε1 = 2, and ε2 = 80.
The 1:1 salt concentration is set to 0.1 M. It is desirable that the
electrostatic potential maps for nucleic acids capture unique local
sequence dependent features and the intricate phosphate charge
distribution (e.g., close clustering of phosphate groups that occurs at
helical junctions in RNA and DNA structures). Here, high resolu-
tion surface potential maps capturing these features are produced.
As portrayed in Figure 8a, the G stretch of the major groove side of
the DNA structure and its locally narrowed minor groove have a
deep negative potential.67 The extensive region of negative potential
along the G stretch of the major groove is mostly due to the
deformation of theDNA structure. Figure 8b shows how the protein
Tc3 transposasepositions several positively charged side chains along
one side of the major groove and in the narrow minor groove,
forming numerous hydrogen bonds and salt bridges in these
grooves. The linear PB solution produces much larger and more
negative potential patches on the grooves (results not shown).
High Resolution Surface Electrostatic Potential Maps of

Large-Scale Biomolecular Assemblies: Ribosomes.Due to the
large-scale and highly charged nature of biomolecular assemblies
such as ribosomes, which can contain more than a million atoms, it
is very challenging to obtain stable and accurate electrostatic
properties with standard 3D lattice nonlinear PB solvers. To date,
these calculations require access to supercomputers and special
techniques such as parallel focusing.14,68 Moreover, these calcula-
tions often encounter convergence issues when using the nonlinear
PBE necessary to properly model these highly charged systems at
the all-atom level and for resolutions finer than 0.6 Å.69�72

The computation of the surface potential can be computa-
tionally demanding for the large-scale biomolecular assemblies
here considered, making such computations inaccessible to
desktop computers and even large clusters. Thus, to the best of
our knowledge, the results here shown represent the first non-
linear PB calculation done on a serial platform for such a large-
scale biomolecular system at a level of fine grid resolution of 0.3 Å
using an all-atom model of a ribosomal subunit. All other
reported surface potential maps of large-scale biomolecular
assemblies, such as the small 30S ribosomal subunit or viruses,
that were done using serial computers were obtained with the
linear PBE solution, coarser grid resolutions, or more approx-
imate generalized Born-based approaches.3,69�76

Here, a high resolution electrostatic potential map of the large
50S ribosomal subunit structure from H. marismortui (PDB id:
3cc4) was computed using the nonlinear PBE. This large
ribosomal subunit consists of 5S and 23S RNA and numerous
proteins with 150 970 atoms and has a net charge of�2949e (see
Figure 9a). The cocrystal structure of anisomycin bound to the
50S ribosomal subunit was taken from the RCSB PDBDatabank.
All cofactors including metals and drugs were removed from the
structure and only the protein and RNA chains retained. The
CHARMM38 force field atomic radii and charges were used for
these PB calculations after the missing hydrogen atoms were
added to the structure using the pdb2pqr server.77 The 1:1 salt
concentration was 0.1 M (κ = 0.1030 Å�1), and the dielectric
constants ε1 and ε2 were 2 and 80, respectively.
Using a finest mesh spacing of 0.3 Å results in an ACG mesh

with a total of 52.5 million nodes. Meshing the minimum enclosing

Figure 8. (a) The surface potential of the deformed and nonlinear DNA. Radii and atomic charges are assigned using the Amber force field. This unique
A/B junction DNA structure generates a surface potential map with characteristics of an A-DNAmajor groove and B-DNAminor groove. A continuous
high negative potential band along the G stretch along with electropositive spots due to amino groups of cytosine is observed for this nonlinear DNA
structure. The electrostatic potential is given in units of kcal/mol/e. (b) The N-terminal DNA-binding domain of Tc3 transposase bound to the DNA
(PDB id: 1TC3). The ribbon or tube-like representation of theDNAphosphate backbone is shown in light gray and that of the peptide backbone in gold.
The bases are colored as adenine = red, thymine = orange, guanine = green and cytosine = yellow. The cationic residues that penetrate in the narrow
minor groove or face the G-stretch side of the major groove are shown in blue stick representation.
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box using a regular lattice grid with the same finest spacing
would require 354 million nodes. Here, the outer boundary
side length is 3 times larger than the longest molecular
dimension, and thus the complete mesh spans 1228 Å. Solving
the nonlinear PBE for this configuration produces stable
and converged results within 170 iterations. With the ACG-
based PBE solver, the nonlinear PBE solution for this large-
scale and highly charged biomolecular assembly took 13.5 h
using a 10-node 64-bit SGI Altix workstation. Machines of
this caliber are widespread in university research departments

and small businesses conducting computational biophysics
research.
Figure 9b�d shows the electrostatic potential maps for the

50S ribosomal subunit (PDB id: 1CC4) and viewed from z, y,
and x axes. The regions of positive and negative potential on the
molecular surface correspond to the locations of the proteins and
RNA, respectively. The presence of the proteins is essential in
order to neutralize the close repulsive phosphate�phosphate
interactions and thus help stabilize this intricate large-scale
protein�RNA complex. A closeup of a portion of the surface

Figure 9. (a) Ribbon representation of the 50S ribosomal subunit (PDB id: 3cc4; net charge: �2949e; 150 970 atoms). The protein and rRNA
molecules are shown in cyan and dark gray, respectively. (b�d) Different views of the surface potential (in kcal/mol/e) of the whole 50S ribosomal
subunit. Note that the red and blue patches correspond to regions where the RNA and protein lie, respectively. (e) Closeup view of a particular intricate
region of the complex 50S subunit showing the high quality of the generated surface potential map using the ACG nonlinear PB solver at the required
mesh spacing to resolve the surface geometry.
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potential in Figure 9e reveals the resolution and attendant quality
of the surface potential map. The linear PB solution provides a
different potential distribution on the surface of this highly
charged biomolecular entity (results not shown). Thus, the
nonlinear Poisson�Boltzmann solution should be used when
modeling nonspecific electrostatic interactions of the ribosome,
its assembly process, and associations with charged drug ligands.

’CONCLUDING REMARKS AND FUTURE DIRECTIONS

A finite difference method to solve the linear/nonlinear
Poisson�Boltzmann equation has been formulated and imple-
mented on the grid structure known as an adaptive Cartesian
mesh or octree. The generation of themesh about a biomolecular
structure, the construction of the finite difference operators upon
the mesh, the representation of the electrostatic potential inside
and outside the molecular surface, and preliminary computa-
tional results have been presented in this paper. Properties and
advantages of the ACG-based PBE approach include the
following:
• fast mesh generation due to the simple fundamental shape of
the ACG cells

• optimized grid spacing where fine cells are used where the
potential gradients are changing most rapidly (i.e., at the
surface) and coarser elements used elsewhere

• use of compact finite difference formulas to evaluate the
dielectric-weighted Laplacian and tailored for implementa-
tion on the ACG

• a representation of the potential (total potential outside the
molecule and reaction field potential inside), which com-
pletely eliminates charge singularities and numerically in-
duced self-charging energies

• a robust multigrid-accelerated convergence scheme
• the incorporation of a recently developed outer boundary
treatment to estimate the boundary potential and provide
first-order (i.e., based on a monopole approximation)
corrections to computed energies.

Application of the method to idealized configurations invol-
ving charged and low dielectric spheres embedded in a high
dielectric ionic solvent has confirmed that the method success-
fully maintains high accuracy as a charge is placed near the
surface, properly predicts the electrostatic interaction energies
for a pair of charged spheres, and reliably converges solutions for
very highly charged systems. Comparisons with semianalytical
solutions to the nonlinear PBE have verified that the ACG-based
method accurately reproduces the salt-dependent behavior of
highly charged spheres immersed in 1:1 salt solutions. PB
calculations involving very complex biomolecular systems invol-
ving highly charged nucleic acid assemblies including the 50S
ribosomal subunit have also been carried out successfully. The
ACG-PB solver in conjuction with molecular dynamics or
Brownian dynamics techniques should allow more careful and
systematic studies of the role of nonspecific electrostatic inter-
actions on the binding of various antibacterial drugs to the
ribosome and ribosome and virus assembly processes at atomic
resolution. An assessment of the performance of the nonlinear
and linear PB predictions of electrostatic solvation free energies
for a test set of 55 proteins—that vary in size, shape, and charge
distribution—is also provided in order to establish benchmark
test cases for comparisons with other PB solvers.

Ongoing activity in the development of the ACG-based PBE
solver includes improved treatment of the solution near the

dielectric interface to obtainmore accurate predictions of the surface
potential and normal gradients and, hence, forces; incorporation
of nonuniform ion size effects; the calculation of electrostatic
interaction energies between the twomolecules where the bound
and unbound states differ; and validation/testing of all of
the above new ACG-PB features for a variety of biomolecular
systems.
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’NOMENCLATURE
C = energy conversion factor, as defined in eq 22
e = protonic charge
f(Φ) = mobile ion charge function, as defined in eq 12
Gel = total electrostatic free energy, as defined in eq 20
Gf = fixed charged energy contribution, as defined in eq 21a
Gm = dielectric stress energy contribution, as defined in eq 21b
Grf = reaction field energy, as defined in eq 24
i, j, k = unit vectors along x, y, and z, respectively
I1:1 = ionic strength of the 1:1 (monovalent) salt
kB = Boltzmann constant
Ml = l th level mesh in multigrid scheme (M0 is the finest level

mesh)
qk = normalized charge, qk = (4πe/ε1kBT)Qk, where ε1 is the

interior dielectric constant
Qk = value of the kth charge, in units of e (electron charge)
Ri = position of the ith node in the ACG mesh
t = Stern layer or ion-exclusion thickness, in Å
T = absolute temperature of the aqueous salt solution, in K
δ(r) = 3D Dirac δ function centered at r = 0
Δi = size (side length) of the ith mesh cell
ΔΠ = excess osmotic pressure energy, as defined in eq 21c
ε = dielectric constant
ε1, ε2 = dielectric constant in the interior (Ω1) and exterior (Ω2

and Ω3) regions, respectively
Φ = reduced (or dimensionless) total electrostatic potential
Φc = Coulombic potential, as defined in eq 14
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Φg = potential field computed on the ACG grid and defined in
eq 16

Φrf = reaction field potential, Φrf = Φ � Φc

κ = Debye�H€uckel screening parameter, as defined in eq 11, in Å�1

λi = residual, as defined in eq 18
F = charge density, in e/Å3

Ff = contribution of fixed solute charges to the total charge
density, in e/Å3

Fm = contribution of mobile ions to the total charge density, in
e/Å3

Fk = position of kth charge
σi = Coulombic source term
ωij = weights in the discrete approximation to the weighted

Laplacian, e.g., eq 17
Ωi = volumedomains corresponding to themolecule interior (Ω1), the

Stern layer (Ω3), and the remaining region,Ω2 =R
3�Ω1�Ω3

ACG = adaptive Cartesian grid
ACG-PBE = ACG-based PBE solver
BEM = boundary element method
FD = finite difference
FE = finite element
PBE = Poisson�Boltzmann equation
PDB = Protein Data Bank
PDE = partial differential equation
SE = solvent-excluded (surface)
vdW = van der Waals (surface)
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ABSTRACT: Quantum chemical computations are used to study the electronic and structural properties of the cob(I)alamin
intermediate of the cobalamin-dependent methionine synthase (MetH). QM(DFT)/MM calculations on the methylcobalamin
(MeCbl) binding domain ofMetH reveal that the transfer of the methyl group to the substrate is associated with the displacement of
the histidine axial base (His759). The axial base oscillates between aHis-on form in theMe-cob(III)lamin:MetH resting state, where
the Co�N(His759) distance is 2.27 Å, and aHis-off form in the cob(I)alamin:MetH intermediate (2.78 Å). Furthermore, QM/MM
and gas phase DFT calculations based on an unrestricted formalism show that the cob(I)alamin intermediate exhibits a complex
electronic structure, intermediate between the Co(I) and Co(II)-radical corrin states. To understand this complexity, the electronic
structure of Im 3 3 3 [Cob(I)alamin] is investigated using multireference CASSCF/QDPT2 calculations on gas phase models where
the axial histidine is modeled by imidazole (Im). It is found that the correlated ground state wave function consists of a closed-shell
CoI (d8) configuration and a diradical contribution, which can be described as a CoII (d7)-radical corrin (π*)1 configuration.
Moreover, the contribution of these two configurations depends on the Co�NIm distance. At short Co�NIm distances (<2.5 Å), the
dominant electronic configuration is the diradical state, while for longer distances it is the closed-shell state. The implications of this
finding are discussed in the context of the methyl transfer reaction between the Me-H4folate substrate and cob(I)alamin.

1. INTRODUCTION

The key step in the catalytic cycle of the cobalamin-dependent
methionine synthase (MetH) enzyme is the transfer of a methyl
group from the methylcobalamin (MeCbl) cofactor to the
homocysteine (Hcy) substrate.1�14 The resulting cob(I)alamin
intermediate is remethylated by methyl-tetrahydrofolate (Me-
H4folate) to generate back methyl-cob(III)alamin and tetrahy-
drofolate (H4folate; Scheme 1).15�19 In other words, during the
catalytic cycle, the cobalt center oscillates between methyl-cob-
(III)alamin and cob(I)alamin.

The MetH enzyme has a modular architecture, and the cata-
lytic methyl transfer involves the interaction among different
domains.20 The crystal structure of the whole enzyme has not yet
been resolved, mainly owing to the very high degree of conforma-
tional flexibility, but the X-ray crystal structure of individual do-
mains,18,21�23 including the one that binds MeCbl,15 has been well
characterized. During the course of catalytic reaction (Scheme 1), the
two domains binding theMeCbl cofactor and theHcy substrate form
a reaction complex in which the substrate interacts with the MeCbl
from the upper face of the cofactor. However, there is no structural
information available with regard to the reaction complex, and there-
fore, the details of the reaction mechanism involving methylation

of the Hcy substrate remain a subject of debate. It is generally
believed that the enzyme operates via an SN2-type nucleophilic
displacement,7,8 though an alternative mechanism in which the one-
electron reduction of the MeCbl cofactor takes place has also been
proposed.24,25 This pathway does not impose specific geometrical
and distance constraints with respect to the substrate and cofactor as
does the SN2 mechanism, which may be advantageous from the
enzymatic point of view.

The transfer of the methyl group from the MeCbl cofactor to
the Hcy substrate results in the formation of the cob(I)alamin
intermediate.26,27 In solution, this complex is tetra-coordinated
because the change of theCo oxidation state induces the detachment
of the axial 5,6-dimethylbenzimidazole (DBI) base (Figure 1a).28

However, the question is how such displacement of the axialHis base
takes place inside the enzyme. Due to its high reactivity, there are no
structural data available for the enzyme-bound cob(I)alamin.

Several theoretical studies have investigated the electronic and
structural properties of the tetra-coordinated cob(I)alamin com-
plex (i.e., without the axial base) using density functional theory

Received: January 27, 2011
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(DFT) as well as multireference CASSCF calculations.29�32 Jensen
and Ryde30 first noticed that the B3LYP-based wave function of the
ground-state has a singlet instability, indicative of a complex wave
function involving other configurations than CoI(d8). Later, Jensen31

demonstrated that the ground state of cob(I)alamin is multiconfi-
gurational using CASSCF/CASPT2 calculations. The correlated
wave function was found to consist of a closed-shell CoI(d8)
configuration (67%) and a diradical CoII(d7)-radical corrin (π*)1

configuration (23%). The formation of such unusual electronic
configuration was explained by the overlap of low-lying metal d

orbitals with ligand orbitals at the singlet ground state, allowing the
transfer of an electron from theCo to the corrin ligand. In this regard,
the electronic structure of cob(I)alamin resembles the heme-based
compound I intermediates, as pointed out by Ryde and Jensen.33

Both cofactors have a noninnocent macrocycle that can exchange
electrons with the metal. In compound I, one electron is transferred
from the porphyrin to the Fe metal atom, whereas in the case of
cob(I)alamin, electron transfer takes place in the opposite direction,
i.e., from Co to the corrin ligand. Indeed, this proposed electron
transfer is in agreement with a previous TD-DFT(B3LYP) study by
Jaworska and Lodowski,29 who found that the lowest energy bands
(at 700 and 554 nm) in the electronic absorption spectrum of
cob(I)alamin have df π* metal-to-ligand charge transfer (MLCT)
character. However, a subsequent TD-DFT(PBE) study by Liptak
and Brunold32 questioned the open-shell antiferromagnetic contribu-
tion to the ground state. Aswill be shown later, the use of a nonhybrid
DFT functional is probably the cause of this discrepancy.

Nevertheless, all of those studies were carried out for isolated
models of cob(I)alamin without the presence of the axial base or
inclusion of the enzymatic environment. Therefore, the actual
coordination number and electronic structure of the cob(I)alamin
intermediate in MetH remain an open subject. During the catalytic
methyl transfer reaction (Scheme 1), different enzyme domains
interact with each other in order to either cleave or generate the
Co�C bond. Simultaneously, the His759 residue is expected to
move with respect to the Co metal center to break/form the Co�
NHis759 bond by analogy with the solution chemistry of the B12
cofactor.28 However, the crystal structure of the Me-cob(III)lamin
resting state15 (PDB code: 1BMT, 3 Å resolution) shows that
His759 interacts with Asp757 and Ser810 through a network of
hydrogen bonds, suggesting that His759 would be fixed with respect
to the Co center (Figure 2). On the other hand, a structural study of
the reactivation complex22 (Scheme 1) formed by the adenosyl�
methionine (AdoMet) and cob(I)alamin binding domains shows
that the axial His759 moves away from the cobalt center and makes
specific contacts with the AdoMet domain. Thus, it is still ambiguous

Scheme 1. The Catalytic Cycle (Shown in Blue) and the
Reactivation Cycle (Shown in Red) for the Cobalamin-De-
pendent Methionine Synthase (MetH)a

aH4folate, tetrahydrofolate; CH3�H4folate, methyl-tetrahydrofolate;
Fldoxd, oxidized form of flavodoxin; Fldred, reduced form of flavodoxin;
AdoHcy, adenosyl-homocysteine; AdoMet, adenosyl-methionine.

Figure 1. (a) Molecular structure of freemethylcobalamin, where R=CH3,
R1 = CH2CONH2, R2 = CH2CH2CONH2, and R3 = (CH2)2CONHCH2-
CH(CH3)OPO3

�
. (b) Gas phase model of the Im 3 3 3 [Cob(I)alamin]

enzymatic intermediate employed in the present work.

Figure 2. Close view of active site of MeCbl in the enzyme showing the
interaction of lower axial ligand His759 with the other residues of the
triad (Asp759, Ser810) as well as the nearby Leu806 based on the 1BMT
crystal structure.15
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how His759 interacts with the cob(I)alamin cofactor during the
catalytic cycle.

The purpose of this study is two-fold: First, the coordination
of the axial His759 and the cob(I)alamin cofactor inside the
enzyme is explored by employing the QM/MM approach.
Second, the complex electronic structure of the cob(I)alamin
intermediate suggested by the QM/MM results is analyzed using
DFT and CASSCF/QDPT2 calculations on gas phase models.
Finally, the implications of this finding are discussed in the
context of the methyl transfer reaction between the Me-H4folate
and cob(I)alamin.

2. COMPUTATIONAL DETAILS

Three different theoretical methods were used to study the
cob(I)alamin intermediate. First, the formation of the Co(I)
state was investigated inside the cobalamin-dependent methio-
nine synthase (MetH) enzyme employing QM(DFT)/MM.
Second, the complex electronic properties of the cob(I)alamin
and the influence of the axial base were investigated using gas
phase DFT calculations. Finally, the multiconfigurational char-
acter of the Im 3 3 3 [Cob(I)alamin] was further analyzed using
CASSCF/MC-XQDPT2 calculations.
2.1. QM(DFT)/MM Calculations. The crystal structure of the

MeCbI binding module of MetH (PDB code: 1BMT, at 3 Å
resolution)15 was used to model the cob(I)alamin intermediate,
by removing the methyl ligand and adjusting the number of
electrons of the QM system, consistent with the Co(I) oxidation
state. Initially, theHis759 residue is bound to the Co center, since
the starting crystal structure corresponds to the Me-cob-
(III)lamin resting state. However, upon QM/MM geometry
optimization, the axial base is observed to detach from the Co(I)
center. The hybrid QM(DFT)/MM calculations were per-
formed using the method developed by Laio et al.,34 which
combines the first-principles MDmethod of Car and Parrinello35

with a force-field MD methodology (i.e., QM/MM CPMD). All
details regarding the QM/MM calculations can be found in ref
25. In short, the geometry of the cob(I)alamin intermediate was
optimized as a closed-shell singlet using the BP86 functional,36,37 a
plane wave basis set with a 70�90 Ry kinetic energy cutoff, and
Martins�Troullier pseudopotentials38 to describe the interaction
between the ionic cores and the valence electrons. Two pseudopo-
tentials were tested for the cobalt atom: one with nine valence elec-
trons supplemented with nonlinear core corrections39 and another
with 17 valence electrons. To explore the possibility of spin polariza-
tion between the cobalt and the corrin, a single point calculation
within the local spin density approximation (LSD) was also per-
formed. Finally, since the GGA BP86 functional is suspected to have
problems describing a possible open-shell singlet state in cob-
(I)alamin,30,31 the B3LYP functional was also tested.
2.2. Gas Phase DFT Calculations. To get further insight into

the complex electronic properties of the cob(I)alamin inter-
mediate suggested by the QM/MM calculations, we carried out
gas phase calculations. First, we studied the His-off form of
cob(I)alamin for comparison with previous studies.29�32 Two
different gas phase models were used: a big model containing the
full cofactor with all of the side chains and a truncatedmodel with
C2 symmetry where the side chains have been replaced by
hydrogen atoms. Second, we investigated the influence of the
axial His759 in the electronic properties of cob(I)alamin. An
imidazole (Im) molecule modeling the axial His759 was placed
under the Co center in accordance with the orientation obtained

from the QM/MM calculations, and a series of displacements
along the Co(I)�NIm coordinate was generated. Geometry
optimization of all models was carried out employing the
Becke�Perdew (BP86)36,37 functional and the 6-31G(d) (5d
components) basis set, as implemented in Gaussian 03.40 This
level of theory constitutes an appropriate platform for describing
the structural and electronic properties analysis of alkyl-cobalt-
(III) complexes, as documented in the literature.41�43 However,
pure GGA functionals such as PBE44 or BP86 are known to be
unable to converge to a spin polarized solution for Co(I)
complexes.30,31 This is not the case for hybrid functionals such
as B3LYP, despite the fact that this functional underestimates the
strength of the Co�C bond.45,46 Therefore, we used B3LYP to
test the possibility of a spin-polarized solution, which may be
indicative of a more complex electronic wave function.47 In
particular, B3LYP calculations were initially performed on all
models having an even number of electrons, assuming a singlet
closed-shell wave function. Then, the unrestricted Kohn�Sham
formalism using UB3LYP was applied by mixing HOMO and
LUMO orbitals to obtain the corresponding open-shell singlet.
For each broken-symmetry solution, we examined the extent of
spin polarization between the cobalt and the corrin by analyzing
the spin density distributions.
2.3. CASSCF/MC-XQDPT2 Calculations. Since the Kohn�

Sham formalism (which is the base for DFT-based computa-
tions) is restricted to a single Slater determinant description, it
cannot describe the multiconfigurational character of the cob-
(I)alamin system. Thus, we carried out CASSCF multireference
calculations, followed by quasi-degenerate perturbation theory
(QDPT2)48 calculations with a multiconfigurational self-consis-
tent-field reference function (MC-XQDPT2) to include the
dynamical correlation, as implemented in the PC GAMESS/
Firefly QC package.49 All of the CASSCF calculations were
performed on the DFT optimized structures of the cob(I)alamin
models (without and with the Im base) using the 6-31G(d) basis
set. The details regarding the active space chosen for these
multireference calculations are described in section 3.3.

3. RESULTS AND DISCUSSION

3.1. Structure of Cob(I)alamin Inside MetH. MetH is a
modular enzyme composed of four functional domains.20 The
one considered here is theMeCbl bindingmodule,15 in which the
His759 side chain serves as the lower axial ligand (Figure 2),
instead of the DBI base of the free MeCbl cofactor (Figure 1a).
During the course of enzymatic methyl transfer, the cobalt center
oscillates between the Co(III) and the Co(I) oxidation states,
and the axial His is expected to dissociate from the cobalt center
by similarity with the behavior of the B12 cofactor in solution.
However, this assumption remains to be proved since the crystal
structure of the cob(I)alamin intermediate is not available. Here,
we have investigated the coordination of the axial His759 and the
cob(I)alamin in the MetH enzyme by means of QM/MM
calculations.
The QM/MM optimized structure of the cob(I)alamin:MetH

intermediate is shown in Figure 3, and the main structural
parameters are listed in Table 1. The optimized structure of
the Me-cob(III)lamin:MetH resting state25 is also included for
comparison. The fact that the X-ray Co�Nax bond length for
Me-cob(III)alamin:MetH is very well reproduced at the QM/
MM level strengthens our confidence that the demethylated
cob(I)alamin:MetH form would also be well characterized from
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a structural point of view using the same level of theory (i.e.,
the BP86 functional). The calculations show that the Co�
Nax(His759) distance increases from 2.27 Å in the Co(III)

oxidation state to 2.78 Å for Co(I). In other words, the axial
ligand is displaced due to the change of the Co oxidation state.
This is in agreement with the X-ray absorption spectroscopic
studies showing that cob(I)alamin in solution is not axially
coordi-
nated.28 Nevertheless, it should be noted that, differently from
the cofactor in solution, the Co atom inside the enzyme remains
weakly coordinated to the His. Most likely the axial His in MetH
cannot move away further from the Co because it is hydrogen-
bonded to Asp757 (Figure 2). Both His759 and Asp757 residues
are in a loop, conferring to them a certain degree of flexibility that
allows the axial base to be displaced during the catalytic cycle
without breaking the hydrogen bond between them. However,
this flexibility is not unlimited, because Asp757 is also interacting
with a serine of an R helix (Ser810) and a leucine of a β sheet
(Leu806), and these secondary structures are not as flexible as
the loop. As a consequence, the Co 3 3 3N(His) cannot increase
beyond∼2.8 Å without disrupting this hydrogen bond network,
something that probably has a high energy cost. Maintaining a
weak Co(I)�His coordination may be advantageous from the
enzymatic point of view, since it would allow the axial His to
recoordinate easily to the cobalt centerwhen the cofactor is remethyl-
ated. The His�Asp�Ser triad is expected to play a key role in the
Co(I) remethylation reaction bymodulating the interaction between
the Co and the axial base. Interestingly, the His�Asp�
Ser triad is conserved in all corrinoid-based proteins catalyz-
ing methyl transfer reactions (except in an iron�sulfur corrinoid
protein), and thus it is tempting to suggest that the triad plays a
similar role in all of the members of this protein family. Indeed,
Hegemeier et al.50 draw a similar conclusion for another cobalamin-
dependent enzyme, i.e., the methanol�cobalamin methyltransferase
(MetABC), on the basis of the long Co�N distance (2.51 Å)
observed in the crystal structure of the cob(I)amide intermediate and
the methylation rate of Co(I) being completely dependent on the
presence of the axial base.
The structure of the cob(I)alamin:MetH intermediate was

initially optimized considering a closed-shell singlet electronic
configuration. However, since previous DFT as well as CASSCF
calculations29�32 have shown that free cob(I)alamin has a more
complex electronic structure, we checked the possibility of having a
spin polarizatied solution inside the enzyme by using the local spin
density approximation.Despite several attempts, we were unable to
converge the open-shell singlet either with BP86 or B3LYP. The
obtained electronic state was found to be indeed an intermediate
state between two electronic configurations: the closed-shell
CoI(d8) singlet and the open-shell CoII(d7)-corrin radical (π*)1

singlet. The spin density distribution showed some unpaired
electronic density on the cobalt and the corrin ring with opposite
signs, i.e., some diradical character. Moreover, the total integrated
absolute value of the spin density was 1e� (intermediate between
the 0 unpaired electrons expected for a pure closed-shell singlet and
the two unpaired electrons for an open-shell singlet). This suggests
that the closed-shell and the open-shell singlet states are very close
in energy, so unless we force the system to be a closed-shell singlet,
the single-determinantal DFT calculations give an intermediate
state between Co(I) and Co(II)-corrin radical.
In summary, our QM/MM calculations confirm the early

proposal of Wirt et al.28 that the axial His ligand oscillates
between the His-on form in the Me-cob(III)alamin:MetH rest-
ing state (Co�N(His) distance = 2.27 Å) and the His-off form in
the cob(I)alamin:MetH intermediate (2.78 Å). Such movement
of His759 in the enzymatic environment is due to the changes in

Figure 3. QM(DFT)/MM optimized structures of MeCbl binding
domain of the MetH (a) hexa-coordinated Me-Cob(III)alamin resting
state and (b) Cob(I)alamin intermediate.

Table 1. Key Structural Parameters of the Cofactor Binding
Domain of MetH in the Me-Cob(III)alamin Resting State
(MeCbl:MetH) and the Cob(I)alamin Intermediate (Co(I):
MetH)a

MeCbl:MetH Co(I):MetH

parameter QM/MM25 X-ray15 QM/MMb

Co�C 1.99 1.96

Co�NIm 2.27 2.24 2.78

Co�N1 1.88 1.91 1.84

Co�N2 1.86 1.93 1.81

Co�N3 1.93 2.02 1.91

Co�N4 1.92 2.02 1.87
aAll distances are given in Å. bThis work.
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the electronic structure at the metal center, i.e., from Co(III) to
an intermediate Co(I)/Co(II) state. Hereafter, the complex
electronic structure of the cob(I)alamin intermediate as well as
the changes associated with the displacement of the axial base are
further analyzed using DFT and CASSCF/QDPT2.
3.2. Structural and Electronic Analysis Based on DFT

Calculations. 3.2.1. His-off Cob(I)alamin Intermediate. Table 2
shows the main structural parameters obtained for the gas phase
models of the His-off form of the cob(I)alamin intermediate
employing both the BP86 and B3LYP functionals. The geome-
tries do not differ significantly from the one inside the MetH
enzyme (Table 1), regardless of the model employed for the

cofactor (full model with all of the side chains or truncated model
with C2 symmetry) or the functional used. In particular, the
calculated Co�Neq distances (1.82�1.85 Å) are in agreement
with the average experimental value obtained from EXAFS
studies (1.86�1.88 Å).28

As for the electronic structure, themain difference between the
two functionals is that only B3LYP gives a spin polarized solution.
This may reflect that the nonhybrid functionals such as BP86 do not
describe correctly the spin polarization,51,52 even though they give
correct Co�C bond dissociation energies (BDE).45 Figure 4 shows
the (B3LYP) spin density distribution along with the number of
unpaired electrons. There is one unpaired electron on the cobalt
atom coupled antiferromagnetically with an unpaired electron on the
corrin ring, consistent with a CoII(d7)-corrin radical (π*)1 diradical
state. The spin density distributions of the full (Figure 4a) and the
truncated (Figure 4b) models are almost identical. The side chains
do not show any spin density, and the density exhibits 2-fold
symmetry. Consequently, the truncated model with C2 symmetry
was used for further analysis (Figure 4b).
From the energetic point of view, the open-shell singlet was found

to be∼4 kcal/mol (B3LYP) lower in energy than the corresponding
closed-shell configuration. Moreover, the ferromagnetic counterpart
of the open-shell singlet, a triplet CoII(d7)-radical corrin (π*)1 state,
was also found to be 3 kcal/mol lower in energy than the closed-shell
singlet, further validating the diradical contribution to the cob(I)-
alamin intermediate. Although these small energy differences are

Table 2. Main Structural Parameters of the Full and Trun-
cated Cob(I)alamin Gas Phase Modelsa

model full truncated

parameter B3LYPb BP86b PBE32 B3LYPb BP86b PBE32 CASSCF31

fold angle61 6.2 6.9 7.3 6.1

Co�N1 1.84 1.82 1.83 1.84 1.83 1.84 1.85

Co�N2 1.85 1.83 1.85 1.84 1.83 1.84 1.85

Co�N3 1.91 1.90 1.92 1.91 1.89 1.91 1.91

Co�N4 1.90 1.89 1.90 1.91 1.89 1.91 1.91
aAll distances are given in Å, and angles are in deg. N1�N4 refers to the
corrin nitrogen atoms. bThis work.

Figure 4. Spin density of (a) the full cob(I)alamin model and (b) the truncated cob(I)alamin model with C2 symmetry, computed at the B3LYP/
6-31G(d) 5d level of theory. Left, spin populations; right, R and β spin density distributions colored as green and magenta, respectively.
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within the error of the B3LYP calculation, they indicate that the
closed-shell and the diradical states are close in energy, thus suggest-
ing that the electron transfer from the CoI(d8) to the corrin(π) to
originate the CoII(d7)-corrin radical(π*)1 may be feasible (see
section 3.3.).
3.2.2. Influence of the Axial Base His. The electronic proper-

ties of cob(I)alamin were also evaluated in the presence of an
imidazole (Im) as a model of the His axial base. Since the His759
moves between 2.27 and 2.78 Å with respect to the Co center
inside the enzyme, the Co(I)�NIm distance was systematically
varied between 2.1 and 2.8 Å in the gas phase DFT calculations.
For each Co�NIm distance, the structure was optimized with
both the BP86 and the B3LYP functionals. As for the His-off
model (section 3.2.1), the structure does not differ significantly
between the two functionals, but a spin polarized solution was
only obtained in the case of the B3LYP functional
The spin density profiles (Figure 5 and Figure S1, Supporting

Information) show unpaired spin density on the Co and the
corrin ring, with opposite signs, consistent with a CoII(d7)-corrin
radical (π*)1 diradical state. However, it should be noted that the
expectation value of the total spin ÆS2æ is much larger (1.05�0.75)
than the value expected for a singlet, S(Sþ 1) = 0, indicating that
the open-shell singlet is significantly contaminated by the triplet
state. Therefore, the single-determinantal DFT results need to be
interpreted with caution. Nevertheless, we believe that the analysis
of ÆS2æwith respect to the Co�NIm distance (Figure 5) could help
to assess the extent of the diradical character. The initial ÆS2æ ∼
1.05 value remains constant until the distance reaches∼2.5 Å and
decreases up to ÆS2æ∼ 0.75 at longer distances. This could indicate
a decrease in the mixing between the open-shell singlet and
triplet states due to an increase in the energy gap between them
(see below).
Interestingly, the change in ÆS2æ is accompanied by a change in

the symmetry of spin density distribution on the cobalt atom.
This switch in the d orbital of the cobalt atom bearing the
unpaired electron can be further explained by analysis of the
energies of relevant molecular orbitals near the HOMO/LUMO

gap as a function of the Co�NIm distance (Figure 6). The
antiferromagnetic coupling occurs between the upper occupied
orbital of the corrin (π*corr) and the singly occupied d orbital of
the cobalt (dCo). This dCo orbital is the dz2 orbital at short
Co�NIm distances, but it is the dyz orbital at long distances, in
agreement with the dyz f π* MLCT band observed in a previous
study of the cob(I)alamin intermediate without the axial base.31

Moreover, the energy gap between the π*corr and the dCo orbitals
increaseswith theCo�NImdistance, further supporting our previous
suggestion that the energy gap between the open-shell singlet and
the triplet states increases with the Co�NIm distance.
In summary, the DFT calculations suggest that the cob-

(I)alamin intermediate has significant diradical character. They
also indicate that the axial base modulates the nature of the coupling
associated with CoII(d7)-corrin radical (π*)1 configuration by chan-
ging the energy of the d orbitals of the cobalt atom. However, the
multiconfigurational character of the cob(I)alamin can only be
assessed correctly using a multireference method.
3.3. CASSCF/MC-XQDPT2 Analysis. The multiconfigura-

tional nature of the wave function of cob(I)alamin was further
investigated usingmultireferencemethods (CASSCF andCASSCF/
MC-QDPT2). The selection of active orbitals for complex systems
such as cob(I)alamin always represents a challenging problem.Using
previously reportedCASSCF calculations on corrin31,53�55 or corrol-
based56 complexes as a guide, we have examined several kinds of
active spaces and finally chosen to use a space of 10 active electrons
distributed in 11 active orbitals.
Initially, CASSCF(10,11) calculations were carried out for the

His-off form of cob(I)alamin (truncated model with C2 sym-
metry, see section 3.2.1.) in order to reproduce the weight of the
diradical contribution reported by Jensen.31 The active space, as
shown in Figure S2 (Supporting Information), is very similar to
that reported in ref 31. Second, we probed the effect exerted by
the axial ligand on the electronic structure of the Im 3 3 3 [Co

I-
(corrin)] complex by performing a series of different CASSCF
calculations with the same active space (Figures 7 and Support-
ing Information, S3�S9) but varying the Co�NIm distance

Figure 5. Evolution of the expectation value of the total spin, ÆS2æ, along with the spin density distributions during the elongation of the Co�NIm

distance in the Im 3 3 3 [Cob(I)alamin] model system.
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from 2.1 Å to 2.8 Å. In particular, the active space for Im 3 3 3
[CoI(corrin)] is comprised of the dx2�y2�N(σ*), dxy, dxz, dyz, and
3dz2 þ π* orbitals, and the respective correlating orbitals are
π* þ 3dz2, 4dz2, dx2�y2 þ N(σ*), 4dxy, 4dxz, and 4dyz (Figure 7).
Note that this active space includes not only cobalt orbitals but
also the corrin orbitals that may be important for the charge
transfer between the corrin ring and the metal. The pair of
correlating orbitals numbered 109 and 116 describe a σ* dona-
tion from the lone electron pairs of the equatorial nitrogen atoms

to the dx2�y2 orbital of cobalt. In addition, we have included the
lowest unoccupiedπ* orbital of corrin, because it has been shown
to be necessary to describe the electron configuration of the His-
off form of cob(I)alamin.31 This orbital mixes with the 3dz2 cobalt
orbital at a short Co�NIm distance (CASSCF orbitals numbered
113 and 114, see Figure 7 and Figure S3�S5, Supporting
Information), but with the 3dyz orbital at long distances
(CASSCF orbitals numbered 112 and 114, see Figures S6�S9,
Supporting Information). Finally, an extra orbital has been added

Figure 6. Variation of HOMO and HOMO�1 based orbital energies with the Co�NIm distance calculated at the UB3LYP level of theory.

Figure 7. CASSCF active space orbitals used in the calculations of the Im 3 3 3 [Cob(I)alamin] model system at a Co�NIm distance = 2.2 Å.
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to the correlating orbitals, in order to include the double shell
effect57 to all d orbitals.
The calculations reveal that the overall wave function of

cob(I)alamin has multireference character, comprising five major
configuration state functions (CSFs) that include single and double
excitations (Figure S10, Supporting Information). By means of a
unitary transformation to localized orbitals, this complex wave
function can be simplified to four dominant configuration state
functions (CSFs), as plotted in Figure 8. CSF1 is the closed-shell
singlet, corresponding to the CoI(d8)-corrin (π*)0 configuration.
The open-shell singlet, representing theCoII(d7)-corrin radical (π*)1

configuration, consists of two major configurations (CSF2 and
CSF3), both corresponding to charge transfer states where one
electron from a d orbital of Co (dz2 or dyz, respectively) has been
shifted to the corrin π* orbital. In addition, there is a small
contribution of the double metal-to-ligand excitation, i.e., CoIII(d6)-
corrin anion(π*)2 (CSF4). Interestingly, the weight of these different
CSFs varies with the Co�NIm distance. The weight of the closed-
shell CoI(d8) configuration increases with the Co�NIm distance, as
the overall diradical character decreases. However, the behavior of the

two-diradical contributions is different. Theweight ofCSF2decreases
abruptly for Co�NIm distances > 2.5 Å, whereas the weight of CSF3
increases. The crossing between the twodiradical configurations takes
place at ∼2.6 Å and can be explored by analyzing the Mulliken
populations (Table 3) and the pure fragment orbitals obtained after
localization (Figure 9). When the Co�NIm distance is shorter than
2.5 Å, the electron is transferring from the dz2 cobalt orbital to the
corrin π* orbital, whereas when it is longer than 2.5 Å the electron is
shifted from dyz to π*. Indeed, the localized orbitals are consistent
with the orbitals resulting from adding and subtracting the original
HOMO (or HOMO�1 for longer Co�NIm distances) and LUMO
orbitals for each Co�NIm distance:

Co�NIm < 2:5 Å φ113 þ φ114 f dz2 and φ113 � φ114 f π�

Co�NIm > 2:5 Å φ112 þ φ114 f dyz and φ112 � φ114 f π�

This switch in the cobalt d orbitals with the change in the axial
bond length is consistent with the spin-polarized results obtained

Figure 8. Weight (%) of the major configurations (CSFs) contributing to the ground state CASSCF wave function as a function of the Co�Nlm

distance for the Im 3 3 3 [Cob(I)alamin] model system. The description of the CSFs is given in Table 3.

Table 3. Composition of the CASSCF Wave Function of Cob(I)alamin for Each Co�NIm Distance, in Terms of the Mulliken
Occupation Numbers of the Three Natural Orbitals Involved in the Open-Shell Singlet Description and the Weights of the Major
Configurations State Functions (CSF1, CSF2, CSF3, and CSF4)

Co�NIm (Å) orbital occupationa CSF1 (dz2)
2(π*)0 (wt %) CSF2 (dz2)

1(π*)1 (wt %) CSF3 (dyz)
1(π*)1 (wt %) CSF4 (dyz)

2(π*)0 (wt %)

2.1 ...(dyz)
1.97(dz2)

1.19(π*)0.81... 6 80 3

2.2 ...(dyz)
1.97(dz2)

1.21(π*)0.79... 10 76 6

2.3 ...(dyz)
1.97(dz2)

1.23(π*)0.76... 11 72 5

2.4 ...(dyz)
1.96(dz2)

1.34(π*)0.66... 19 60 8

2.5 ...(dyz)
1.90(dz2)

1.50(π*)0.57... 35 36 15 3

2.6 ...(dyz)
1.50(dz2)

1.94(π*)0.51... 51 13 21 4

2.7 ...(dyz)
1.59(dz2)

1.95(π*)0.42... 57 4 24 5

2.8 ...(dyz)
1.59(dz2)

1.95(π*)0.42... 59 1 24 5
aThe Mulliken population analysis is shown for three natural orbitals involved in the open-shell singlet state. The rest of the active space orbitals are
represented by dots.
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from DFT(UB3LYP) calculations. The availability of different
cobalt d orbitals in the active space chosen for the calculations
allows the system to change the dCo orbital that participates in the
diradical state during the elongation of the Co�NIm distance. It
should also be noted that the overlap between the π* corrin orbital
and the singly occupied cobalt d orbital is larger for dyz than for dz2,
resulting in a higher weight for the CSF3 configuration than for
CSF2, although the sum of both contributions reduces significantly
with increasing Co�NIm distance. This is in line with the increasing
closed-shell character as well as the appearance of the small contri-
bution from the double excitation (CSF4).
In addition, state average CASSCF/MC-XQDPT2 calcula-

tions also reveal that each excited state has a significant diradical
character, showing metal-to-ligand charge transfer (Table S1, Sup-
porting Information). Thus, at Co�NIm= 2.1 Å, the correlated wave
function of the ground state is mainly composed of the open-shell

singlet, CoII(d7)-corrin radical (π*)1 configuration. This diradical
weight decreases as the axial bond is elongated, such that at Co�NIm

= 2.8 Å the diradical weight is only 24%, similar to the result obtained
by Jensen31 for the cob(I)alamin model without an axial base. In
other words, the dominant contribution to the ground state wave
function is the diradical configuration when the His is bound to the
cobalt atom, but the closed-shell singlet, CoI(d8) configurationwhen
the axial His is weakly coordinated.
3.4. Energy Changes as Function of Co�NIm Distance.

Finally, we have calculated the energy of the Im 3 3 3 [Co
I(corrin)]

complex as a function of the distance between Co and NIm atoms
in order to evaluate the energy cost of displacing the axial ligand
(Figure 10). We have employed single-determinant (DFT with
either the BP86 or the B3LYP functional) and multireference
(CASSCF and CASCF/MC-XQDPT2) methods and different
basis sets (6-31G(d) and 6-311G(d,p)). Regardless of the
computational method used, the curve is clearly repulsive.
However, it should be noted that the (CASSCF/MC-XQDPT2)
energy at a Co�NIm distance ∼ 2.3 Å (i.e., in the Me-Cob-
(III)alamin resting state of the MetH enzyme) is only 4 kcal/mol
higher than at ∼2.8 Å (i.e., the calculated value for the cob-
(I)alamin intermediate, see section 3.1). Therefore, although the
change of distance causes noticeable changes in terms of
electronic properties of the Co center (from CoII-corrin radical
to CoI), it is energetically not costly.
3.5. Implications for the Remethylation of the Cob-

(I)alamin Intermediate in MetH. The methyl transfer reaction
from Me-H4folate to cob(I)alamin to generate the Me-cob-
(III)alamin resting state (Scheme 1) is generally assumed to
occur through a SN2-type displacement. However, in view of the
present work, it can be suggested that (i) a radical mechanism,
consisting of an electron transfer (ET) followed by a methyl radical
transfer, is also possible and that (ii) the axial base would have a
decisive role regarding the enhancement of the ET-basedmechanism
by modulating the cob(I)alamin electronic properties.
At shorter Co�NIm distances (<2.5 Å), the dominant electro-

nic configuration is diradical, with a Co(II) and an electron
located on the corrin ring. This would favor the radical mechan-
ism, in which an electron is initially transferred from the corrin to

Figure 9. Pure fragment localized orbitals, describing the electron
transfer between the cobalt and the corrin. (a) Co�NIm distance < 2.5 Å;
the electron is transferred fromCo(dz2) to corrin(π*). (b) Co�NImdistance
> 2.5 Å; the electron is shifted from Co(dyz) to corrin(π*).

Figure 10. Change in the ground state energy with the Co�NIm distance, computed with different DFT functionals and ab initio CASSCF/MC-
XQDPT2 methods.
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the Me-H4folate in order to generate a Co(II) and [Me-
H4folate]

•� state. Subsequently, a methyl radical would be
transferred from [Me-H4folate]

•� to Co(II), forming Me-Cob-
(III)lamin. This methyl radical transfer would be in line with the
reductive cleavage mechanism proposed for the methyl transfer
fromMeCbl to theHcy substrate (Scheme 1), where the electron
is transferred from the Hcy to the MeCbl, followed by a methyl
radical transfer from the one electron reduced form of MeCbl to
the Hcy substrate.24,25 In other words, the reactionmechanism of
MetH would not only involve the Co metal but also the corrin
ligand, which can activate both substrates (Me-H4folate and
Hcy) of the MetH enzyme by ET. On the other hand, at longer
Co�NIm distances (>2.5 Å), the dominant configuration is
closed-shell, with an electron pair located on the metal center
consistent with a Co(I) oxidation state. This would favor an SN2-
type mechanism in which the Co(I) nucleophile directly ab-
stracts the methyl group of Me-H4folate.

4. SUMMARY AND CONCLUSION

In the present theoretical study, the electronic and structural
properties of the cob(I)alamin intermediate have been analyzed
using QM(DFT)/MM, gas phase DFT, and CASSCF/QDPT2
calculations. Because previous studies29�32 did not take into
account the influence of the protein environment, we initially
performed QM/MM calculations to study the formation of
the Co(I) state inside the MeCbl domain of the methionine
synthase (MetH) enzyme. The observed displacement of the
axial His759 from the cobalt center is in agreement with the
model proposed by Wirt et al.28 based on the tetracoordinated
state of free cob(I)alamin. However, His759 is weakly coordi-
nated inside the enzyme (QM/MM optimized Co�N(His)
distance = 2.78 Å), where the presence of the catalytic triad
(His759�Asp757�Ser810) and the hydrogen bonds with other
residues reduce its conformational freedom. This implies that the
remethylation of the cob(I)alamin cofactor by Me-H4folate
(Scheme 1) occurs in the presence of the axial ligand, and thus
His759 may have an influence in this methyl transfer reaction.

Consequently, we have analyzed the influence of the axial
ligand in the electronic structure of cob(I)alamin cofactor using
gas phase DFT followed by CASSCF/QDPT2 calculations.
Irrespective of the theoretical method used, our results show
that the ground state of cob(I)alamin is multiconfigurational, in
agreement with a previous study of the cob(I)alamin cofactor
without the axial ligand.31 In addition to the closed-shell Co(I), a
diradical Co(II)-corrin radical configuration (formed by electron
transfer from the cobalt to the corrin ring) contributes to the
electronic structure of the cob(I)alamin intermediate, revealing
the noninnocent behavior of the corrin ring.33 The weight of
these two configurations depends on the distance of the axial base
His from the Co center. The main contribution to the ground
state wave function at short Co�NIm distances is the diradical
configuration, whereas at long distances, it is the closed-shell.
Therefore, our results suggest that (i) the standard description of
the Co(I) nucleophile is not appropriate for cob(I)alamin, due to
the noninnocent character of the corrin ring, and (ii) the distance
between cob(I)alamin and the axial His plays an important role
in modulating the nucleophilicity of Co(I).

In view of our results, we have proposed that the remethy-
lation reaction in MetH (Scheme 1) could involve not only
the metal (i.e., the closed-shell Co(I) configuration) but also
the corrin ring (i.e., the diradical Co(II)-corrin radical

configuration). In other words, in addition to the traditionally
assumed SN2 mechanism, our findings suggest the possibility of
an alternative radical mechanism, in which an electron is
transferred from the corrin to the Me-H4folate in order to
generate Co(II) and [Me-H4folate]

•�. It should be noted that
this ET does not require the presence of any strong reducing
agent near the CH3�H4folate substrate but rather the cofactor-
induced formation of anion-radical-like species within the cob-
(I)alamin:[Me-H4folate] reactant complex. Indeed, earlier stud-
ies by Marcus,58 Shaik et al.,59 and Zipse60 already discussed that
such ET bond-breakage mechanisms significantly enhance the
reaction rates in comparison to SN2 mechanisms. The energetics
and dichotomy of the SN2 and radical mechanisms in the methyl
transfer reaction fromMe-H4folate to cob(I)alamin are currently
being investigated in our group.
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ABSTRACT: The distinct conformational dependence of chemical shifts caused by R-helices and β-sheets renders NMR chemical
shift analysis a powerful tool for the structural determination of proteins. However, the time scale of NMR experiments can make a
secondary structure assignment of highly flexible peptides or proteins, which may be converting between conformational substates,
problematic. For instance the amyloid-β monomer, according to NMR chemical shifts, adopts a predominately random coil struc-
ture in aqueous solution (with <3% R-helical content). Molecular dynamics simulations, on the other hand, suggest that R-helical
content can be significant (10�25%). In this paper, we explore the possible reasons for this discrepancy and show that the different
results from experiments and theory are not necessarily mutually exclusive but may reflect a general problem of secondary structure
assignment of conformationally flexible biomolecules.

1. INTRODUCTION

One of the hallmarks of Alzheimer’s disease is the deposition
of fibrils containing the amyloid-β peptide (Aβ) in the extra-
cellular space of the limbic and association cortices (for recent
reviews see refs 1 and 2). Aβ is a 39 to 43 amino acid protein
derived from the normal metabolism of the transmembrane
amyloid precursor protein (APP).3�5 The 43 amino acid frag-
ment is characterized by the sequence: DAEFRHDSGYEVHH-
QKLVFFAEDVGSNKGAIIGLMVGGVVIAT. The remaining
alloforms are derived by deleting residues from the C-terminal end.

The most abundant form is the 40 amino acid alloform de-
noted Aβ(1�40).6 However, the most toxic form has been
identified as the 42 amino acid peptide Aβ(1�42).6 There is
growing evidence that the toxic agents in Alzheimer’s disease are
small soluble oligomeric structures of Aβ; in this model, the fibril
is a symptom of the disease rather than a causative agent itself.7�9

In order to understand the pathology of Alzheimer’s disease and
to be in a position to effectively develop drugs, a detailed atom-
istic knowledge of the conformational transitions connecting the
native form (transmembrane and APP-incorporated) to the fibril
is desirable.

Under normal physiological conditions, Aβ aggregates quickly,
rendering standard experimental tools of biochemistry ineffective for
characterizing the intermediate species. As a consequence, the bulk of
our structural knowledge refers to the two end-points of the
conformational transition. Although no direct structure of APP-
incorporated Aβ is available, a number of experimental model
studies,10�14which simulate transmembrane conditions, have shown
that Aβ exists primarily as two R-helices connected through a kink
spanning residues Gly25�Asn27. A longer helix contains residues
10�25, and a shorter one contains residues 27�35 (see Figure 1).
The N-terminal end (residues 1�9) adopts variable conformations
depending on the exact experimental conditions (i.e., pH, tempera-
ture, and stabilizing agents) but is describedmainly as “unstructured”.

The fibril containing Aβ(1�40) monomers has been char-
acterized by solid-sate NMR15 and is present as a pair of

antiparallel β-sheets spanning residues 10 to 40 with a turn located
between Glu22 and Lys28. Again, the N-terminal end (residues
1�9) is unstructured (not shown in Figure 1). In addition, an im-
portant turn-stabilizing salt bridge between Asp23 and Lys28 has
also been identified.

The Aβ monomer in aqueous solution at a pH of ∼7 can be
considered as the first stage of the transition from membrane
bound Aβ to the fibril, making a structural analysis of this situa-
tion highly desirable. However, the rapid in vitro aggregation of
Aβ makes a direct experimental evaluation of the monomeric
structure difficult to obtain. Despite this difficulty, a number of
CD spectra and solution NMR studies of the full-length species,
i.e., Aβ(1�40) and Aβ(1�42), have been carried out.16�19

In addition, the solution structure of the fragment containing resi-
dues 10�35 has been characterized by NMR.20,21 This fragment
has a higher solubility in aqueous solution and has been sug-
gested as a good structural model for the full-length peptides.
The consensus of these studies is that the Aβ monomer adopts
predominately a random coil structure in solution with little or
no well-defined secondary structure motifs. One particular spec-
trum based on CD suggests, for Aβ(1�42), 79% random coil,
13% β-turn/β-strand, and 3% R-helix.18 An NMR study of
Aβ(1�42),16 which analyzed the secondary structure using
chemical shifts, indicated that the R-helical content is 0%
(derived from CR chemical shifts) and the β-strand content is
20% (derived from HR chemical shifts), in good agreement with
the CD spectrum. This study employed the use of the chemical
shift index (CSI) method,22 which is an important tool for
identifying secondary structure elements of large biomolecules.
The method is based on the observation made in the early
1980s23 that CR protons experience a relative upfield shift
when the residue in question is incorporated into an R-helix
and a relative downfield shift when incorporated into a β-sheet.

Received: March 4, 2011
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Since then, similar chemical shift-to-structure correlations have
been reported for other nuclear centers, including CRs, Cβs, and
C’s, (for reviews, see refs 24 and 25); however, the correlation
may be reversed. The identification process requires the deter-
mination of a set of “random coil” (rc) values that lie in the
middle of the R-helix and β-sheet extremes. The reference values
give the conformational dependence on the chemical shift as

Δδis ¼ δiobs � δirc ð1Þ
Secondary structure is then assigned through a set of well-defined
rules.25

Molecular dynamics (MD) simulations do not suffer from the
same difficulties as experimental studies in that the solution struc-
ture of the monomer can be probed directly. However, caution
needs to be exercised with MD simulations of Aβ because it has
been shown that kinetic trappingmay occur;26 therefore, long time
scales and/or enhanced sampling is required in order to effectively
sample the conformational space. From the plethora ofMD studies
in the literature, only a handful satisfy either or both of these
criteria.26�30 The general consensus of these studies is that Aβ has a
predominately random coil and turn structure, in agreement with
experimental results, but the R-helical content differs significantly
from the experimental findings. Depending on the MD protocol
used, the total helical content (Rþ 310þ π) is at least 10% (using
the AMBER99SB31 force field) and can be as high as 25% (using
the CHARMM1932 force field). However, a number of force fields
have been shown to overstabilize helical content by up to a factor
of 2.31 Taking the possible overstabilization into account, a helical
content of no less than 10�12% is predicted by theory, which is
at least 4 times greater than the experimental findings.

In the present work, we investigate this discrepancy by carry-
ing out enhanced sampling molecular dynamics simulations and
evaluating the secondary structure content of Aβ(1�42) via the
conformational dependencies of chemical shifts. Our results sug-
gest that because both downfield and upfield shifts may occur,
conformationally flexible biomolecules may on average give
NMR signals that can be interpreted as random coil or turn ele-
ments. However, in certain extreme cases, the average chemical
shift of a particular nuclear center may be sampling from both
helical and β structures with little or no “random coil” structure
present, even though the average NMR signal suggests that a
random coil structure dominates. In other less extreme cases, the
average chemical shift is sampling from any of a number different
motifs during the course of the simulation, but one single averaged
chemical shift does not capture this complexity. We then show
how the helical content depends on its definition, and for a flexible
biomolecule, a single “static” content is not the appropriate
measure for helicity.

The idea that a single dominant configuration may lead to
inconsistencies in the interpretation of spectroscopic data for

flexible biomolecules is not new. In particular, vanGunsteren and
co-workers have shown how the correct interpretation of NOE
data and J-coupling constants requires the incorporation of
additional conformations along with the dominant structure.33,34

Further examples where a conformational distribution is impor-
tant for the correct interpretation of spectroscopic quantities
have been reviewed elsewhere.35

2. COMPUTATIONAL DETAILS

Replica exchange molecular dynamics (REMD)36 has emerged
as a method that explores a significantly larger portion of phase
space than what a single-temperature simulation of the same
(aggregate) length can achieve.37 However, a major drawback of
conventional (temperature) replica exchange molecular dy-
namics is that the number of replicas needed to span a given
temperature range increases as the square root of the number of
degrees of freedom in the system. Numerous techniques have
been developed in order to deal with this problem, which include
optimizing the allocation of replicas,38 using a perturbation on
the Hamiltonian (rather than temperature) when defining each
replica (H-REMD),39�41 and coupling replicas to reservoirs of
pregenerated ensembles.42,43

Another novel approach is to retain the conventional (tem-
perature) REMD protocol but use a modified Hamiltonian when
attempting exchanges. In the formulation by Simmerling and co-
workers,44,45 the exchange attempts aremade with aHamiltonian
that reduces the total number of degrees of freedom of the
system. Instead of using the entire periodic box for exchange
attempts, a predetermined subset of explicit water molecules is
retained around the solute of interest; this subsystem is then
immersed in a dielectric continuum. We emphasize that only the
exchange attempts use this hybrid Hamiltonian; the dynamics
are propagated with a full periodic box of explicit waters. With
a reduced number of degrees of freedom for the exchange
attempts, the “hybrid-REMD” approach uses fewer replicas for
a given temperature range. Promising results have been pub-
lished showing that this scheme can reproduce properties derived
from full REMD simulations.44

There is no recipe for choosing the number of explicit water
molecules when swaps are carried out. It has been recommended
that the first solvation shell be used because in some instances
increasing the number of waters to include the second solvation
shell gave less satisfactory results. This indicates that conver-
gence with respect to the number of explicit water molecules may
not be a monotonically decreasing function. In light of this, we
chose to saturate the system with as many explicit water mole-
cules as we could computationally afford and thus settled on
5000. This number may be compared with approximately 350
and 600 water molecules in the first and second solvation shells,

Figure 1. Key features of the conformations associated with transmembrane amyloid-β and when incorporated in a fibril.
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respectively, of Aβ(1�42). To determine the temperature
spacing between replicas, we chose initial temperatures using
an online predicting algorithm.46,47 After propagating the dy-
namics for approximately 2 ns, energetic data from the exchange
attempts using the hybrid Hamiltonian were plotted against the
temperature. An exponential curve was then fitted to the data to
give an expression for the temperature as a function of the
energy. The resultant curves were used to solve iteratively the
Monte Carlo swap condition for a given acceptance ratio (p), i.e.,

p ¼ exp½ðE2 � E1Þðβ2 � β1Þ� ð2Þ

and thus obtain an approximation to the ideal temperature
spacing.

The final numbers of replicas, theoretical swapping probabil-
ity, and temperature distributions were set to the following: 16
replicas, 8.5% probability, with temperatures set to 282.0, 291.0,
300.0, 310.0, 320.0, 331.0, 342.0, 354.0, 366.0, 380.0, 393.0,
408.0, 424.0, 440.0, 457.0, and 476.0 K. In addition to these
parameters, the simulations were carried out using the AMBER 9
software package48 using the ff03 force field,49 which has been
shown to give good population distributions for secondary
structure elements in biomolecular simulations compared to
the other Amber force fields but may overpopulate helical
structures.50 The replica exchange simulations were set up by
first surrounding the Aβ(1�42) monomer (coordinates were
obtained from the PDB structure ID 1Z0Q) in a box of 16 777
TIP3P water molecules. The protonation states of titratable
residues were adjusted according to a pH of approximately 7.0
achieved by using empirical structural rules to determine the pKa

of each residue.51 This resulted in standard protonation states for
all residues, giving the protein an overall charge of �3.0. His6,
His13, and His14 were found to have pKa’s of 6.4, 7.0, and 6.4,
respectively, and are all surface exposed. It is likely that the
protonation states of these residues are in rapid equilibrium;
therefore, we arbitrarily chose to protonate the ring in the δ
position. To neutralize the �3.0 charge, we chose to use a
background jellium rather than explicit counterions to avoid
spurious coordination effects. This decision was made because
the structure of Aβ seems to be acutely sensitive to external
factors, and we wanted to draw conclusions in the absence of any
other extraneous elements that may bias the statistics. Following
energy minimization to remove close contacts, NPT simulations
were run for a single system using a 2 fs time step and Langevin
dynamics with a collision frequency of 1.0 ps�1 to couple to the
constant target temperature of 300 K and a Berendsen barostat to
control pressure using a coupling constant of 2.0 ps to the target
pressure of 1 bar. A 10.0 Å cutoff for nonbonded interactions was
used in combination with the particle mesh Ewald procedure for
long-range electrostatics, while H�X bond lengths were con-
strained using the SHAKE algorithm.52 This single simulation
was run until both the pressure and temperature stabilized
(∼100 ps) and was then used as the starting point for each
replica of the REMD simulations, which were carried out in the
NVT ensemble. Temperatures for each replica were defined in
the manner described above, and swaps were attempted every 2
ps. After a further equilibration of approximately 10 ns per replica,
structural data were accumulated for 103 ns per replica, with
structural data sampled every 2 ps (resulting in ∼45 000 config-
urations per replica). This gave an aggregate simulation time of 1.65
μs. The theoretical swapping probability, based on the temperature
spacing, is determined to be 8.5%; the actual swapping probability

was found to be 6.3%. Although this is a low probability, the
frequency of swap trials is high, and also the length of the simulation
is long. This means that the number of successful swaps for our
simulation was relatively high (9857), indicating that the REMD
simulation is effective. In order to illustrate the efficiency of the
REMD simulation, we ran a straight NPT molecular dynamics
simulation at 300 K of the same system for approximately 500 ns,
with data sampled every 12 ps (∼40 000 configurations), and
compared this simulation to the REMD 300 K temperature
ensemble. Tomake the comparison, we projected all configurations
from the 300 K REMD and constant temperature ensembles onto
their first two principal components, calculated by combining the
two trajectories together and analyzing their covariancematrix. The
total combined configurations number approximately 80 000. The
projections are shown in Figure 2.

The figure clearly shows that the REMD simulation at 300 K
covers the PCA-1/PCA-2 plane much more extensively than the
constant temperature simulation.53 This is particularly important
since the constant temperature simulation is run for effectively
5 times the length of the REMD simulation (500 ns versus 100 ns
per replica), indicating that enhanced sampling is required for
simulations of Aβ(1�42) because of kinetic trapping. This has
been alluded to in a previous study.26

In addition to the simulations carried out for the Amyloid-β
peptide, we also ran a small number of pentapeptide simulations
of peptides having the general formula GGXGG. These simula-
tions are discussed in the context of analyzing the change in
chemical shift (see eq 1 and section 3.2), as evaluated from our
theoretical calculations. Initially, we ran these simulations in 15 Å
boxes of TIP3P water using the NVT ensemble; after a short
equilibration period (∼200 ps), we switched to the NPT en-
semble to equilibrate the density of water. Statistics were then
gathered using the same control parameters given above for the
constant temperature simulation of Aβ(1�42) with the follow-
ing differences: Acetyl and methyl end-caps were used to prevent
charge interactions affecting the equilibrium population of the
peptide. In addition, we used the Amber ff99SB force field.31

These simulations were not run for a fixed time but rather until

Figure 2. Comparison of replica exchange and constant temperature
molecular dynamics at 300 K for Aβ(1�42). Each point represents one
configuration generated either at 300 K from the REMD simulation
(black) or at 300 K from a straight constant temperature simulation
(red). The configurations are projected onto the plane of the first two
principal components (PCA-1, PCA-2) calculated by analyzing the
covariance matrix of the combined configurations.
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the difference in the percentage populations of dihedral substates
between the entire simulation and of the second half of the
simulation was less than 5% (using a sampling frequency of 8 ps).
This usually resulted in the simulations being approximately
200-ns-long.

3. RESULTS AND DISCUSSION

3.1. Comparison to NMR Chemical Shift Data.HR and CR
chemical shifts were calculated using an empirical approach as
implemented in the SHIFTS program.54 In order to validate the
quality of the theoretically determined chemical shifts, we com-
pared calculated average HR and CR NMR shifts from our en-
semble of structures with the experimentally determined values
for Aβ(1�42).16 Figure 3 plots calculated HR and CR chemical
shifts (δcalc, pH ∼ 7, 9 �C) versus experimentally determined
chemical shifts (δexp, pH ∼ 7, 5 �C) along with a least-squares
line and the corresponding Pearson coefficient (R).
For the HR chemical shifts, the Pearson coefficient (0.893) is

relatively high, suggesting that our simulations reproduce the
structural features associatedwith the chemical shifts. The inherent
spread of the data may be due to a number of associated errors
including insufficient sampling of configuration space, inaccuracies
of the force field, and errors in the theoreticalmethodology used to
calculate the chemical shift. The standard deviation of the theore-
tical methodology is estimated to be 0.23 ppm,54 while the mean
residual from the current regression analysis is 0.01 ppm. This
indicates that error from the theoretical methodology for calculat-
ing the chemical shift eclipses any other source of error, i.e. sampl-
ing and force-field inaccuracies. Similar results are found for the
calculated versus experimental chemical shifts ofR-carbons. In this
case, the Pearson coefficient is even higher, 0.977. The estimated
standard deviation for the theoretical model is 0.97 ppm,55

whereas the mean residual of the current regression analysis is
1.35 ppm, suggesting again that the largest source of error in our
analysis comes from the chemical shift calculation, although in this
case it seems that other sources also contribute to the error in the
regression analysis.
The high Pearson coefficients indicate that the calculated

average chemical shifts from our ensemble of structures are in
good agreement with experimental results. This result lends itself
to a more detailed analysis of the secondary structure of Aβ-
(1�42) based on the change in chemical shifts as given in eq 1.

3.2. Analysis of the Brookhaven PDB. Before undertaking a
detailed analysis of Aβ(1�42), we wanted to test whether a
theoretical protocol can capture the secondary structure shift for
globular proteins with well-defined secondary structure. To do
this, we analyzed the Brookhaven Protein Data Bank (PDB)56

and selected all protein structures with a resolution of better than
or equal to 1.50 Å and calculated their CR and HR chemical
shifts. This resulted in analyzing 4456 structures and producing
approximately 8 000 000 chemical shifts. This analysis also
removes the possibility that errors are resulting from incorrectly
parametrized force fields.
In order to automate the process and minimize errors asso-

ciated with incorrect placement of protons, we first stripped the
structures of all their protons and then re-added themwith protons
according to residue templates in Amber’s LeAP module.48 When
adding protons, wemade the assumption that all histidine residues
were protonated at the ε position and all other titratable residues
were protonated assuming an environmental pH of 7. Although
this may lead to the incorrect placement for some side-chain
protons, especially those buried within a protein, we are assuming
that these protons are far enough removed from theR-centers that
they do not affect their chemical shifts to a large degree. As it turns
out, which we note below, this may not be a justifiable assumption
in the case of histidine.
To calculate the change in the chemical shifts (Δδ), we used

random coil reference values taken from experimental results.57

However, this presents problems for cysteine and proline re-
sidues because they each have two possible random coil refer-
ences. In the case of cysteine, this is because it is commonly found
in two different oxidation states and, for proline, because it may
adopt a cis or trans conformation. In order to speed up the
automated process, we decided to leave all cysteine residues out
of the analysis and assume that all proline residues were in a trans
conformation. After calculating the chemical shifts, we accumu-
lated statistics according to what secondary structure element the
residue originated from. As there is no unique means to do this,
we compared two popular methods, viz, Ramachandran dihedral
angles and the DSSP58 (define secondary structure of proteins)
protocol.
For the Ramachandran analysis, we used the following definitions

(in degrees) of secondary structure. Right-handed R-helix (alpha):
�100 e j e �30; �80 e ψ e �5. Near right-handed R-helix
(alpha N): �175 e j e �100; �55 e ψ e �5. Left-handed

Figure 3. Correlation of average theoretical chemical shifts with experimentally determined chemical shifts. The left panel compares 41 experimentally
reported HR chemical shifts with those determined from the simulation; the right panel compares 41 experimentally reported CR chemical shifts with
those determined from simulation. The lines are linear regressions, and the R values are the corresponding Pearson correlation coefficients.
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R-helix (alpha L): 100 e j e 30; 80 e ψ e 5. Polyproline II
(PPII): �110 e j e �50; 120 e ψ e 180. Extended β sheet
(beta): �170 e j e �110; 80 e ψ e 180 and �170 e j e
�110; �180 e ψ e �170.
The DSSP algorithm is more sophisticated in that it first

identifies hydrogen bonds by using an electrostatic-energy func-
tion and then assigns secondary structure either by the topology of
hydrogen bonds in a repetitive sequence (for helices and sheets) or
by angle restraints (for turns).
After assigning each Δδ to a secondary structure element,

either according to Ramachandran angles or the DSSP protocol,
we calculated their averages (av), standard deviations (std), and
median absolute deviations (MAD). These results are summar-
ized in Table 1. Although there is no one-to-one correspondence
between secondary structure elements defined by Ramachandran
angles and the DSSP protocol, we can still directly compare the
results for R-helices and β-sheets (the β region in the case of
Ramachandran angles and the parallel and antiparallel structures
in the case of DSSP).
The average Δδ value of R-helical residues for CR atoms was

found to be 2.69 ppm and 2.87 ppm when using Ramachandran
angles and the DSSP protocol for assigning secondary structure,
respectively. Experimentally, the secondary structure shift is
usually reported as 2.50 ppm forR-helical residues. This indicates
that the combination of either Ramachandran angles or DSSP for
secondary structure assignment with the empirical method for

calculating CR chemical shifts is able to capture the Δδ for
R-helical residues reasonably well. For β-sheets, the averageΔδ for
CR chemical shifts was found to be �1.66 ppm when using the
Ramachandran angle definitions and �1.10 and �1.11 ppm for
parallel and antiparallel β-sheets, respectively, when using the DSSP
definitions. Experimentally, the Δδ for CR β-sheets is reported as
�2.00 ppm. Again, this indicates that both Ramachandran angles
and the DSSP protocol are capturing theΔδ effect. However, using
the DSSP definitions moves the average value in the positive
direction when compared with experimental results.
A similar analysis of the HR chemical shifts finds the average

Δδ of R-helical residues to be�0.29 ppm and�0.30 ppm when
using the Ramachandran and DSSP definitions, respectively.
These are in good agreement with the experimentally deter-
mined value of �0.30 ppm. For β-sheets, the Ramachandran
definition gave an average Δδ of 0.26 ppm, while the DSSP
definitions of parallel and antiparallel β-sheets gave averages of
0.27 ppm. Again, these results are in good agreement with the
experimental value of 0.30 ppm.
To further quantify the distributions of calculated Δδ values,

we have also computed the standard deviation (std) and median
absolute deviations (MAD) for each secondary structure element;
these results are also presented in Table 1. In addition, we have
plotted the Δδ distributions by calculating their histograms.
Figure 4 presents theΔδ distributions for all CR andHR chemical
shifts (upper panels). These distributions are then split according
to secondary structure elements using the Ramachandran defini-
tions (middle panels) or the DSSP protocol (lower panels).
TheMADs of Table 1 are smaller compared with their respec-

tive standard deviations for both CR and HR chemical shifts
using either Ramachandran or DSSP definitions. This indicates
that the calculated distributions ofΔδ have long tails because the
MADs give them less weight. Figure 4 supports this conclusion.
In addition, the upper panels of Figure 4 show that the total Δδ
distributions (independent of secondary structure) are unsym-
metrical and, in the case of CR atoms, multimodal.
Comparing the standard deviations of R-helical and β-sheet

values with their averages indicates that these distributions over-
lap more significantly for HR chemical shifts than CR chemical
shifts; this is also confirmed by the middle and lower panels of
Figure 4 (see for example the overlap between the solid black and
dashed red lines in the middle panels and the solid black and
solid red lines in the lower panels). More importantly, if other
secondary structure elements are included in the analysis, it is
difficult to decompose both the CR and HR distributions into
areas that do not include contributions from other secondary
structure elements; in particular, it would be difficult to assign
a β-sheet element to any residue solely on the basis of Δδ if
the protein or peptide is dynamically exploring conformational
space. This certainly has consequences when using the CSI
method to assign secondary structure to flexible biomolecules.
That being said, the Ramachandran decomposition of the CR
distribution shows that theR-helical area of theΔδ distribution is
relatively devoid of contributions from other secondary structure
elements. This is not the case for the DSSP decomposition if
π-helices are present in addition to R-helices.
The distributions in Figure 4 also highlight another important

aspect of the random-coil reference values. Frequently, these
references are derived from small unstructured peptides or
denatured proteins.57,59�61 The “random coil” or more appro-
priately the statistical coil is not random but based on maintain-
ing predefined equilibrium populations of each substate through

Table 1. Average (av), Standard Deviation (std), and Median
Absolute Deviation (MAD) for the Change in the Chemical
Shift (Δδ) for Cr and Hr Atoms for Various Secondary
Structure Elements as Defined Using Ramachandran Angles
and the DSSP Protocol for the Brookhaven PDB

Ramachandran DSSP

CR av std MAD CR av std MAD

alphaa 2.69 1.18 0.61 R-helixb 2.87 1.15 0.58

alpha Na 0.28 1.00 0.63 π-helixb 1.91 1.55 0.91

alpha La 0.72 0.83 0.40 β-sheet (para)b �1.10 1.36 0.83

PPIIa �0.01 1.26 0.87 β-sheet (anti)b �1.11 1.34 0.86

betaa �1.66 1.16 0.78 turnb 0.84 1.55 1.02

otherc �0.70 1.45 0.98 otherc �0.08 1.79 1.15

Ramachandran DSSP

HR av std MAD HR av std MAD

alphaa �0.29 0.29 0.12 R-helixb �0.30 0.27 0.12

alpha Na 0.18 0.24 0.13 π-helixb �0.12 0.38 0.26

alpha La �0.50 0.36 0.10 β-sheet (para)b 0.27 0.33 0.19

PPIIa 0.01 0.38 0.23 β-sheet (anti)b 0.27 0.35 0.22

betaa 0.26 0.34 0.21 turnb �0.18 0.37 0.21

otherc 0.00 0.38 0.19 otherc �0.08 0.37 0.21
aThe following definitions for secondary structure were used. Right-
handedR-helix (alpha):�100eje�30;�80eψe�5. Near right-
handed R-helix (alpha N): �175 e j e �100; �55 e ψ e �5. Left-
handed R-helix (alpha L): 100 e j e 30; 80 e ψ e 5. Polyproline II
(PPII): �110 e j e �50; 120 e ψ e 180. Extended β sheet (beta):
�170eje�110; 80eψe 180 and�170eje�110;�180eψ
e�170. b For DSSP definitions, see ref 58. cDefined as being any other
element that does not fall within the definitions of the prototcol in
question, viz, Ramachandran or DSSP.
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rapid conformational switching. The equilibrium populations
depend primarily on the residue in question62 but also on its
sequence-dependent context.63 Small peptides are one means of
obtaining random-coil values; another way is to look at non-
homologous protein structures from X-ray experiments.64 In
essence, this is what we have done in generating Figure 4; there-
fore, the averageΔδ over all residues for both CR andHR should
be zero if
(a) the proteins we selected are sufficiently nonhomologous

as to represent the inherent random coil structure
(b) the empirical model used to calculate the chemical shifts

does not contain systematic errors
(c) the reference random coil values are appropriate
The average ofΔδ for all shifts was found to be 0.64 ppm and

�0.07 ppm for CR andHR shifts, respectively, indicating that the
three conditions are being met to a reasonable degree. By the
same arguments above, the residue-by-residue values should also
average to zero. These results are given in Table 2.
Table 2 clearly demonstrates that while the overall averages of

Δδ for CR and HR chemical shifts of 0.64 ppm and�0.07 ppm,
respectively, are reasonably good, their signs are resulting from

systematic errors in the by-residue estimates ofΔδ. In addition to
the systematic errors that are apparent from Table 2, there are a
small number of residues for which the total averageΔδ deviates
significantly from zero. For the CR chemical shifts, these include
Ala (1.10 ppm), His (1.71 ppm), and Arg (1.17 ppm). For the
HR shifts, the residues are Ala (�0.18 ppm), Glu (�0.18 ppm),
and His (�0.16 ppm) and to a lesser degree Lys (�0.12 ppm)
and Arg (�0.12 ppm).
In order to probe the origin of the systematic errors and a small

number of large deviations, we ran molecular dynamics simula-
tions for a selection of pentapeptides of the general formula
GGXGG and calculated the averageΔδ for the center residue X.
These results are also given in Table 2.
For alanine, the large deviations of 1.10 ppm and �0.18

ppm are reduced to 0.11 ppm and �0.10 ppm for CR and HR
centers, respectively, when using molecular dynamics simula-
tions. This indicates that these deviations are originating from a
bias in the statistics generated from the PDB analysis. The known
prevalence of alanine in R-helical structures and the respective
average downfield and upfield shifts of the HR and CR atoms
suggests that the PDB structures are over-representing alanine in

Figure 4. Distributions of Δδ for CR and HR chemical shifts derived from structures in the PDB database with a resolution equal to or better than
1.50 Å. Panels show the full distributions (upper) and then these distributions divided according to secondary structure elements according to either
Ramachandran angles (middle) or the DSSP protocol (lower).
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R-helices compared with the inherent random coil state. In fact,
57.8% of alanine residues from the PDB analyzed structures are
found in an R-conformation using Ramachandran angle defini-
tions, whereas the alanine of GGAGG spends only 17.2% of the
time in the R region.
The similar large deviations for histidine of 1.71 ppm and

�0.16 ppm for CR and HR, respectively, would immediately
suggest a similar bias for this residue. However, the molecular
dynamics simulations also produce large deviations (1.30 ppm
and�0.15 ppm). The small reduction in theΔδ values is because
the PDB structures have an R-region population of 33.4%,
whereas the molecular dynamics simulations produce an R-
region population of 18.2%. The remaining large error is most
likely because of the pH effect on CR and HR chemical shifts of
histidine, which can be up to 2.5 ppm for the CR atom.65,66

Therefore, the large errors seen for histidine are probably a com-
bination of assuming that the side chain is permanently proto-
nated at the ε position and the random coil reference values that
we have used to generate theΔδ statistics being incorrect for this
permanent protonation state. Modest improvements in the
average Δδ are also seen for the other residues by using mole-
cular dynamics simulations. This further indicates that even with
a large data set from the PDB, biasing is introduced to a small
degree. However, because the dynamics simulations do not
produce exactly zero deviations, it is suggested that there is also
a modest systematic error in the theoretical methodology of on
average approximately 0.10 ppm for both CR and HR atoms.
In summary, we have analyzed the empirical methodology for

calculating the secondary structure shift (Δδ) using a large data
set of structures from the PDB. In conjunction with these chem-
ical shifts, we examined two popular means of dividing the con-
formational subspace into secondary structure elements. We
found that the secondary structure distributions ofΔδ as divided
by Ramachandran angles and the DSSP protocol results in
substantial overlap of the distributions for both CR and HR

chemical shifts. However, if the conformational subspace is
divided by Ramachandran angles, then the R region of the CR
distribution is not significantly contaminated by other secondary
structure elements. In addition, we found that modest systematic
errors are introduced into the average Δδ’s because of the
theoretical methodology. In some cases, however, large errors
are introduced because of either incorrect statistics from the data
set (Ala) or from misrepresenting the correct dynamic proton-
ation states (His).
3.3. Distributions of Chemical Shifts for Aβ(1�42). In the

previous sections, we have shown that the mean chemical shifts
for Aβ(1�42), as calculated from theory, agree well with experi-
mental results. We also demonstrated by analyzing the PDB that
the theoretically determined change in the chemical shift (Δδ) is
also reproduced well. If the protein in question does not vary
significantly from its equilibrium position, then the Δδ distribu-
tions for each residue would be expected to have minor fluctua-
tions around their means, making secondary structure assignment
unambiguous. However, in the case of a flexible biomolecule like
Aβ(1�42), we will show below that the distributions of Δδ are
broad like in Figure 4, where we combined many peptide con-
formations from the PDB. We will also investigate the conse-
quences this has for assigning its secondary structure. In the
discussion below, we will refer to secondary structure elements
defined through Ramachandran dihedral angles because the PDB
analysis showed that the Δδ effect is in closer agreement with
experimental results using these definitions.
It is important to state from the outset the differences between

the inherent random-coil state of a residue and the random-coil
region of chemical-shift distributions. The random-coil state of
a residue is a statistical combination of all of the dihedral angles
the backbone explores when it is unconstrained by contextual
influences. As the unconstrained residue flips from β to R re-
gions, theHR chemical shift changes from being relatively upfield
to being relatively downfield; the reverse is true for CR shifts.
The PDB analysis above demonstrated that other structural
elements may also move the shift upfield or downfield and in
some cases leaves it unchanged. The mean chemical shift of the
random-coil state is then the average of these competing shifts,
and the change in chemical shift for this state is defined to be
zero. The random-coil region of the distribution of changes in
chemical shifts is thus a zone centered on zero. When ascribing
a random coil structural element to a residue, it is assumed that
a zero overall shift is resulting from the residue in question,
sampling from the same populations of dihedral angles that
originally defined its random coil state.
In order to demonstrate the relationship between the mean

chemical shift and the underlying distributions for a flexible
peptide, we plotted theΔδ distributions of each residue from our
simulations of Aβ(1�42) and compared these distributions
against typical random coil, R-helical, and β-sheet Δδ values.
Eight examples of these plots are shown in Figures 5 and 6 (plots
for all residues can be found in the Supporting Information,
Figures S1 and S2). In addition to the distributions and typical
values of Δδ, each plot indicates the mean value from our
simulations and the observed value from experiments. Random
coil values were taken from tabulated data, as were helical and
sheet values; the domains of the Δδ zones shown in Figures 5
and 6 were derived from the first standard deviation ofΔδ values
calculated from the analysis of the PDB described above.
For the HR chemical shifts, we find a number of consistent key

features, which are illustrated by the distributions calculated for

Table 2. Per Residue Averages for the Change in the
Chemical Shift (Δδ) for Cr and Hr Atoms from an Analysis
of the PDB Databank and a Selection of GGXGG Peptides
from Molecular Dynamics Simulations

CR Ave. CR Ave. HR Ave. HR Ave.

Brookhaven PDBa

Ala 1.10 Met 0.75 Ala �0.18 Met �0.07

Asp 0.35 Asn 0.64 Asp �0.08 Asn �0.07

Glu 0.71 Gln 0.87 Glu �0.18 Gln �0.10

Phe 0.40 Arg 1.17 Phe �0.05 Arg �0.12

His 1.71 Ser 0.29 His �0.16 Ser �0.06

Pro 0.66 Thr 0.39 Pro �0.07 Thr 0.10

Ile 0.60 Val 0.65 Ile 0.05 Val 0.05

Lys 0.85 Trp 0.22 Lys �0.12 Trp �0.11

Leu 0.79 Tyr �0.07 Leu �0.08 Tyr 0.00

Molecular Dynamicsb

Ala 0.11 Pro 0.11 Ala �0.10 Prob �0.03

Asp 0.11 Lys �0.32 Asp �0.12 Lys �0.06

His 1.30 Thr �0.02 His �0.15 Thr �0.02
a Statistics obtained from an analysis of the PDB; see text for details.
b Statistics obtained from molecular dynamics simulations; see text for
details.
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Glu3 and Glu22 as shown in Figure 5a and b. First, like the
analysis of the PDB, the regions spanning the secondary structure
domains of Δδ values overlap one another significantly. The
significant overlap between different structural elements causes
the resultant distributions to be Gaussian-like (often skewed to
one side) with the mean value aligned near the distribution’s
maximum value. This situation is clearly shown in Figure 5. For
example, because of the overlap inΔδ values from different struc-
tural elements, it is difficult to discern whether or not the similar
averageΔδ values for Glu3 and Glu22 are resulting from the same
combination of structural elements. The mean values for Glu3
and Glu22 from experiments and simulations are located in the
random coil region. Naturally, one would infer from this informa-
tion that both residues are sampling from the random-coil state.
However, when the R-content is calculated using Ramachandran
angles, we find that Glu3 spends 29.3% of the time in this con-
figuration, while Glu22 spends 61.4% of the time in this config-
uration. Therefore, Glu3 andGlu22 cannot both be sampling from
the inherent random-coil population of glutamic acid.
The large overlap of domains causes 34 of the 38 HR distri-

butions plotted in this study (see also Figure S1 in the Supporting
Information) to have their mean values from simulations and
experiments lying in the region combining R-helical and random
coil values, even though each residue may be sampling from
distinctly different dihedral populations.
The CR chemical shift distributions show some significant

differences compared with the HR distributions. Unlike the HR
distributions, they are not simply Gaussian-like and centered on
the mean value but may be complicated bi- or trimodal distribu-
tions, see for example the plots in Figure 6. From this figure, it can
be clearly seen that the average value is derived from combina-
tions of three distinct and separated distributions, viz, R-helical,
random coil, and β-sheet. Because each zone is clearly observa-
ble, the CR shifts may lend themselves to a more robust means of
identifying if distributions with similar averages have distinct
populations. To investigate this, we have plotted in Figure 6 the
distributions for three pairs of residues with the same side chain
from the Aβ(1�42) sequence.
In the top panels, we have plotted the distributions of Ala2 and

Ala21. The mean value from experimental results and theory lie
in the random coil region, and the underlying distributions look
fairly similar. That is, they have large peaks in the random coil and

R-regions with little signal in the β-region. However, like the
situation for glutamic acid above, the secondary structure popu-
lations calculated from Ramachandran angles are quite different;
for example, Ala2 spends 25.7% of the time in the R-region,
whereas Ala21 spends 42.8% of the time in the R-region. The
simulation of GGAGG we performed in conjunction with the
PDB analysis indicates that alanine spends approximately 26.8%
of the time in the R-region when in a random coil configuration,
which is supported by another study.62 Therefore, even though
both distributions average to a random coil value the underlying
distribution of Ala2 seems to be much more closely related to the
random coil then does the distribution of Ala21.
For Val18 and Val36, the distributions are again divided into

distinct areas. Val18 has large peaks in the R- and random coil
regionswith a smaller peak in theβ-region. Val36 on the other hand
has large peaks in the β- and random coil regions with little or no
signal in the R-region. Again, however, their means from simula-
tions and experiments lie in the random coil region. In this case, the
distributions are representative of their secondary structure con-
tent. For instance, Val18 spends 35.2% of the time in the R-region,
and Val36 spends 6.3% of the time in this region. The sizes of
the peaks in the β-regions are commensurate with their calculated
β-content of 43.1% and 51.4% for Val18 and Val36, respectively.
The large middle peaks are derived from predominately the PII
structure, 14.4% in the case of Val18 and 22% in the case of Val36.
Although the distributions can be related to the calculated second-
ary structure and theirmean values lie in the randomcoil region, the
random coil distribution of valine has approximately 21.9% helical
content and 30.4% β-content;62 therefore, neither Val18 nor Val36
seem to be representing this population exactly.
The final pair of distributions we plot in Figure 6 are for Phe19

and Phe20. Like the situation for Ala2 and Ala21, these distribu-
tions share similar shapes. Both have large R-peaks and a large
peak on the edge of the β-/random coil region. Their mean values
lie in the random coil region. Again, the peaks are representative of
their calculated secondary structure; Phe19 and Phe20 spend
29.7%of the time in theR-region and 65.5 and 62.3%of the time in
the β-region, respectively. This indicates that in the case of
phenylalanine the chemical shift for β-sheets is shifted relatively
less downfield compared with other residues.
The differences observed between the six residues above

highlight a number of important points. First, signals that result

Figure 5. Δδ Distributions of HR chemical shifts of Glu3 and Glu22 in Aβ(1�42) at 300 K. Shaded areas give the domains encompassing typical
random coil, helix, and β-sheet values. The sizes of the shaded areas have been determined by using one standard deviation from the mean values found
from analyzing the PDB. Themean values from simulations and experiments are indicated with dashed lines. See also Figure S1, Supporting Information.
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in random coil mean values are a result of sampling from combi-
nations of all three regions. Second, the dynamically explored
secondary structure elements can change by up to 30% between
two residues with the same side chain but still result in random
coil averages. Finally, the random coil region of the chemical shift
distribution does not necessarily have to contain a signal for the
mean value to reside there.
From the distributions given in Figure 6, one might be tempted

to estimate the secondary structure content of a particular residue

by integrating the signals in each area and comparing them
against the total signal. However, as shown in Figure 4, the
β-region, random coil region, and to a lesser degree the R-region
may contain a signal from more than one secondary structure
element when defined through Ramachandran angles. To dem-
onstrate how this may influence the secondary structure popu-
lations from a histogram analysis, we plot in Figure 7 the R- and
β- Ramachandran populations for all nonglycine residues of
Aβ(1�42) against the estimated populations by counting the

Figure 6. Distributions of CR chemical shifts of Ala2, Ala21, Val18, Val36, Phe19, and Phe20 from Aβ(1�42) at 300 K. Shaded areas give the domains
encompassing typical random coil, helix, and β-sheet values. The sizes of the shaded areas have been determined by using one standard deviation from
themean values found in an analysis of the PDB data bank (see test). The mean values from simulations and experiments are indicated with dashed lines.
See also Figure S2, Supporting Information.
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total signal within two standard deviations of the mean β- and R-
chemical shifts.
The figure shows that both R- and β-Ramchandran popula-

tions are correlated to the areas of the chemical shift distribu-
tions. However, simply because they correlate does not infer that
the model is valid. If it were valid, then the slope of the regression
lines would pass through zero and have a slope of one. The line
correlating the β-populations has a slope larger than one (1.3)
and crosses the y intercept at 22.0. The y intercept indicates that
on average the β-area of the chemical shift distribution contains
at least 22% additional structure not associated with β dihedral
angles. The slope indicates that, as the percentage of β-sheet
structure increases, the contamination from other elements in
the β-area of the chemical shift plot also increases. The line
correlating the size of the R-area to the R-populations is a better
model for predicting the R-content with a slope of 0.82 and a
y intercept of 11.0. An intercept larger than zero is again an effect
associated with contamination from other secondary structure
elements, albeit to a lesser degree than the β-area contamination.
With a slope smaller than one, this model infers that as the
percentage of R-helical structures increases, the number of those
that are captured in theR-area of the chemical shift plot decreases.
3.4. Static and Dynamic Helical Content of Aβ(1�42). As

stated in the Introduction, molecular dynamics simulations
usually report a much higher helical content for Aβ(1�42) than
experimental studies. In both types of reporting, the “static”
helical content is being calculated, that is, the average over the
course of the simulation or over the course of the experiment. In
this section, we report the possible underlying reasons for the
discrepancy between theory and experimental results. We con-
clude that it is ambiguous to assign a static content to a peptide
that does not constitute one specific conformational fold. This is
because the final average helical content depends on how a helix
per residue is defined, and as a result, we may calculate a wide
range of percent content (from 0% to 45.7% in this case) even
when using the same data set.
First, using the change in CR chemical shift as an indicator of

helical content, we can calculate the static content in the same
way that the CSI method does. Of the 40 CR chemical shift

distributions (see Figure S2 of the Supporting Information), only
four of them have mean values from simulation in the R-helical
area (Ser8, Tyr10, Leu17, and Ser26); an additional three lie in
the β-sheet area (Val36, Val39, and Val40). In order to define an
R-helix, the chemical shift index method requires that both the
mean chemical shift is in the R-helical area, and at least four
consecutive residues are found in this area. Using these rules to
interpret our chemical shift data, Aβ(1�42) has 0% R-helical
content, reproducing the results found for Aβ(1�42) using the
CSI method in ref 16.
Normally, helical content is reported from simulation by ave-

raging the helical content from theoretical calculations; popular
methods are to average the content as determined by DSSP,
Ramachandran angles, or STRIDE,67 which is defined similarly
to DSSP. Although for DSSPwe found less satisfactory results for
the change in chemical shift and, in addition, the DSSP structural
decomposition leads to an overlap ofR-helices and π-helices, the
vast body of literature supports DSSP as a valid method for
finding helical structures. Using this methodology, we find an
average helical content of 25.9%, in agreement with most molec-
ular dynamics studies. The STRIDE algorithm similarly finds a
29.1% helical content. For both algorithms, the residues con-
tributing most to these numbers are Tyr10�Leu17, which for
approximately 50% of the simulation are in a helix, and residues
Val18�Ser26, which spend approximately 30% of the simulation
as a helix (see Supporting Information Table S1). However, these
numbers may overestimate the static helical content with respect
to experimental results because residues that form part of the
boundary between the helical and nonhelical structure are counted
even though they may not be part of a persistent helix.
More simply than the DSSP and STRIDE estimates, we could

average the Ramachandran angles that fall inside of the R region.
For our simulation, this results in a helical content of 45.7%.
However, this is a rather naive approach for two reasons: First, a
Ramachandran angle pair residing in the R-region does not
equate to an R-helix. In essence, this is what the DSSP and
STRIDE algorithms are correcting for. Second, the random coil
state of an amino acid samples significantly from the R-region,
see ref 62. To correct for the random coil populations, we may
define the helical “excess” of the species by taking the average of
the differences in the helical content per residue from the
simulation with the helical population of the random coil state
and normalize (see eq 3).

helical excess ¼
∑
N

i¼ 1
ð%helixresðiÞsimulation �%helixresðiÞrandomcoilÞ

∑
N

i¼ 1
ð1�%helixresðiÞrandomcoilÞ

ð3Þ

If we take the average random coil helical populations68 for
each residue from ref 62, the helical excess of Aβ(1�42) is found
to be 27.5%, which is interestingly in agreement with the DSSP
and STRIDE results. However, this formula can be potentially
misleading because it may include negative values in the average,
much like the chemical shift assignment does.
The preceding discussion demonstrates that it is difficult to

ascribe a single static content to Aβ(1�42) even when the data
set is the same, as it depends on how the helical content is defined.
Amore appropriate way of describing the helical content is to look
at its dynamic structure. This can be demonstrated through the
joint probability of finding a sequence of n residues (starting from

Figure 7. Correlation of % population of R- an β-structure calculated
with Ramachandran angles with the % population of R- and β-structure
determined by counting the number of chemical shifts found in the
R- andβ-areas of the chemical shift distributions. Data points are from all
nonglycine residues in Aβ(1�42).
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residue i) that reside in the helical basin of the Ramachandran plot.
In Figure 8, we have plotted this function for helix lengths of 4, 6, 8,
10, 12, and 14 residues. As expected the probability of finding
longer helices is smaller than finding shorter ones. The plot in
Figure 8 suggests that there is a strong probability of finding short
helices four residues in length starting from Tyr10. This short
sequence forms the start of longer helices that extend toward
the C-terminal end, which even for a length of 14 residues has a
probability of approximately 10% from our simulation. Short
helical sequences of four to six residues also have a 10 or 20%
probability at the N- and C-terminal ends, respectively.
This description of helcity makes sense when comparing our

knowledge of Aβ in transmembrane and apolar environments.
If we imagine gradually making the environment around Aβ-
(1�42) more apolar, then the probability of finding the helix
starting at Tyr10 increases. In addition, the probability of finding
longer helices starting at this residue increases until the perma-
nent helix spanning residues 10�25 is established, as found from
experimental studies in apolar environments. The helix that starts
at residue 27 in Figures 1 and 8 behaves in a similar fashion.

4. CONCLUSION

In summary, we have performed a comparison of experimental
chemical shift data with theoretically determined chemical shifts
for Aβ(1�42). First, we investigated the correlation between
chemical shifts and protein secondary structure in the case of
structures in the PDB. We found that for HR chemical shifts, the
theoretical chemical shift distributions of secondary structure
elements overlap one another significantly, making it difficult
to discern if the calculated mean was composed of one element
or another. For CR chemical shifts, the distributions for each
secondary structure element investigated are more well sepa-
rated, making them in principle more suitable for secondary
structure assignment. However, we showed that residues with the
same side chain could produce similar means and distributions
but could have differences in secondary structure of up to 30%.
Finally, we showed that a single static helical content could vary
from 0% to 45.7%, depending on the method used and how the
helical content is defined, even when the same data set is used.

For flexible molecules, it is thus more appropriate to look at the
probability of helical persistence as a function of length.
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ABSTRACT: Loop flexibility is often crucial to protein biological function in solution. We report a new Monte Carlo method for
generating conformational ensembles for protein loops and cyclic peptides. The approach incorporates the triaxial loop closure
method, which addresses the inverse kinematic problem for generating backbone move sets that do not break the loop. Side chains
are sampled together with the backbone in a hierarchical way, making it possible to make large moves that cross energy barriers. As
an initial application, we apply the method to the flexible loop in triosephosphate isomerase that caps the active site and demonstrate
that the resulting loop ensembles agree well with key observations from previous structural studies. We also demonstrate, with three
other test cases, the ability to distinguish relatively flexible and rigid loops within the same protein.

1. INTRODUCTION

A great deal of effort has been directed toward the develop-
ment of computational methods for predicting the conforma-
tions of protein loops, which is a critical task in comparative
protein modeling and in computational protein design.1�4 The
success of these methods has been evaluated primarily by
comparing the results of the loop predictions with the loop
conformations observed in crystal structures. That is, the focus is
predicting the structure of the loop—a specific conformation—
rather than the ensemble of conformations populated under
biologically relevant conditions. Although these loop prediction
methods can be used to identify multiple low-energy conforma-
tions, it is challenging to determine populations of the conforma-
tions, i.e., to relate energies of individual conformations to free
energies of micro- or macrostates in the ensemble, although
significant progress in this regard has been made by Meirovitch
and co-workers.5�7

The flexibility of loops, i.e., the ability to adopt multiple
conformations at relevant temperatures, is often critical to
biological function, by playing an important role in molecular
recognition. For example, the active site loop of the triosepho-
sphate isomerase (TIM barrel) changes its conformation from an
open to a closed state after binding of the ligands.8,9 In kinases,
two critical loops near the active site are flexible, with important
implications for drug discovery: the glycine-rich loop (also called
the P-loop) and the activation loop, including the DFG motif,
which can adopt at least two major conformations in some
kinases, referred to as “out” and “in”. For example, while c-Src
generally adopts the DFG-in conformation, the unfavorable
DFG-out conformation can be induced by binding small
molecules.10 Loop flexibility can also play an important role in
antibody�antigen recognition. The H3 loop in the complemen-
tarity-determining region of antibodies, which has the most
diversity in sequence and is the most critical loop for antigen
affinity and specificity, frequently demonstrates evidence of
conformational flexibility.11�13

More broadly, there are many cases where loops adopt
different conformations in different crystal structures, e.g., holo
vs apo, or even different crystal unit cells for the same protein.14

Although the B factors in crystal structures provide some
information about conformational flexibility, each structure is
best viewed as a snapshot from the equilibrium ensemble. NMR
experiments can provide some direct information about con-
formational equilibria but generally cannot provide complete
information about the ensemble of interconverting structures.

Molecular dynamics (MD) has been widely used to study
protein flexibility, including loop dynamics.15,16 The main liability
of MD is that the time scales for interconverting between loop
conformations can be long relative to the femtosecond time steps
used, such as the millisecond time scale for the TIM capping loop
to interconvert between the open and closed states.17 Although
such time scales may soon become accessible by MD simulation,
they will remain extremely computationally expensive. Methods
like replica exchange MD can be used to accelerate convergence
but are likewise computationally expensive.

Here, we describe a Monte Carlo method for generating
ensembles of loop conformations and cyclic peptides. It is related
to classes of loop prediction methods that use torsion-angle
sampling of backbone and side chain degrees of freedom (DoF),
which makes it possible to make large conformational moves that
cross energy barriers. Specifically, it builds on loop prediction
methods that exploit “inverse kinematics” methods for creating
move sets that do not “break” the loop.18�24 The new contribu-
tion here is implementing these moves in a Monte Carlo scheme
that also samples side chain DoF.25 We apply the method to a
number of proteins with flexible loops, including the well-known
case of TIM. We also evaluate our ability to distinguish between
(relatively) rigid and flexible loops within the same protein.
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2. THE MOVE SET: TORSIONAL PERTURBATIONS VIA
INVERSE KINEMATICS

2.1. Torsions and Sterics. It is widely accepted that the
essential dynamics of a protein backbone can be captured by
moves involving only the torsions φ,ψ with the other internal
variables (bond lengths, bond angles, andω torsions) being kept
close to their canonical values, although not necessarily
rigid.19,23,24

Compared to the high energy associated with ω angle
deformation, φ and ψ angles are relatively free to rotate, but
their range is restricted by steric interactions. Ramachandran
regions in the (φ,ψ) coordinates for each peptide ensure
intrapeptide steric avoidance, and additional restrictions are
imposed by more distant clashes. Clashes involving backbone
atoms (or atoms bonded to them) are completely determined
from the backbone angles. On the other hand, atoms further
along side chains (from the γ position out) are not completely
determined from the backbone, although their placement may be
restricted by it. Significantly, side chains may interact with other
side chains so that their placement must be accomplished as a
whole. Given a backbone conformation, a separate search is
required to determine sterically acceptable or otherwise energe-
tically viable side chain conformations. Reciprocally, backbone
moves may be restricted by fixed side chain geometry.
2.2. MCMove and State Variables.To design a Monte Carlo

move for reversibly exploring the torsion space, wemust herefore
consider the state space as the set of all torsions, {ti;χj} where
the ti are backbone torsions and χj are side chain torsions, with
the indices running respectively over all of the backbone and side
chain DoF. A chain of {N,CR,C} triplets (a standard backbone)
is one possibility, but chains through, e.g., cysteine bridges, or
other macromolecules, such as nucleic acids, could also be
considered. In the following, we will assume the standard case
(protein backbone loops) exclusively. For the case of a loop of N
residues bridging two fixed ends, the essential backbone DoF
would be M = 2N � 6. Here, six backbone DoF are involved in
placing the end of the loop in a fixed rotation/translation
relationship to the beginning. We call these DoF, labeled
arbitrarily as ti (i = 1, ..., 6), the compensators. The remaining
M DoF, labeled as ti, (i = 7, ..., 2N), are the controls. This
separation in controls and compensators is arbitrary and may
change from onemove to the next.We could assume that the end
residues 0 andNþ 1 act as hinges; i.e., the φ0 andψNþ1 torsions
are fixed, butψ0,φNþ1 are free, adding two DoF to the backbone.
The treatment is essentially the same, replacingM byMþ 2 and
redefining some indices. We will only discuss the first case (no
hinge mobility). It will be assumed that there are K side chain
DoF in the set S of side chains interacting with the loop; we may
only wish to include in S those side chains on the loop and
hinges. The placement for those depends on the loop conforma-
tion. We may also include side chains on residues in some sphere
of influence about the loop. Or we may simply include all of the
side chains in the protein. We make no distinction at this stage.
Then, to design a reversible MC move that involves only the

loop backbone DoF as well as the selected group S of side chains
coupled to the loop, we must establish the Metropolis criterion
for acceptance of a move of the form

fti, χjg f fti þ δti; χj þ δχjg, i ∈ ½7, 2N�, j ∈ ½1,K� ð1Þ
The shape space geometry accessible via our formulation

characterizes our moves: assume that the L (= 2N) torsions for

a loop kinematic chain are divided into the L� 6 controls and 6
compensators. The method used here employs the φ,ψ pairs of
three amino acids (the pivots). These can be chosen at arbitrary
locations along the loop, breaking it into three subfragments for
kinematic purposes. To each value of the L � 6 controls there
correspond up to 16 distinct conformations satisfying the closure
conditions, each characterized by a unique set of values of the
compensators. As discussed in our earlier work,26 the 16 alter-
native solutions represent different orientations of the three
subfragments between successive pivots in a reference frame
attached to the three pivot CR atoms about the three axes joining
each pair of pivots. Thus, we refer to the method as Triaxial Loop
Closure (TLC). The basic idea in the TLC method (discussed
more in detail in the next section) is to construct a loop with
arbitrary internal degrees of freedom, taking advantage of the fact
that the inverse kinematic problem can be solved by determining
appropriate values of six torsions. Thus, any variation in the
remaining DoF’s—other torsions, including Ω’s, bond angles,
and even bond lengths—can be considered, if so desired. Here,
we treated only φ�ψ variations, as these are the most “flexible”
DoF’s, but we could have included all other DoF’s in the MC
scheme in any combination desired. The conformational varia-
bility of the constitutive pieces for loop closure, i.e., the three
subfragments, is of course an important factor for solving the
closure problem. We see that this variability can be decomposed
into two types: the end-to-end variability of the individual
fragments and the inherent variability of the loop closure
problem, i.e., relative locations and orientations of the ends of
the loop as well as the environment in the loop vicinity.
The first is a direct problem: compute the fragment (in

practice, we do not check that the fragment is indeed sterically
feasible until the assembly is successful). The individual fragment
assembly, being subject to no end constraints, is only limited by
the Ramachandran and other steric restrictions. However, for
purposes of assembling the three subfragments into a self-
consistent loop, each individual fragment of length Li residues
with i = 1�3, is encoded by four variables: the overall geometric
length of the virtual bond joining first and last atoms, di; the
angles θi and ξi made by the two end bonds to the virtual bond;
and the torsion of the two end bonds about the virtual bond, δi.
The variability of the closure problem is governed by these 12
parameters (di, θi, ξi, δi; i = 1�3). The equations expressing
closure depend on these parameters smoothly; small changes
cause usually small changes in the number and disposition of
solutions except that, for certain arrangements, solutions could
spontaneously appear or disappear (pairs of polynomial roots
may join and become complex, or the converse, see the discus-
sion of the inverse kinematic problem below).
We now search the nearby conformation space by perturbing

one of the control torsions. This will result in perturbing the
overall structure of one of the chains, leading to a perturbed set of
solutions. These changes may lead to overall large motions, see
e.g. ref 27 for a discussion of the end conditions and their
constraining of various inner DoF. However, a reasonable
acceptance ratio for the method can be more or less guaranteed
by varying the controls and restricting the step size. Below, we
discuss a two-stage scheme, splitting the move into a pure
backbone and a pure side chain stage.
2.3. Solving the Inverse Kinematic Problem.Manymethods

for finding solutions that satisfy the closure conditions have been
proposed, both exact18,22,26,28�32 and approximate.6,21,33�37 Ex-
act methods address the inverse kinematic problem by searching
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for the values of a certain torsion, say τ, in terms of which all other
torsions can be determined. Go and Scheraga18 pursued a direct
solution in the original angle variables. This involves finding the
zeros of a certain transcendental expression, a process that may
require substantial computation to adequately resolve the entire
domain. Subsequent works employ standard techniques from the
robotics literature to convert to amore tractable polynomial form
in the variable u = tan τ/2. All of the real roots of this 16th degree
polynomial can be found efficiently and stably by the use of the
method of Sturm chains.38 All other torsions can be recovered
readily, and therefore such methods are capable of finding all
backbone solutions for any given combination of control torsion
values. On the other hand, approximate methods typically use an
iterative procedure to find a solution. As a result, they are not
guaranteed to find all solutions consistent with a given set of
control values, and the same is true for the approach in ref 18,
which is also followed in refs 20, 23, and 24, although for this class
of methods the issues are mainly related to the computational
sensitivity of multiple roots.
In previous applications the conrot algorithm has been used.20

It places the rotatable bonds on six consecutive bonds plus a
driver. A generalization by Wu and Deem22 uses one driver on
either end. A weakness of the conrot approach is that a change on
either side of the short compensator segment may make the
closure problem unsolvable.24 A generalization from robotics
removes that restriction.29 Our own method for solving the
tripeptide closure problem, explained in detail in ref 26, has the
advantage of mathematical simplicity, speed, and robustness. It
also allows for a straightforward generalization for longer chains
of arbitrary geometry. Its simplicity comes from taking advantage
of the natural pairing up of rotatable bonds in amino acids to
reduce the closure problem to three rotations, and we refer to this
as the TLC method.26 Referring to Figure 1b, we note that each
CR,C,N,CR unit is identified by four variables: the overall
geometric length of the virtual bond joining first and last atoms,
di; the angles θi and ξi made by the two end bonds to the virtual

bond; and the torsion of the two end bonds about the virtual
bond, δi (actually, the formulation uses the angles Ri of the
triangle formed with edges di). These definitions remain un-
changed even if an arbitrary structure exists between the two end
pairs (Figure 1a). We may produce multiple conformations for a
long closed chain by partitioning into three subsegments and
mapping each to a simple kinematic generalization of the tetrad
CR,C,N,CR (Figure 1a,b).
In brief, three CR atoms are selected (the pivots). The chain

between any two of these, containing L atoms including the end
points, is determined to within a rotation/translation (i.e., in its
own body frame) by its own internal coordinates: L� 3 torsions,
L� 2 angles, L� 1 lengths. With fixed (to any prescribed value)
bond lengths and bond angles, each chain can be completely
described by its L� 3 internal torsions. Below, we will index the
residues of the three pivots as 1, 2, and 3, and we will index their
backbone atoms as Ni, CRi, and Ci, i = 1�3, accordingly. Below,
we use the atom names interchangeably with their Cartesian
coordinates; e.g., N1 can be thought of as equivalent to the vector
R1 etc (see eq 5).
As is explained in ref 26 and somewhat more at length in ref 39

(see also the Supporting Information discussion in ref 40), the
three fragments, respectively between pivots 1�2, 2�3, and
3�1, form a triangle with edges di, i = 1�3. The parameters
necessary for setting up and solving the TLC equations can be
extracted from knowledge of only the first two and last two atoms
of each chain (Figure 2). Once the three four-atom fragments
have been assembled into a triangle, the relative rotation of each
fragment about the triangle must place the end atoms relative to
those on each neighboring fragment so that the angles (NiCRiCi,
i = 1�3) assume prescribed values (Figure 1). In this way, loop
closure is accomplishedwhen an appropriate rotation for each piece
has been found. It turns out that the problem overlays the solution
of a 16th degree polynomial, so that to each real root there
corresponds a possible backbone loop geometry (subject, of course,
to overall steric viability) to a total of, at most, 16 solutions possible
for a given collection of state variables, the control 2N� 6 torsions.
2.4. Jacobian. Since fixing the end of the chain (the Closure

Conditions) implies relationships among the torsions, we seek

Figure 1. (A) The atoms and parameters defining triaxial loop closure
(TLC). (B) The generalized 6R/3A kinematic chain.

Figure 2. Construction of a tripeptide move. A node consists of a φ/ψ
pair at each R carbon of the loop (with only backbone shown). The
yellow filled circle is theR carbon, whose dihedral angle serves as a driver
angle (the wide black arrow). A randomly constructed triaxial closure is
shown as the gray triangle in which each gray circle represents the
randomly selected pivot.
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solution of these relationships such that specifying M torsions
along the loop leads to complete determination of all 2N torsions
and unambiguous Cartesian coordinates for all loop backbone
atoms that are sterically self-consistent. In general, for any
feasible value of the controls, there may exist multiple sets of
compensators that allow the loop to close. They are functions of
the controls, and their values solve the loop closure problem.
As a result, the element of volume in torsion space, initially

uniform in these variables

dV ¼ dφ1dψ1 ::: dφNdψNdχ1 ::: dχK

will need to be modified by

dt1:::dt6 ¼ Dðt1, :::, t6Þ
DðR6,Γ6, t6ÞdR6 dΓ6 dt6

leading to the well-known expression (e.g., see formula 23 in ref
23) for the inverse of the above Jacobian:

Ji ¼ det
DðR6,Γ6, t6Þ

Dt

¼

DR6

Dt1
DR6

Dt2
DR6

Dt3
DR6

Dt4
DR6

Dt5
DR6

Dt6

DΓ6

Dt1 3 e1
DΓ6

Dt2 3 e1
DΓ6

Dt3 3 e1
DΓ6

Dt4 3 e1
DΓ6

Dt5 3 e1
DΓ6

Dt6 3 e1

DΓ6

Dt1 3 e2
DΓ6

Dt2 3 e2
DΓ6

Dt3 3 e2
DΓ6

Dt4 3 e2
DΓ6

Dt5 3 e2
DΓ6

Dt6 3 e2

Dt6
Dt1

Dt6
Dt2

Dt6
Dt3

Dt6
Dt4

Dt6
Dt5

Dt6
Dt6

��������������������

��������������������

Since

DRk

Dtj
¼ Γj � R jk,

DΓ6

Dtj
¼ Γj � Γ6,

Dti
Dtj

¼ δij ð2Þ

this Jacobian can assume the simpler, 5 � 5 form

Ji : ¼ JðR6,Γ6, t6; t1, :::, t6Þ

¼
Γ1 � R16 Γ2 � R26 Γ3 � R36 Γ4 � R46 0
ðΓ1 � Γ6Þ 3 e1 ðΓ2 � Γ6Þ 3 e1 ðΓ3 � Γ6Þ 3 e1 ðΓ4 � Γ6Þ 3 e1 ðΓ5 � Γ6Þ 3 e1
ðΓ1 � Γ6Þ 3 e2 ðΓ2 � Γ6Þ 3 e2 ðΓ3 � Γ6Þ 3 e2 ðΓ4 � Γ6Þ 3 e2 ðΓ5 � Γ6Þ 3 e2

�������

�������
ð3Þ

Here

R ij ¼ R j � R i,Γi ¼ R
0
i � R i

jjR 0
i � R ijj ð4Þ

and ei, i = 1�3, are the usual unit vectors along axes x, y, and z of
an arbitrary reference frame (the Lab frame). The atoms asso-
ciated with closure are

R2k � 1 ¼ Nk,R2k ¼ CRkð¼ R
0
2k � 1Þ,R

0
2k ¼ Ck;

k ¼ 1, 2, 3 ð5Þ
We note that the term Γ5 � R56 = 0 and was omitted. In the
general case, the three pivot residues are indexed by 1e n1 < n2 <
n3 e N, and this reindexing will be implied where appropriate.
It is well-known22 that the Jacobian in the form first proposed

by Dodd et al.20 is incomplete and lacks frame invariance. In a
rigorous derivation of the Jacobian from the configuration
integral, Wu and Deem22 show that the correct, frame invariant
form is

J�1 ¼ 1
Γ6 3 e3

Ji ð6Þ

However, since the acceptance criterion involves ratios of
Jacobians computed at the same frame, the additional factors
cancel and the relative probabilities remain unchanged.
Although the latter form 6 is indeed invariant if all vectors

are changed by an arbitrary affine transformation, it has the
undesirable feature that it involves a projection to an arbitrary
frame. Consequently, the factor Γ6 3 e3 may accidentally
vanish (in which case Ji will also vanish), necessitating a
random reorientation of the frame to break the degeneracy.
Thus, it is desirable to eliminate this superfluous dependence
and derive a form that depends only on intrinsic (body frame)

coordinates, for which invariance is easily seen. This can be
accomplished by carrying out an expansion of this determinant
in complementary minors; indeed, the top three rows are
expressed in terms of intrinsic coordinates, while the last two
involve projections to the space frame. We thus expand the
determinant as

Ji ¼ ∑
4

i¼ 1
ð � 1Þi ðΓi � Γ6Þ 3 e1 ðΓ5 � Γ6Þ 3 e1

ðΓi � Γ6Þ 3 e2 ðΓ5 � Γ6Þ 3 e2

�����
�����

jΓj � R j6 Γk � Rk6 Γl � R l6 j ð7Þ
where the indices (i,j,k,l) are a cyclic permutation of (1,2,3,4).
Applying the well-known identity (e.g., in ref 41, eq 25, p.76)

A 3C B 3C
A 3D B 3D

����� ¼ A 3CB 3D� B 3CA 3D ¼ ðA � BÞ 3 ðC� DÞ
�����

ð8Þ
to the first of the 2 � 2 minors in eq 7, we have

ðΓ1 � Γ6Þ 3 e1 ðΓ5 � Γ6Þ 3 e1
ðΓ1 � Γ6Þ 3 e2 ðΓ5 � Γ6Þ 3 e2

�����
�����

¼ ðΓ1 � Γ6Þ � ðΓ5 � Γ6Þ 3 e3 ¼ ðΓ1 3Γ5 � Γ6ÞðΓ6 3 e3Þ
The remaining 2 � 2 minors result in analogous expressions.
Substituting these into eq 7, we have

Ji
Γ6 3 e3

¼ ∑
4

i¼ 1
ð � 1ÞiðΓi 3Γ5 � Γ6Þ

jΓj � R j6 Γk � Rk6 Γl � R l6 j ð10Þ
(as above, the indices (i,j,k,l) are a cyclic permutation of
(1,2,3,4)), which can be recombined to give the expression
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for the inverse Jacobian

J�1 ¼ 1
Γ6 3 e3

Ji ¼
Γ1 � R26 Γ2 � R26 Γ3 � R46 Γ4 � R46

ðΓ1 3Γ5 � Γ6Þ ðΓ2 3Γ5 � Γ6Þ ðΓ3 3Γ5 � Γ6Þ ðΓ4 3Γ5 � Γ6Þ

�����
�����

ð11Þ
where we took advantage of the fact that Γi � Ri6 = Γi � Riþ1,6

with i = 1 and 3 due to the fact that the axes Γi andΓiþ1, i = 1 or 3,
are coterminal. Figure 1a shows all quantities that enter in the
Jacobian.
This 4 � 4 determinant is the frame invariant form of the

inverse Jacobian for the TLCmethod. It has the advantage that it
is expressed entirely in terms of body coordinates, and thus it is
free from degeneracies and can be evaluated without projecting
to an ad hoc coordinate system. It is numerically equivalent to the
Wu andDeem form 6, when the latter is defined. The Jacobian 11
can be easily expressed in terms of the intrinsic parameters
(di,θi,ξi,δi), i = 1�3, entering in the TLC algorithm,42 a feature
that it shares with reduced Jacobians derived by other
authors.22,43 However, such expressions lack the simplicity and
geometrical appeal of eq 11.
2.5. Backbone Perturbation Procedure. The loop closure

algorithm described in the previous section, while perfectly
general, is currently implemented as a strategy for perturbing
only the backbone coordinates. The side chain coordinates
perturbation procedure, as well as the strategy for combining
these perturbations in a way such that detailed balance is
maintained, will be outlined in the next two sections. An
important design feature of this approach is that the backbone
and side chain perturbations are generated independently.
An important feature of both the backbone selection prob-

ability and the side chain selection probability is that they are
reversible, or

Rðt f t0Þ ¼ Rðt0 f tÞ ð12Þ

where t0 = tþ δt is the trial move starting from the torsion state t
and δt is the perturbation vector to the loop of interest. For the
purposes of this work, we require the selection probability to be
uniform to enforce eq 12. For this to be true, we need to establish
the procedure which ensures that a uniform distribution of
torsions over the entire loop can be generated.
The procedure for generating a trial move δt closely follows

that of refs 20, 22, 23, and 29. Since the algorithm currently solves
for 2N� 6 torsions, and we wish to have a procedure that is valid
for loops of arbitrary length, we must select a subset of 2N � 6
torsions. There is some flexibility in how this could be done, but
the present implementation is as follows (see Figure 2):
(1) From the designated loop torsions, a single torsion angle i

is selected uniformly and identified as a driver angle
coordinate (the yellow circle in Figure 2), as has been
described in previous work.26

(2) For torsion ti, a random variate δti is generated, with a
maximum value of up to π.

(3) A randomly constructed triaxial closure is generated by
randomly selecting three R carbons as pivots from the
loop (excluding the R carbon on which the driver angle
resides) and assigning the φ/ψ angles as the torsions (the
gray triangle in Figure 2).

(4) A set of torsions for the stationary solution tk, k∈ [1,K], is
generated, resulting in up to K = 16 solutions. For this
case, only the alternative sets of pivot coordinates are
considered, with the driver angle held at ti. For each
solution, a Jacobian term J(tk) is computed.

(5) A set of torsions for the perturbed solution tl, l ∈ [1, L], is
similarly generated, with associated J(tl) terms.

(6) A trial solution t0 is selected from the solutions (tk,tl) with
the following probability:

Rðt f t0Þ ¼ Jðt0Þ

∑
K

k¼ 1
JðtkÞ þ ∑

L

l¼ 1
JðtlÞ

ð13Þ

To show that this procedure generates a uniform distribution,
the φ/ψ angles of an 11-residue polypeptide is sampled with
no potential. Half of the time, the loop closure procedure is
applied as described above, and the other half of the time, only
a driver angle is perturbed uniformly, with the remaining
Cartesians updated accordingly (with no closure condition
enforced). The second procedure is required so that the full
space of dihedral angles is accessible. Every move is accepted,
with no potential applied or steric exclusion. This procedure
generates a uniform distribution of torsions, as is shown in
Figure 3. It shows a distribution of an 11-residue peptide
sampled with the loop closure procedure described above.
Only backbone DoF are sampled, and no force field is applied.
The end points are constrained to fixed positions. This control
closely follows previous work.20,23 Figure 3a shows the dis-
tribution of angles with no Jacobian selection term applied, and
Figure 3b shows the distribution with the reweighting term
applied. The Jacobian term clearly improves the uniformity of
the sampling.
2.6. Side Chains. The efficient sampling of side chains22 is

important since side chain conformations often determine the
biological function of proteins. In the current work, the side chain
χ angles are not taken from the rotamer library due to their
nonuniform distribution. Instead, to generate the side chain trial
moves, a single side chain is randomly selected, and each χ angle
is perturbed by a value which is randomly and uniformly
distributed in a defined domain [�d/2,d/2].25,44 The polar
hydrogens for the selected residue are sampled as well over the
domain [�π,π].
To improve the sampling efficiency, no energy is computed for

the states with steric clashes, which are defined on the basis of the
distances between heavy atoms. Specifically, a steric clash is
defined when pairs of heavy atoms are closer than 0.7 times the
sum of their Lennard-Jones radii. Rapid identification of steric
clashes (using neighbor lists) avoids computationally expensive
energy evaluations, for conformations that will result in very high
energies and negligible acceptance probabilities.
The most expensive term in energy evaluation is the solvation

energy in which the time-consuming step is the computation of
Born radii. Since the Born radii and the long-range energy terms
generally vary slowly for relatively small, local conformational
changes, less frequent evaluation of these terms will contribute
more to the sampling performance. For this purpose, the multi-
ple time-step Monte Carlo sampling (MTSMC) procedure45 is
incorporated in the present method, in a scheme based on that in
ref 44. The Born radii and the long-range interactions are held
fixed at the latent state of the original coordinates during the
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inner loop sampling and only updated in every outer loop
calculation. The final configuration from the inner loop is then
taken to be a trial move and subjected to theMTSMC acceptance
criterion (see eq 20 in ref 25).
2.7. The POSHMonte Carlo Method. Both the TLC method

for determining the backbone moves of loop residues and the
side chain sampling via perturbation have been incorporated in
the POSH (port out, starboard home) Monte Carlo method
introduced in a previous work.25 The application of this method
on small peptide systems has shown reasonable agreement with
experiments.25 In the present work, we are interested in its
performance in more complicated protein systems with flexible
loops.
Briefly, the move sets in this approach consist of two steps: an

initial trial (1 f 2) move with large perturbation followed by a
series of annealing moves consisting of smaller perturbation
within the inner loop of length NI (2 f 3). The generalized
Metropolis acceptance probability for this series of moves is

given by

accð1 f 3Þ ¼ min 1,
p3T41

p1T23

 !
ð14Þ

where p1 and p3 are the probabilities of being in the original and
final trial state, respectively. T41 and T23 are transition probabil-
ities.T23 is the normal forward transition probability, as would be
given in the usual derivation of detailed balance, but T41 is a
reverse transition probability that is constructed using an alter-
native reverse path through configuration space that is con-
structed by taking the final state (state 3) and subtracting the
perturbation (1 f 2) from state 3 to arrive at state 4. Further
details are given in ref 25.
The trial moves are generated by a perturbation that uniformly

varies over some domain [�d/2,d/2] with a different magnitude
for the initial and annealing steps. In this work, for both types of

Figure 3. Distribution of φ/ψ angles without (A) and with (B)
Jacobian weighting of selection for an 11-residue peptide. A total of
4.5 � 105 trial moves were generated. No force field is used in the
selection probability, and all trial moves are accepted.

Figure 4. The ensemble structures (red) for the flexible loop (residues
165�178) of yeast TIM were taken from the equilibrium simulation
with initial structures of (A) the apo (open) conformation, (B) the
bound (closed) conformation, and (C) the closed conformation with
the ligand PGA removed. The X-ray structure of apo yeast TIM (PDB
1YPI) is shown in yellow and the bound state (PDB 2YPI) in cyan. The
ligand PGA is depicted by spheres.
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trial moves, either the backbone or side chain is allowed to be
perturbed with equal probability. For backbone perturbations,
the φ orψ dihedral angle can vary over the domain of [�2π,2π]
for initial steps and [�π/4,π/4] for annealing steps. For side
chain χ angles, the domains are [�π,π] and [�π/9,π/9],
respectively, for the initial and inner step trial moves. The
number of inner steps NI is set to 20, which was reported as
the upper bound of inner steps for generating precise distribu-
tion. For all protein systems studied in this work, a mixture of
50% POSH and 50% standard MC sampling, followed by the
MTSMC procedure, is used due to its better performance as
studied in the previous work.25

3. SIMULATIONS

We applied the loop Monte Carlo method described above to
several proteins with flexible loops. The first is the enzyme
triosephosphate isomerase (TIM), which has been used as a
model system for studying loop flexibility, primarily by NMR.
This enzyme catalyzes the reversible isomerization of dihydroxy-
acetone phosphate (DHAP) to D-glyceraldehyde 3-phosphate
(GAP). The active site loop 6 (residues 167�176) undergoes
conformational changes upon ligand binding and is believed to
be flexible in the absence of ligand binding, transitioning between
“open” and “closed” states. To assess the capability of our

method to capture the dynamical properties of this flexible loop,
three sets of simulations were performed. The first one started
from the apo yeast TIM (PDB ID 1YPI) with an open loop
conformation (we call this SIM1). The second started from the
2-phosphoglycolate (PGA)-bound TIM (PDB ID 2YPI) with
the closed loop conformation (SIM2), and the third is the same
as the second except that the ligand PGA was removed from the
initial structure (SIM3).

The titratable residues in the starting structures were pre-
dicted according to the experimental conditions. Specifically, in
all simulations, His95 was treated as neutral and protonated on
the N∈ 2. Glu165 is protonated in SIM2 in order to maintain the
strong interaction with ligand PGA9 but was unprotonated in the
other simulations. Residues within 8 Å of the active site loop were
included for the side chain sampling, and the flexible loop was
extended to include residues 165�178 in the simulations for
both the backbone and side chain sampling. The force field OPLS-
AA46,47 was used for the protein TIM and ligand PGA except that
the partial charges for the phosphate group of PGA were adjusted
on the basis of the previous work by Wong et al.48 The surface
generalized Born (SGB)49,50 model was used for implicit solvent
with the treatment of nonpolar terms.50 To prevent the sampling
from being trapped in local minima, all simulationswere performed
at a temperature of 600 K. Each simulation has a length ofNo = 2�
105 up to 5� 105 outer steps. Data analyses were performed over

Figure 5. Comparison of the calculated backbone dihedral angles, φ (A) andψ (B), with those measured in the X-ray structures. The black solid line is
for apo TIM (PDB 1YPI) and the dashed line for the ligand-bound TIM (PDB 2YPI). The calculated dihedral angles were averaged over the equilibrium
ensemble simulated from the initial structure of apo (red), ligand-bound (blue), and closed forms with the ligand PGA removed (green).
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the equilibrium simulations (roughly after 105 outer steps) during
which the potential energy is relatively stable.

The same protocol was also applied to other protein systems
which have been studied by NMR experiments, specifically those
with PDB ID 1H2O, 1XWE, and 1Q9P. By choosing NMR
structures, we eliminate any concerns about crystal packing
influencing the loop conformation or flexibility. These specific
proteins were chosen because each has two loops consisting of
5�8 residues, one of which has multiple conformations with
large variation among the various NMR models (flexible loop)
and the other has a narrow range of loop conformations among
the NMR models (rigid loop). Both the flexible and rigid loops
were simulated using the same sampling protocol and the same
parameter settings in order to compare with the experimental
data since both loops within the same protein were measured
under the same experimental conditions. The titratable residues
in the starting structures were protonated at the experimental
pH = 7.0 for 1H2O, 6.0 for 1XWE, and 5.8 for 1Q9P. The flexible
loops consist of residues 59�64 for 1H2O, 1609�1616 for
1XWE, and 48�53 for 1Q9P; the residues in the rigid loops are
46�51 for 1H2O, 1536�1540 for 1XWE, and 78�82 for 1Q9P.

4. RESULTS AND DISCUSSION

As an initial illustration of the utility of our loop MC method
for sampling the conformation space of protein loops, we applied
this method to the well-studied enzyme triosephosphate isomer-
ase (TIM). The active site loop undergoes large-scale motions
interconverting between open and closed conformations. This
conformational transition occurs on the time scale of milli-
seconds,17 making it a challenge for molecular dynamics simula-
tions in previous studies.51,52

In the current work, multiple transitions between open and
closed loop conformations of yeast TIM have been observed in
the simulation of the apo protein, but only at 600 K (vide infra).
Figure 4a and c, which start from the open and closed state,
respectively, show sampled loop conformations from the equi-
librium ensemble, spanning both the open and closed form. In
the simulation with the ligand PGA bound, the active site loop
stays in the closed conformation, as can be seen in Figure 4b.
These results agree qualitatively with NMR experiments, which
found that the loop samples open and closed conformations
whether or not a ligand was bound, but ligand binding shifted the

Figure 6. Ensemble-averaged chemical shifts (ppm) versus the NMR experimental measurements for CR (A), Cβ (B), carbonyl C (C), and amide N
(D) atoms of the flexible loop 6 of yeast TIM. SHIFTX56 was used to calculate chemical shifts, which were then averaged over an ensemble of 1000
structures from the equilibrated MC simulations. The starting PDB structures for the simulations are 1YPI (black), 2YPI with the ligand PGA removed
(red), and 2YPI with PGA bound (green). The experimental chemical shift data are those for apo yeast TIM in the NMR experiment57 (for comparison
with the apo simulations), and for yeast TIMwith ligandG3P57 (for comparison with the holo simulation). Experimental chemical shifts are not available
for some atoms, and these are omitted.
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equilibrium strongly toward the closed conformation.17,53 Upon
PGA binding, the carboxylate of the ligand protonates residue
Glu165, making it hydrogen bonded with PGA instead of with
Ser96 in the apo structure, such that the closed loop conforma-
tion is preferred in the presence of a ligand.

It has been known that the active site loop of TIM moves
largely as a rigid unit.51,54 Figure 5 shows that the backbone
dihedral angles of the flexible loop in the X-ray structure of apo
TIM are very similar to those in the structure of ligand-bound
TIM. The ensembles generated by the loop MC method largely
agree with the experimental data in this regard. We calculated the
backbone φ and ψ angles and averaged them over the equilib-
rium ensemble for each of the three simulations. For the holo
simulations, the ensemble averaged φ and ψ angles agree well
with those measured in the X-ray structures, as shown in
Figure 5a and b (blue lines). Similar agreement was also found
for the apo simulations started from both the open and closed
conformations, except that residues 170�173 have relatively
large deviations and fluctuations, which is consistent with the

findings in previous simulation studies17,52 (red and green lines
in Figure 5a and b).

NMR spectroscopy can provide information on both the
structure and dynamics of proteins in physiologically relevant
environments.55 The chemical shift is NMR’s most ubiquitous
parameter, the variation of nuclear magnetic resonance frequen-
cies of the same kind of nucleus being due to variations in the
electron distribution. To directly compare with the experimental
data, ensemble averaged chemical shifts were calculated for each
equilibrium ensemble using SHIFTX56 to calculate chemical
shifts for the residues of the flexible loop in each conformation
and then averaging over all of the conformations in the ensemble.
For the apo simulations, starting from either the open or closed
structures, the ensemble-averaged chemical shifts were com-
pared with NMR measurements of apo yeast TIM.57 For the
simulation of the ligand-bound, closed structure, NMR data
measured for G3P-bound yeast TIM57 were used. [The chemical
shifts for the closed loop of the enzyme bounded with G3P and
GPA are very similar (Yimin Xu, personal communication).]

Figure 7. Ensembles of loop structures from equilibrium simulations using MC sampling for proteins with PDB ID (A) 1H2O, (B) 1XWE, and (C)
1Q9P sampled at T = 600 K (left) and T = 300 K (right). The sampled flexible loops (“floppy”) which have a large fluctuation in the NMR models are
shown in red, and the rigid loops with very small fluctuations are in blue. The structures in yellow are taken from MODEL 1 of the PDB file.
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A strong linear correlation was found between the ensemble-
averaged and experimentally measured chemical shifts for CR
(Figure 6a) and Cβ (Figure 6b) atoms with a correlation co-
efficient r of 0.98 or higher in all cases. For carbonyl C and amide
N atoms of the flexible loop, although there are fewer experi-
mental chemical shifts available, the calculated ensemble averages
have small variations from experimental values (Figure 6c and d).
The agreement with the NMR chemical shifts provides addi-
tional evidence that the ensembles generated by the loop MC
sampling are reasonable.

We note that the experimental chemical shifts were measured
at 300 K, while our simulations were performed at 600 K. This is
because at 300 K it is difficult to observe the conformational
transitions between the open and the closed state. We suspect,
but cannot prove, that this occurs in part due to (1) the well-
known tendency of generalized Born implicit solvent models to
overstabilize salt bridges, (2) the effect of constraining the Ω
angles, as well as the bond angles and lengths, in addition to the
loop closure condition, and (3) sampling only the loop and not
the remainder of the protein. Using a higher temperature over-
comes all of these effects, and reasonable ensembles are gener-
ated which agree with the NMR chemical shifts. Because the
Monte Carlo sampling scheme does not perturb degrees of
freedom outside the loop, such that the overall structure is
preserved, a higher temperature sampling protocol can still
provide physical insights. The efficiency gained by sampling a
lower dimensional space, while still obtaining a reasonable
estimate of ensemble properties, motivates the use of this set
of approximations.

As a second initial application, we also applied our sampling
method to other protein structures, solved by NMR, which have
loops with differing flexibilities in order to evaluate our ability to
distinguish the flexible and rigid loops within the same protein.
The conformational ensembles from equilibrium simulations for
both the flexible and rigid loops are shown in Figure 7 for three
proteins with PDB ID 1H2O (a), 1XWE (b), and 1Q9P (c)
sampled at 600 K (left) and 300 K (right). These results clearly
show that the loop residues which are flexible in the experimen-
tally derived structures consistently are more floppy in the
sampled ensemble at either temperature than the loop residues,
which are relatively rigid in the same NMR structures. To further
quantify these results, root-mean-square fluctuations (RMSF)
of the heavy atoms in both loops were calculated for the sam-
pled and NMR models, as shown in Table 1. We recognize that
the set of NMR models for each protein cannot be viewed as
a true ensemble, but the qualitative agreement is nonetheless

encouraging. Thus, for studying protein loop flexibility, our
method is a viable alternative to molecular dynamics simulations,
which have also been used successfully to obtain ensembles in
quantitative agreement with NMR data. In the cases examined
here, the differences in rigidity appear to be related simply to the
level of solvent exposure; i.e., floppy loops are more solvent
exposed and have less interaction with their neighbors. For
simulations of all studied protein systems, three NMR targets
and TIM, the average acceptance ratio is about 14%.

Our current approach only varies φ�ψ angles, as they are
most flexible, but actually it is possible to include all other DoF in
theMC scheme in any desired combination.We are working on a
further version of the algorithm that will incorporate sampling
which allows Ω angles, as well as bond lengths and angles, to
fluctuate more freely, which may allow for lower temperature
sampling of systems of this type. Although in the present study
we have considered solvation effects implicitly only, including
water molecules explicitly in the simulation is possible in
principle. However, water molecules in the immediate vicinity
of a loop would lead to steric clashes whenever a large backbone
move was attempted, which would reduce the efficiency of the
present approach.
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